251 |
Resposta dinâmica dos motores de indução trifásicos a afundamentos de tensão na rede de alimentação / Dynamic response of three-phase induction motors to voltage sags in the power supply networkGerson Bessa Gibelli 04 June 2009 (has links)
Esta pesquisa apresenta um estudo da resposta dinâmica dos motores de indução trifásicos submetidos a afundamentos de tensão. As simulações computacionais sobre um sistema de distribuição, assim como a modelagem dos motores de indução trifásicos baseada em dados reais, foram realizadas utilizando-se do software ATP (Alternative Transients Program). Estas tiveram por objetivo gerar situações representativas da operação do sistema elétrico de potência (SEP), caracterizando afundamentos de tensão, fenômenos estes pertencentes à classe de variações de tensão de curta duração (VTCD), no contexto da qualidade da energia elétrica (QEE). Da observação destes afundamentos, verificaram-se as situações que vieram ou não, a comprometer a alimentação do equipamento analisado e, conseqüentemente, seu desempenho. Pelos resultados observados, evidencia-se que a metodologia de análise aplicada é satisfatória e condizente com o encontrado em situações reais de operação dos motores de indução trifásicos, denotando certas características intrínsecas no contexto das VTCDs. / This research shows a study on the dynamic response of three-phase induction motors submitted to voltage sags. Computer simulations about a distribution system, as well as the modeling of three-phase induction motors based on actual data, were made using ATP (Alternative Transients Program) software. These simulations intended to generate representative situations of the electrical power system (EPS) operation, characterizing voltage sags, which is a phenomenon belonging to the class of short duration voltage variations (SDVV), in the electrical power quality context (EPQ). From the observation of these sags, we verified the situations that jeopardized or not the supply of the analyzed equipment and, consequently, its performance. From the observed results, it becomes evident that the methodology of the applied analysis is satisfactory and in agreement with the one found in actual situations of three-phase induction motors operations, indicating certain characteristics intrinsic to the SDVV context.
|
252 |
Ações de conservação de energia aplicadas a uma planta industrial composta de motores de indução / Action of conservation of energy applied to one plants composed industrial of induction motorsJosé Henrique Facco 31 March 2006 (has links)
O presente trabalho objetiva, a partir de dados coletados dos motores elétricos em regime de trabalho, dar sua contribuição ao estudo de conservação de energia elétrica numa planta industrial. Apresenta-se o motor elétrico trifásico de indução e as diversas questões relativas ao seu uso industrial, para então, demonstrarem os parâmetros elétricos obtidos. Elaborou-se um trabalho de campo, que possibilita à análise da eficiência energética no uso de motores elétricos em uma fábrica de papel e cosméticos. A partir de medidas dos parâmetros elétricos como: corrente e tensão, mais os dados de catálogos do fabricante, chegaram-se aos valores de rendimento, fator de potência e fator de utilização, para diversas condições de carga dos motores. Caso o fator de utilização seja inferior a 75%, um estudo comparativo permitirá as decisões de substituição dos motores super dimensionados. Os dados são usados para as seguintes análises: qual a possível conservação de energia elétrica para cada setor, se os motores fossem substituídos por unidades de alto rendimento?; qual a viabilidade de cada setor realizar as trocas imediatas por motores de alto rendimento?; qual à economia de energia elétrica por setores em (R$/dia), utilizando motores de alto rendimento?; em quanto tempo obteríamos o retorno desse investimento? Alguns recursos de informática foram utilizados nos cálculos realizados. Os resultados indicam que o potencial de conservação de energia elétrica em motores deve ser melhor explorado e de forma mais consciente. / The objective of the present research, from a data set of electric motor collected in a regimen of work, give its contribution to the study on industrial electrical motors energy saving. It present the three-phase induction motor, the various issues of its industrial use and the electric parameter set collected are then presented. Field of work was elaborated, wich allowed the analysis of the energy efficiency in the use of electric engines in industry of paper and cosmetics. Given the measurements of current and tension, plus the data from the manufacters catalogs, values of efficiency were obtained, power factor and utilization factor, for diverse conditions of engine load. But in case the utilization factor is less than 75%, a comparative study allowed the decisions of substitution of the poorly dimensioned engines. The data are analyzed in ways: 1)What would be the energy save to each sector, if motors were changed for high efficient units? 2)What would be the viable to each sector to replace immediately the existing motors for high efficient? 3)What would be the energy save to each sector in (R$/day), using high efficient motors? 4)How much time would be the return of the investiment?. Some resources of computer technology were used in the calculations. The results showing the electric energy saving potential in motor would be better use to advantage and more conscientions form.
|
253 |
Metodologia para diagnóstico e análise da influência dos afundamentos e interrupções de tensão nos motores de indução trifásicos / Methodology for the diagnosis and analysis of influence of voltage sags and interruptions in three-phase induction motorsGerson Bessa Gibelli 20 May 2016 (has links)
Nesta pesquisa, é proposta uma metodologia para detectar e classificar os distúrbios observados em um Sistema Elétrico Industrial (SEI), além de estimar de forma não intrusiva, o torque eletromagnético e a velocidade associada ao Motor de Indução Trifásico (MIT) em análise. A metodologia proposta está baseada na utilização da Transformada Wavelet (TW) para a detecção e a localização no tempo dos afundamentos e interrupções de tensão, e na aplicação da Função Densidade de Probabilidade (FDP) e Correlação Cruzada (CC) para a classificação dos eventos. Após o processo de classificação dos eventos, a metodologia como implementada proporciona a estimação do torque eletromagnético e a velocidade do MIT por meio das tensões e correntes trifásicas via Redes Neurais Artificiais (RNAs). As simulações computacionais necessárias sobre um sistema industrial real, assim como a modelagem do MIT, foram realizadas utilizando-se do software DIgSILENT PowerFactory. Cabe adiantar que a lógica responsável pela detecção e a localização no tempo detectou corretamente 93,4% das situações avaliadas. Com relação a classificação dos distúrbios, o índice refletiu 100% de acerto das situações avaliadas. As RNAs associadas à estimação do torque eletromagnético e à velocidade no eixo do MIT apresentaram um desvio padrão máximo de 1,68 p.u. e 0,02 p.u., respectivamente. / This study proposes a methodology to detect and classify the disturbances observed in an Industrial Electric System (IES), in addition to, non-intrusively, estimate the electromagnetic torque and speed associated with the Three-Phase Induction Motor (TPIM) under analysis. The proposed methodology is based on the use of the Wavelet Transform WT) for the detection and location in time of voltage sags and interruptions, and on the application of the Probability Density Function (PDF) and Cross Correlation (CC) for the classification of events. After the process of events classification, the methodology, as implemented, provides the estimation of the electromagnetic torque and the TPIM speed through the three-phase voltages and currents via Artificial Neural Networks (ANN). The necessary computer simulations of a real industrial system, as well as the modeling of the TPIM, were performed by using the DIgSILENT PowerFactory software. The logic responsible for the detection and location in time correctly detected 93.4% of the assessed situations. Regarding the classification of disturbances, the index reflected 100% accuracy of the assessed situations. The ANN associated with the estimation of the electromagnetic torque and speed at the TPIM shaft showed a maximum standard deviation of 1.68 p.u. and 0.02 p.u., respectively.
|
254 |
Applications of Soft Computing for Power-Quality Detection and Electric Machinery Fault DiagnosisWu, Chien-Hsien 20 November 2008 (has links)
With the deregulation of power industry and the market competition, stable and reliable power supply is a major concern of the independent system operator (ISO). Power-quality (PQ) study has become a more and more important subject lately. Harmonics, voltage swell, voltage sag, and power interruption could downgrade the service quality. In recent years, high speed railway (HSR) and massive rapid transit (MRT) system have been rapidly developed, with the applications of widespread semiconductor technologies in the auto-traction system. The harmonic distortion level worsens due to these increased uses of electronic equipment and non-linear loads. To ensure the PQ, power-quality disturbances (PQD) detection becomes important. A detection method with classification capability will be helpful for detecting disturbance locations and types.
Electric machinery fault diagnosis is another issue of considerable attentions from utilities and customers. ISO need to provide a high quality service to retain their customers. Fault diagnosis of turbine-generator has a great effect on the benefit of power plants. The generator fault not only damages the generator itself, but also causes outages and loss of profits. With high-temperature, high-pressure and factors such as thermal fatigues, many components may go wrong, which will not only lead to great economic loss, but sometimes a threat to social security. Therefore, it is necessary to detect generator faults and take immediate actions to cut the loss. Besides, induction motor plays a major role in a power system. For saving cost, it is important to run periodical inspections to detect incipient faults inside the motor. Preventive techniques for early detection can find out the incipient faults and avoid outages. This dissertation developed various soft computing (SC) algorithms for detection including power-quality disturbances (PQD), turbine-generator fault diagnosis, and induction motor fault diagnosis. The proposed SC algorithms included support vector machine (SVM), grey clustering analysis (GCA), and probabilistic neural network (PNN). Integrating the proposed diagnostic procedure and existing monitoring instruments, a well-monitored power system will be constructed without extra devices. Finally, all the methods in the dissertation give reasonable and practical estimation method. Compared with conventional method, the test results showed a high accuracy, good robustness, and a faster processing performance.
|
255 |
Tiesiaeigės dažninės pavaros tyrimas / Research of linear variable frequency driveJenkinas, Piotras 08 June 2004 (has links)
The properties of linear induction motor and areas of its application are analyzed; frequency converters and their control methods are discussed in this final work. Methods to realize a pulse width modulation are analyzed, scalar and vector control principles as well as perspectives of perfection of semiconductor commutating elements and control systems are discussed. The principle of operation of control systems applied in frequency converters is analyzed On the base of analysis mathematical and Simulink model of linear induction motor in α-β reference frame is developed, mathematical and Simulink models of frequency controlled linear induction drives are carried out. Two models of linear frequency controlled induction drive: scalar and vector control are investigated, transient characteristics of inverter output voltage, currents of linear motor, developed force and linear speed are analyzed and results of different control principles are compared.
|
256 |
Identification of Damping Contribution from Power System ControllersBanejad, Mahdi January 2004 (has links)
With the growth of power system interconnections, the economic drivers encourage the electric companies to load the transmission lines near their limits, therefore it is critical to know those limits well. One important limiting issue is the damping of inter-area oscillation (IAO) between groups of synchronous machines. In this Ph.D. thesis, the contribution of power system components such as load and static var compensators (SVC) that affect the IAO of the power system, are analysed. The original contributions of this thesis are as follows: 1-Identification of eigenvalues and mode shapes of the IAO: In the first contribution of this thesis, the eigenvalues of the IAO are identified using a correlation based method. Then, the mode shape at each identified resonant frequency is determined to show how the synchronous generators swing against each other at the specific resonant frequencies. 2-Load modelling and load contribution to damping: The first part of this contribution lies in identification of the load model using cross-correlation and autocorrelation functions . The second aspect is the quantification of the load contribution to damping and sensitivity of system eigenvalues with respect to the load. 3- SVC contribution to damping: In this contribution the criteria for SVC controller redesign based on complete testing is developed. Then the effect of the SVC reactive power on the measured power is investigated. All of the contributions of this thesis are validated by simulation on test systems. In addition, there are some specific application of the developed methods to real data to find a.) the mode shape of the Australian electricity network, b.) the contribution of the Brisbane feeder load to damping and c.) the effect of the SVC reactive power of the Blackwall substations on the active power supplying Brisbane.
|
257 |
Estudo comparativo de técnicas de estimativa do fluxo estatórico de MITSilveira, Augusto Wohlgemuth Fleury Veloso da 02 March 2007 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This work shows and compares three different flux estimator algorithms developed for use in
high-performance sensorless ac motor drives. The first algorithm uses a low pass filter with a
very low cut off frequency to integrate the back electromotive force (emf). The second one
uses a high pass filter to remove the offset present in the signal before it s integration. The
third algorithm uses current and voltage model to estimate the flux of induction motor. These
algorithms can be used to accurately measure the motor flux including magnitude and phase
angle over a wide speed range. The performance of the algorithms is investigated, compared,
and verified using simulation and experimental tests. / Este trabalho tem como objetivo apresentar uma comparação entre três algoritmos
estimadores de fluxo estatórico diferentes. Estes algoritmos foram desenvolvidos para serem
usados no projeto de acionamentos de alto desempenho, sem sensor de velocidade, para
motores de indução. O primeiro algoritmo adotado utiliza um filtro passa baixa com uma
freqüência de corte baixa para resolver a integração. O segundo algoritmo usa um filtro passa
alta para retirar o offset do sinal de entrada do integrador puro. O terceiro algoritmo é um
algoritmo híbrido que utiliza os modelos de tensão e corrente em paralelo para estimar o
fluxo. Os algoritmos estimam fluxo estatórico em uma ampla faixa de freqüência de
funcionamento do motor de indução e foram implementados na forma de simulação e
experimentalmente para comparar o funcionamento dos mesmos em diferentes velocidades de
operação do motor. / Mestre em Ciências
|
258 |
Avaliação de estratégias de controle do motor de indução monofásico / Evaluation of single phase induction motor control schemesOliveira, Jacson Luís de 31 January 2013 (has links)
Made available in DSpace on 2016-12-12T20:27:37Z (GMT). No. of bitstreams: 1
Jacson Luis Oliveira.pdf: 10477972 bytes, checksum: 1b64e6d37c97643852f0678c2a5c6d71 (MD5)
Previous issue date: 2013-01-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The goal of the present work is to evaluate control schemes which were developed to control the three-phase induction motor, applied in this work to control the single-phase induction motor. The development of control schemes to control fractional power electrical machines such as the single-phase induction motor has been in evidence due to the needs of improvements on efficiency energy demanded by the market. The constructive aspects of this motor does not allow to apply control schemes directly. Thus, it is necessary to model the single-phase induction motor as a two-phase motor. The model considers coordinates transformations to stationary systems. To fix the asymmetry of the motor windings, a symmetry transformation is required to apply the control schemes. Classical control schemes based on field-oriented control and direct torque control were evaluated. Numerical simulations were performed to review how these control schemes work and to verify the feasibility of experimental implementation. For control schemes based on field-oriented control, the rotor flux oriented control and the stator flux oriented control were evaluated. Some constraints on the classical direct torque control were noted due to the high switching frequencies. An alternative to the classical direct torque control to allow constant switching frequencies was evaluated. Experimental results were found by using a hardware system based on digital signal processor. / Este trabalho tem por objetivo avaliar estratégias de controle, originalmente desenvolvidas para controlar o motor de indução trifásico, aqui aplicadas ao controle motor de indução monofásico. O desenvolvimento de estratégias que abordam o controle de motores de potência fracionária tal como o motor de indução monofásico tem tido maior destaque devido a necessidade de melhorias na eficiência energética exigida pelo mercado. As características construtivas deste motor não permitem a aplicação direta destas estratégias, de modo que o modelamento do motor de indução monofásico deve ser realizado afim de obter o modelo em sua configuração bifásica. O modelo considera a transformação de coordenadas para um sistema de eixo estacionário e, para compensar a assimetria dos enrolamentos uma transformação de simetria é necessária para a aplicação das estratégias de controle. Foram avaliadas estratégias clássicas baseadas no controle por orientação de campo e controle direto de torque. Um estudo de simulação numérica é realizado para avaliar o comportamento destas estratégias de controle e verificar a viabilidade de implementação prática. Nas estratégias de controle por orientação de campo são analisados o controle vetorial com orientação por fluxo de rotor e o controle vetorial com orientação por fluxo de estator. Observou-se que há restrições na implementação prática de estratégias de controle baseadas no controle direto de torque clássico devido as altas freqüências de chaveamento requeridas. Uma alternativa ao controle direto de torque clássico que permite o uso de frequências fixas de chaveamento é avaliada. Resultados experimentais foram obtidos utilizando uma plataforma de hardware com processador digital de sinais.
|
259 |
Low Switching Frequency Pulse Width Modulation for Induction Motor DrivesTripathi, Avanish January 2017 (has links) (PDF)
Induction motor (IM) drives are employed in a wide range of industries due to low maintenance, improved efficiency and low emissions. Industrial installations of high-power IM drives rated up to 30 MW have been reported. The IM drives are also employed in ultra high-speed applications with shaft speeds as high as 500; 000 rpm. Certain applications of IM drives such as gas compressors demand high power at high speeds (e.g. 10 MW at 20; 000 rpm).
In high-power voltage source inverter (VSI) fed induction motor drives, the semiconductor devices experience high switching energy losses during switching transitions. Hence, the switching frequency is kept low in such high-power drives. In high-speed drives, the maximum modulation frequency is quite high. Hence, at high speeds and/or high power levels, the ratio of switching frequency to fundamental frequency (i.e. pulse number, P ) of the motor drive is quite low.
Induction motor drives, operating at low-pulse numbers, have significant low-order volt-age harmonics in the output. These low-order voltage harmonics are not filtered adequately by the motor inductance, leading to high total harmonic distortion (THD) in the line current as well as low-order harmonic torques. The low-order harmonic torques may lead to severe torsional vibrations which may eventually damage the motor shaft. This thesis addresses numerous issues related to low-pulse-number operation of VSI fed IM drives. In particular, optimal pulse width modulation (PWM) schemes for minimization of line current distortion and those for minimization of a set of low-order harmonic torques are proposed for two-level and three-level inverter fed IM drives.
Analytical evaluation of current ripple and torque ripple is well established for the induction motor drives operating at high pulse numbers. However, certain important assumptions made in this regard are not valid when the pulse number is low. An analytical method is proposed here for evaluation of current ripple and torque ripple in low-pulse-number induction motor drives. The current and torque harmonic spectra can also be predicted using the proposed method. The analytical predictions of the proposed method are validated through simulations and experimental results on a 3:7-kW induction motor drive, operated at low pulse numbers. The waveform symmetries, namely, half-wave symmetry (HWS), quarter-wave symmetry (QWS) and three-phase symmetry (TPS), are usually maintained in induction motor drives, operating at low switching frequencies. Lack of HWS is well known to introduce even harmonics in the line current. Impact of three-phase symmetry on line current and torque harmonic spectra is analyzed in this thesis. When the TPS is preserved, there are no triplen frequency components in the line current and also no harmonic torques other than those of order 6, 12, 18 etc. While TPS ensures that the triplen harmonics in the three-phase pole voltages are in phase, these triplen frequency harmonics form balanced sets of three-phase voltages when TPS is not preserved. Hence, triplen frequency currents flow through the stator windings. These result in torque harmonics of order 2, 4, 6, 8, 10 etc., and not just integral multiples of 6. These findings are well supported by simulation and experimental results.
One can see that two types of pole voltage waveforms are possible, when all waveform symmetries (i.e. HWS, TPS and QWS) are preserved in a two-level inverter, These are termed as type-A and type-B waveforms here. Also, QWS could be relaxed, while maintain-ing HWS and TPS, leading to yet another type of pole voltage waveform. Optimal switching angles to minimize line current THD are reported for all three types of pole voltage wave-forms. Theoretical and experimental results on a 3:7-kW IM drive show that optimal type-A PWM and optimal type-B PWM are better than each other in different ranges of modulation at any given low pulse number. In terms of current THD, the optimal PWM without QWS is found to be close to the better one between optimal type-A and optimal type-B at any modulation index for a given P . A combined optimal PWM to minimize THD is proposed, which utilizes the superior one between optimal type-A and optimal type-B at any given modulation index and pulse number. The performance of combined optimal PWM is shown to be better than those of synchronous sine-triangle (ST) PWM and selective harmonic elimination (SHE) PWM through simulations and experiments over a wide range of speed.
A frequency domain (FD) based and another synchronous reference frame (SRF) based optimal PWM techniques are proposed to minimize low-order harmonic torques. The objective here is to minimize the combined value of low-order harmonic torques of order 6, 12, 18, ..., 6(N 1), where N is the number of switching angles per quarter cycle. The FD based optimal PWM is independent of load and machine parameters while the SRF based method considers both load and machine parameters. The offline calculations are much simpler in
case of FD based optimal PWM than in case of SRF based optimal PWM. The performance
of the two schemes are comparable and are much superior to those of synchronous ST PWM
and SHE PWM in terms of low-order harmonic torques as shown by the simulation and
experimental results presented over a wide range of fundamental frequency,
The proposed optimal PWM methods for two level-inverter fed motor drives to minimize
the line current distortion and low-order torque harmonics, are extended to neutral point clamped (NPC) three-level inverter fed drive. The proposed optimal PWM methods for the NPC inverter are compared with ST PWM and SHE PWM, having the same number of
switching angles per quarter. Simulation and experimental results on a 3:7-kW induction
motor drive demonstrate the superior performance of proposed optimal PWM schemes over ST PWM and SHE PWM schemes.
The di_erent optimal PWM schemes proposed for two-level and three-level inverter fed
drives, having di_erent objective functions and constraints, are all analyzed from a space vector perspective. The three-phase PWM waveforms are seen as a sequence of voltage
vector applied in each case. The space vector analysis leads to determination of optimal
vector sequences, fast o_ine calculation of optimal switching angles and e_cient digital
implementation of the proposed optimal PWM schemes. A hybrid PWM scheme is proposed
for two-level inverter fed IM drive, having a maximum switching frequency of 250 Hz. The
proposed hybrid PWM utilizes ST PWM at a _xed frequency of 250 Hz at low speeds. This
method employs the optimal vector sequence to minimize the current THD at any speed in
the medium and high speed ranges. The proposed method is shown to reduce both THD as well as machine losses signi_cantly, over a wide range of speed, compared to ST PWM
Position sensorless vector control of IM drive also becomes challenging when the ratio
of inverter switching frequency to maximum modulation frequency is low. An improved
procedure to design current controllers, and a closed-loop ux estimator are reviewed. These are utilized to design and implement successfully a position sensorless vector controlled IM drive, modulated with asynchronous third harmonic injected (THI) PWM at a constant switching frequency of 500 Hz. Sensorless vector control is also implemented successfully, when the inverter is modulated with synchronized THI PWM and the maximum switching frequency is limited to 500 Hz.
|
260 |
Contribution à la commande d’un moteur asynchrone destiné à la traction électrique / Contribution to induction motor control for electric tractionMehazzem, Fateh 06 December 2010 (has links)
Le travail présenté dans cette thèse a pour objectif d'apporter une contribution aux méthodes de commande et d'observation des machines asynchrones destinées à la traction électrique. Dans ce contexte, plusieurs algorithmes ont été développés et implémentés. Après une présentation rapide de la commande vectorielle classique, de nouvelles approches de commande non linéaire sont proposées : il s'agit plus précisément de la commande backstepping classique et sa variante avec action intégrale. Une deuxième partie est consacrée à l'observation et à l'estimation des paramètres et des états de la machine, basée sur des structures MRAS-modes glissants d'une part et sur des structures de filtrage synchrone d'autre part. Une analyse détaillée du problème de fonctionnement à basse vitesse nous a conduit à proposer une solution originale dans le cadre d'une commande sans capteur mécanique. Le problème de la dégradation du couple en survitesse a été traité par un algorithme de défluxage basé sur la conception d'un contrôleur de tension. Enfin, nous avons proposé un algorithme d'optimisation afin de minimiser les pertes dans l'ensemble Onduleur-Machine / The work presented in this thesis aims to contribute to the control and observation of the induction machines for electric traction. Several algorithms have been developed and implemented. After a fast presentation of the classical vector control, new approaches of non-linear control are proposed : the classical backstepping and integral backstepping. A second part deals with the observation and the estimation of parameters and states of the machine, based on MRAS-Sliding Mode structures on one hand and on synchronous filtering structures on the other hand. A detailed analysis of the operation at low speed led us to propose an original solution for a Sensorless control. The torque degradation in field weakening zone was treated by a voltage regulation controller. Finally, we proposed losses minimization algorithm for the Inverter-Machine set
|
Page generated in 0.1052 seconds