• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 7
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 38
  • 13
  • 11
  • 10
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Newton's method for solving strongly regular generalized equation / Método de Newton para resolver equações generalizadas fortemente regulares

Silva, Gilson do Nascimento 13 March 2017 (has links)
Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2017-03-22T20:23:25Z No. of bitstreams: 2 Tese - Gilson do Nascimento Silva - 2017.pdf: 2015008 bytes, checksum: e0148664ca46221978f71731aeabfa36 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-23T11:30:21Z (GMT) No. of bitstreams: 2 Tese - Gilson do Nascimento Silva - 2017.pdf: 2015008 bytes, checksum: e0148664ca46221978f71731aeabfa36 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-03-23T11:30:21Z (GMT). No. of bitstreams: 2 Tese - Gilson do Nascimento Silva - 2017.pdf: 2015008 bytes, checksum: e0148664ca46221978f71731aeabfa36 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-03-13 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / We consider Newton’s method for solving a generalized equation of the form f(x) + F(x) 3 0, where f : Ω → Y is continuously differentiable, X and Y are Banach spaces, Ω ⊆ X is open and F : X ⇒ Y has nonempty closed graph. Assuming strong regularity of the equation and that the starting point satisfies Kantorovich’s conditions, we show that the method is quadratically convergent to a solution, which is unique in a suitable neighborhood of the starting point. In addition, a local convergence analysis of this method is presented. Moreover, using convex optimization techniques introduced by S. M. Robinson (Numer. Math., Vol. 19, 1972, pp. 341-347), we prove a robust convergence theorem for inexact Newton’s method for solving nonlinear inclusion problems in Banach space, i.e., when F(x) = −C and C is a closed convex set. Our analysis, which is based on Kantorovich’s majorant technique, enables us to obtain convergence results under Lipschitz, Smale’s and Nesterov-Nemirovskii’s self-concordant conditions. / N´os consideraremos o m´etodo de Newton para resolver uma equa¸c˜ao generalizada da forma f(x) + F(x) 3 0, onde f : Ω → Y ´e continuamente diferenci´avel, X e Y s˜ao espa¸cos de Banach, Ω ⊆ X ´e aberto e F : X ⇒ Y tem gr´afico fechado n˜ao-vazio. Supondo regularidade forte da equa¸c˜ao e que o ponto inicial satisfaz as hip´oteses de Kantorovich, mostraremos que o m´etodo ´e quadraticamente convergente para uma solu¸c˜ao, a qual ´e ´unica em uma vizinhan¸ca do ponto inicial. Uma an´alise de convergˆencia local deste m´etodo tamb´em ´e apresentada. Al´em disso, usando t´ecnicas de otimiza¸c˜ao convexa introduzida por S. M. Robinson (Numer. Math., Vol. 19, 1972, pp. 341-347), provaremos um robusto teorema de convergˆencia para o m´etodo de Newton inexato para resolver problemas de inclus˜ao n˜ao–linear em espa¸cos de Banach, i.e., quando F(x) = −C e C ´e um conjunto convexo fechado. Nossa an´alise, a qual ´e baseada na t´ecnica majorante de Kantorovich, nos permite obter resultados de convergˆencia sob as condi¸c˜oes Lipschitz, Smale e Nesterov-Nemirovskii auto-concordante.
32

Correspondência inexata entre grafos. / inexact graph correspondence

Alexandre da Silva Freire 02 July 2008 (has links)
Sejam GI = (VI ,AI) e GM = (VM,AM) dois grafos simples. Um mapeamento de GI para GM é um conjunto de associações, tal que cada vértice de VI está associado a um vértice de VM, e cada aresta de AI está associada a um par de vértices de VM. A cada possível associação é atribuído um custo. O problema de correspondência inexata entre grafos (PCIG) consiste em encontrar um mapeamento de GI para GM, tal que a soma dos custos de suas associações seja mínima. Nesta dissertação, resumimos os resultados encontrados na literatura sobre o PCIG e algumas de suas variações. Os resultados que incluímos aqui tratam sobre a questão de como formular o PCIG e algumas de suas variações, através de programação linear inteira. Provamos alguns resultados de complexidade computacional que relacionam variações do PCIG a problemas clássicos, como isomorfismo e partição de grafos. Fornecemos uma formulação através de programação linear inteira para o PCCA (uma variante do PCIG com conexidade e cobertura de arestas). Mostramos que o PCCA é NP-difícil quando os grafos de entrada são completos ou árvores (chamamos o segundo caso de PCCA para árvores). Apresentamos uma formulação linear inteira e um algoritmo - que é polinomial se o grau máximo dos vértices de VM for limitado por uma constante - para o PCCA para árvores. Mostramos um caso especia em que o PCCA para árvores pode ser resolvido em tempo polinomial. Por último, exibimos alguns resultados experimentais, inclusive com instâncias reais de uma aplicação do problema. / Let GI = (VI ,AI) and GM = (VM,AM) be two simple graphs. A mapping from GI to GM is an association set, such that each vertex in VI is associated to a vertex in VM, and each edge in AI is associated to a pair of vertices of VM. A cost is defined to each possible association. The inexact graph correspondence problem (IGCP) consists in finding a mapping from GI to GM, such that the sum of its associations costs is minimized. In this dissertation, we summarize the results found in the literature about the IGCP and some variations. The results included here address the question of how to formulate the IGCP and some variations, using integer linear programming. We prove some computational complexity results which relate IGCP variations with classical problems, like graph isomorphism and partitioning. We give an integer linear programming formulation to the ICEC (IGCP with connectivity and edges cover). We show that the ICEC is NP-hard when the input graphs are complete or trees (we call the second case ICEC for trees). We introduce an integer linear formulation and an algorithm - which has polynomial running time if the vertices of VM have maximum degree bounded by a constant - to the ICEC for trees. We show a especial case in which the ICEC for trees can be solved in polynomial time. Finally, we present some experimental results, also with instances of a real application of the problem.
33

Přibližné vyhledávání řetězců v předzpracovaných dokumentech / Approximate String Matching in Preprocessed Documents

Toth, Róbert January 2014 (has links)
This thesis deals with the problem of approximate string matching, also called string matching allowing errors. The thesis targets the area of offline algorithms, which allows very fast pattern matching thanks to index created during initial text preprocessing phase. Initially, we will define the problem itself and demonstrate variety of its applications, followed by short survey of different approaches to cope with this problem. Several existing algorithms based on suffix trees will be explained in detail and new hybrid algorithm will be proposed. Algorithms wil be implemented in C programming language and thoroughly compared in series of experiments with focus on newly presented algorithm.
34

Rational Krylov Methods for Operator Functions

Güttel, Stefan 26 March 2010 (has links) (PDF)
We present a unified and self-contained treatment of rational Krylov methods for approximating the product of a function of a linear operator with a vector. With the help of general rational Krylov decompositions we reveal the connections between seemingly different approximation methods, such as the Rayleigh–Ritz or shift-and-invert method, and derive new methods, for example a restarted rational Krylov method and a related method based on rational interpolation in prescribed nodes. Various theorems known for polynomial Krylov spaces are generalized to the rational Krylov case. Computational issues, such as the computation of so-called matrix Rayleigh quotients or parallel variants of rational Arnoldi algorithms, are discussed. We also present novel estimates for the error arising from inexact linear system solves and the approximation error of the Rayleigh–Ritz method. Rational Krylov methods involve several parameters and we discuss their optimal choice by considering the underlying rational approximation problems. In particular, we present different classes of optimal parameters and collect formulas for the associated convergence rates. Often the parameters leading to best convergence rates are not optimal in terms of computation time required by the resulting rational Krylov method. We explain this observation and present new approaches for computing parameters that are preferable for computations. We give a heuristic explanation of superlinear convergence effects observed with the Rayleigh–Ritz method, utilizing a new theory of the convergence of rational Ritz values. All theoretical results are tested and illustrated by numerical examples. Numerous links to the historical and recent literature are included.
35

Βελτιωμένες αλγοριθμικές τεχνικές επίλυσης συστημάτων μη γραμμικών εξισώσεων

Μαλιχουτσάκη, Ελευθερία 22 December 2009 (has links)
Σε αυτή την εργασία, ασχολούμαστε με το πρόβλημα της επίλυσης συστημάτων μη γραμμικών αλγεβρικών ή/και υπερβατικών εξισώσεων και συγκεκριμένα αναφερόμαστε σε βελτιωμένες αλγοριθμικές τεχνικές επίλυσης τέτοιων συστημάτων. Μη γραμμικά συστήματα υπάρχουν σε πολλούς τομείς της επιστήμης, όπως στη Μηχανική, την Ιατρική, τη Χημεία, τη Ρομποτική, τα Οικονομικά, κ.τ.λ. Υπάρχουν πολλές μέθοδοι για την επίλυση συστημάτων μη γραμμικών εξισώσεων. Ανάμεσά τους η μέθοδος Newton είναι η πιο γνωστή μέθοδος, λόγω της τετραγωνικής της σύγκλισης όταν υπάρχει μια καλή αρχική εκτίμηση και ο Ιακωβιανός πίνακας είναι nonsingular. Η μέθοδος Newton έχει μερικά μειονεκτήματα, όπως τοπική σύγκλιση, αναγκαιότητα υπολογισμού του Ιακωβιανού πίνακα και ακριβής επίλυση του γραμμικού συστήματος σε κάθε επανάληψη. Σε αυτή τη μεταπτυχιακή διπλωματική εργασία αναλύουμε τη μέθοδο Newton και κατηγοριοποιούμε μεθόδους που συμβάλλουν στην αντιμετώπιση των μειονεκτημάτων της μεθόδου Newton, π.χ. Quasi-Newton και Inexact-Newton μεθόδους. Μερικές πιο πρόσφατες μέθοδοι που περιγράφονται σε αυτή την εργασία είναι η μέθοδος MRV και δύο νέες μέθοδοι Newton χωρίς άμεσες συναρτησιακές τιμές, κατάλληλες για προβλήματα με μη ακριβείς συναρτησιακές τιμές ή με μεγάλο υπολογιστικό κόστος. Στο τέλος αυτής της μεταπτυχιακής εργασίας, παρουσιάζουμε τις βασικές αρχές της Ανάλυσης Διαστημάτων και τη Διαστηματική μέθοδο Newton. / In this contribution, we deal with the problem of solving systems of nonlinear algebraic or/and transcendental equations and in particular we are referred to improved algorithmic techniques of such kind of systems. Nonlinear systems arise in many domains of science, such as Mechanics, Medicine, Chemistry, Robotics, Economics, etc. There are several methods for solving systems of nonlinear equations. Among them Newton's method is the most famous, because of its quadratic convergence when a good initial guess exists and the Jacobian matrix is nonsingular. Newton's method has some disadvantages, such as local convergence, necessity of computation of Jacobian matrix and the exact solution of linear system at each iteration. In this master thesis we analyze Newton's method and we categorize methods that contribute to the treatment of drawbacks of Newton's method, e.g. Quasi-Newton and Inexact-Newton methods. Some more recent methods which are described in this thesis are the MRV method and two new Newton's methods without direct function evaluations, ideal for problems with inaccurate function values or high computational cost. At the end of this master thesis, we present the basic principles of Interval Analysis and Interval Newton's method.
36

Generalized vector equilibrium problems and algorithms for variational inequality in hadamard manifolds / Problemas de equilíbrio vetoriais generalizados e algoritmos para desigualdades variacionais em variedades de hadamard

Batista, Edvaldo Elias de Almeida 20 October 2016 (has links)
Submitted by Jaqueline Silva (jtas29@gmail.com) on 2016-12-09T17:10:49Z No. of bitstreams: 2 Tese - Edvaldo Elias de Almeida Batista - 2016.pdf: 1198471 bytes, checksum: 88d7db305f0cfe6be9b62496a226217f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2016-12-09T17:11:03Z (GMT) No. of bitstreams: 2 Tese - Edvaldo Elias de Almeida Batista - 2016.pdf: 1198471 bytes, checksum: 88d7db305f0cfe6be9b62496a226217f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-12-09T17:11:03Z (GMT). No. of bitstreams: 2 Tese - Edvaldo Elias de Almeida Batista - 2016.pdf: 1198471 bytes, checksum: 88d7db305f0cfe6be9b62496a226217f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-10-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this thesis, we study variational inequalities and generalized vector equilibrium problems. In Chapter 1, several results and basic definitions of Riemannian geometry are listed; we present the concept of the monotone vector field in Hadamard manifolds and many of their properties, besides, we introduce the concept of enlargement of a monotone vector field, and we display its properties in a Riemannian context. In Chapter 2, an inexact proximal point method for variational inequalities in Hadamard manifolds is introduced, and its convergence properties are studied; see [7]. To present our method, we generalize the concept of enlargement of monotone operators, from a linear setting to the Riemannian context. As an application, an inexact proximal point method for constrained optimization problems is obtained. In Chapter 3, we present an extragradient algorithm for variational inequality associated with the point-to-set vector field in Hadamard manifolds and study its convergence properties; see [8]. In order to present our method, the concept of enlargement of maximal monotone vector fields is used and its lower-semicontinuity is established to obtain the convergence of the method in this new context. In Chapter 4, we present a sufficient condition for the existence of a solution to the generalized vector equilibrium problem on Hadamard manifolds using a version of the KnasterKuratowski-Mazurkiewicz Lemma; see [6]. In particular, the existence of solutions to optimization, vector optimization, Nash equilibria, complementarity, and variational inequality is a special case of the existence result for the generalized vector equilibrium problem. / Nesta tese, estudamos desigualdades variacionais e o problema de equilíbrio vetorial generalizado. No Capítulo 1, vários resultados e definições elementares sobre geometria Riemanniana são enunciados; apresentamos o conceito de campo vetorial monótono e muitas de suas propriedades, além de introduzir o conceito de alargamento de um campo vetorial monótono e exibir suas propriedades em um contexto Riemanniano. No Capítulo 2, um método de ponto proximal inexato para desigualdades variacionais em variedades de Hadamard é introduzido e suas propriedades de convergência são estudadas; veja [7]. Para apresentar o nosso método, generalizamos o conceito de alargamento de operadores monótonos, do contexto linear ao contexto de Riemanniano. Como aplicação, é obtido um método de ponto proximal inexato para problemas de otimização com restrições. No Capítulo 3, apresentamos um algoritmo extragradiente para desigualdades variacionais associado a um campo vetorial ponto-conjunto em variedades de Hadamard e estudamos suas propriedades de convergência; veja [8]. A fim de apresentar nosso método, o conceito de alargamento de campos vetoriais monótonos é utilizado e sua semicontinuidade inferior é estabelecida, a fim de obter a convergência do método neste novo contexto. No Capítulo 4, apresentamos uma condição suficiente para a existência de soluções para o problema de equilíbrio vetorial generalizado em variedades de Hadamard usando uma versão do Lema Knaster-Kuratowski-Mazurkiewicz; veja [6]. Em particular, a existência de soluções para problemas de otimização, otimização vetorial, equilíbrio de Nash, complementaridade e desigualdades variacionais são casos especiais do resultado de existência do problema de equilíbrio vetorial generalizado.
37

Détermination automatique de l'incidence optimale pour l'observation des lésions coronaires en imagerie rotationnelle R-X / Automatic determination of optimal viewing angle for the coronary lesion observation in rotationnal X-ray angiography

Feuillâtre, Hélène 10 June 2016 (has links)
Les travaux de cette thèse s’inscrivent dans le cadre du planning de traitements minimalement invasifs des lésions des artères coronaires. Le cardiologue réalise un examen coronarographique, puis dans la continuité, une angioplastie transluminale. L’angiographie rotationnelle à rayons X permet de visualiser sous différentes incidences 2D la lumière des artères coronaires sur plusieurs cycles cardiaques et aussi d’obtenir une reconstruction 3D+T des arbres coronaires. A partir de cette séquence, notre objectif est de déterminer automatiquement une incidence optimale 2D du segment sténosé compatible avec les angles du C-arm afin d’aider le cardiologue lors de l’intervention.Différentes étapes sont considérées pour calculer la position angulaire optimale du C-arm. Afin de suivre la zone de lésion durant le cycle cardiaque, une première méthode est proposée pour mettre en correspondance tous les arbres de la séquence 3D+T. Tout d’abord, un appariement deux à deux des arbres successifs est réalisé afin de construire un arbre d’union. Ces derniers sont ensuite fusionnés afin d’obtenir un arbre mosaïque représentant l’arbre le plus complet de la séquence. L’utilisation de mesures de similarités géométriques et hiérarchiques ainsi que l’insertion de nœuds artificiels permet de prendre en compte les différents mouvements non-rigides des artères coronaires subits au cours du cycle cardiaque et les variations topologiques dû à leurs extractions. Cet appariement nous permet de proposer une deuxième méthode afin d’obtenir une vue angiographique 2D optimale de la zone de lésion tout le long du cycle cardiaque. Cette incidence est proposée spécifiquement pour trois types de région d’intérêt (segment unique, segment multiple ou bifurcation) et est calculée à partir de quatre critères (raccourcissement, chevauchement interne et externe ou angle d’ouverture de bifurcation). Une vue 2D déployée du segment projeté avec le moins de superposition avec les structures vasculaires avoisinantes est obtenue. Nous donnons également la possibilité au cardiologue d’avoir une incidence optimale privilégiant soit le déploiement du stent ou soit le guidage d’outils de la racine de l’arbre à la zone sténosée. Nos différents algorithmes ont été évalués sur une séquence réelle de 10 phases segmentées à partir d’un CT et de 41 séquences simulées. / The thesis work deals with the planning of minimally invasive surgery of coronary artery lesions. The physician performs a coronarography following by a percutaneous transluminal angioplasty. The X-ray rotational angiography permits to visualize the lumen artery under different projection angles in several cardiac cycles. From these 2D projections, a 3D+T reconstruction of coronary arteries can be obtained. Our goal is to determine automatically from this 3D+T sequence, the optimal angiographic viewing angle of the stenotic segment. Several steps are proposed to compute the optimal angular position of the C-arm. Firstly, a mosaic-based tree matching algorithm of the 3D+T sequence is proposed to follow the stenotic lesion in the whole cardiac cycle. A pair-wise inexact tree matching is performed to build a tree union between successive trees. Next, these union trees are merged to obtain the mosaic tree which represents the most complete tree of the sequence. To take into account the non-rigid movement of coronary arteries during the cardiac cycle and their topology variations due to the 3D reconstruction or segmentation, similarity measures based on hierarchical and geometrical features are used. Artificial nodes are also inserted. With this global tree sequence matching, we propose secondly a new method to determine the optimal viewing angle of the stenotic lesion throughout the cardiac cycle. This 2D angiographic view which is proposed for three regions of interest (single segment, multiple segment or bifurcation) is computed from four criteria: the foreshortening, the external and internal overlap and the bifurcation opening angle rates. The optimal view shows the segment in its most extended and unobstructed dimension. This 2D view can be optimal either for the deployment of the stent or for the catheter guidance (from the root to the lesion). Our different algorithms are evaluated on real sequence (CT segmentation) and 41 simulated sequences.
38

Rational Krylov Methods for Operator Functions

Güttel, Stefan 12 March 2010 (has links)
We present a unified and self-contained treatment of rational Krylov methods for approximating the product of a function of a linear operator with a vector. With the help of general rational Krylov decompositions we reveal the connections between seemingly different approximation methods, such as the Rayleigh–Ritz or shift-and-invert method, and derive new methods, for example a restarted rational Krylov method and a related method based on rational interpolation in prescribed nodes. Various theorems known for polynomial Krylov spaces are generalized to the rational Krylov case. Computational issues, such as the computation of so-called matrix Rayleigh quotients or parallel variants of rational Arnoldi algorithms, are discussed. We also present novel estimates for the error arising from inexact linear system solves and the approximation error of the Rayleigh–Ritz method. Rational Krylov methods involve several parameters and we discuss their optimal choice by considering the underlying rational approximation problems. In particular, we present different classes of optimal parameters and collect formulas for the associated convergence rates. Often the parameters leading to best convergence rates are not optimal in terms of computation time required by the resulting rational Krylov method. We explain this observation and present new approaches for computing parameters that are preferable for computations. We give a heuristic explanation of superlinear convergence effects observed with the Rayleigh–Ritz method, utilizing a new theory of the convergence of rational Ritz values. All theoretical results are tested and illustrated by numerical examples. Numerous links to the historical and recent literature are included.

Page generated in 0.0457 seconds