• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 8
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nouvelles techniques de déduction automatiques en logiques polyvalentes finies et infinies du premier ordre

Zabel, Nicolas 21 April 1993 (has links) (PDF)
Cette thèse se divise en trois parties. Dans l'introduction, nous rappelons d'abord les problèmes et les motivations philosophiques a l'origine de l'étude des logiques polyvalentes. Nous élaborons une methode qui permet d'obtenir mécaniquement a partir de la définition matricielle d'une logique, des règles d'inférence pour les connecteurs propositionnels d'un calcul des tableaux. Un traitement similaire est fait pour les règles d'inférence pour les quantificateurs. Le raffinement étudie alors est une skolemisation paresseuse. Elle permet l'utilisation de l'unification pour calculer les instances utiles a la construction d'un tableau ferme. Une implémentation dans atinf les concrétise. Nous proposons les logiques polyvalentes avec égalité graduelle, un calcul par resolution-paramodulation ordonnées. La première partie finit par une extension qui consiste a munir les valeurs de vérité de structures de treillis ou de treillis bi-dimensionnels. Au traitement systématique des logiques finies suit une étude de deux cas typiques de logiques polyvalentes infinies du premier ordre une étude systématique étant théoriquement impossible : les logiques de post et de Ukasiewicz. Le lien entre les logiques de Horn et les logiques de post est utilise, pour proposer une automatisation des logiques de post basée sur une sémantique des mondes possibles. A partir de cette sémantique nous définissons un calcul des tableaux préfixes. Afin d'augmenter l'efficacité, des contraintes, résolues en temps polynomial sur les préfixes sont introduites. Chaque développement inclut une étude bibliographique très documentée du domaine de la logique mathématique, de l'intelligence artificielle et de la déduction automatique
2

Processus sur le groupe unitaire et probabilités libres / Processes on the unitary group and free probability

Cébron, Guillaume 13 November 2014 (has links)
Cette thèse est consacrée à l'étude asymptotique d'objets liés au mouvement brownien sur le groupe unitaire en grande dimension, ainsi qu'à l'étude, dans le cadre des probabilités libres, des versions non-commutatives de ces objets. Elle se subdivise essentiellement en trois parties.Dans le chapitre 2, nous résolvons le problème initial de cette thèse, à savoir la convergence de la transformation de Hall sur le groupe unitaire vers la transformation de Hall libre, lorsque la dimension tend vers l'infini. Pour résoudre ce problème, nous établissons des théorèmes d'existence de noyaux de transition pour la convolution libre. Enfin, nous utilisons ces résultats pour prouver que, pareillement au mouvement brownien sur le groupe unitaire, le mouvement brownien sur le groupe linéaire converge en distribution non-commutative vers sa version libre. Nous étudions les fluctuations autour de cette convergence dans le chapitre 3. Le chapitre 4 présente un morphisme entre les mesures infiniment divisibles pour la convolution libre additive d'une part et multiplicative de l'autre. Nous montrons que ce morphisme possède une version matricielle qui s'appuie sur un nouveau modèle de matrices aléatoires pour les processus de Lévy libres multiplicatifs. / This thesis focuses on the asymptotic of objects related to the Brownian motion on the unitary group in large dimension, and on the study, in free probability, of the non-commutative versions of those objects. It subdivides into essentially three parts.In Chapter 2, we solve the original problem of this thesis: the convergence of the Hall transform on the unitary group to the free Hall transform, as the dimension tends to infinity. To solve this problem, we establish theorems of existence of transition kernel for the free convolution. Finally, we use these results to prove that, exactly as the Brownian motion on the unitary group, the Brownian motion on the linear group converges in noncommutative distribution to its free version. Then we study the fluctuations around this convergence in Chapter 3. Chapter 4 presents a homomorphism between infinitely divisible measures for the free convolution, in respectively the additive case and the multiplicative case. We show that this homomorphism has a matricialversion which is based on a new model of random matrices for the free multiplicative Lévy processes.
3

Markýz de l'Hospital a Analýza nekonečně malých / Le marquis de l'Hospital et l'Analyse des infiniment petits / The Marquis de l'Hospital and the Analysis of the infinitely small

Makovský, Jan 25 June 2015 (has links)
Bien que ma dissertation de thèse consiste essentiellement en trois pièces de nature assez distincte (il s'agitde la traduction en tchèque de l'Analyse des infiniment petits, son commentaire et l'étude d'introduction),cependant, je subsume le tout sous une idée unificatrice de la loi de continuité leibnizienne qui régit le systèmede symboles au fondement du calcul différentiel. Quant à la première partie, elle décrit premièrement l'histoire dela vie du marquis de l'Hospital dite « officielle» ou bien « académique » due à l'Éloge de Bernard de Fontenellequi sert de l'arrière-plan de la seconde partie, de l'étude introductrice, du portrait « caché», consistant en l'analysedes succès géométriques du marquis, des solutions de problèmes physico-géométrique célèbres en comparaisonde celles de Jean Bernoulli, son jeune précepteur – fondée bien évidemment sur la correspondance mutuelle. Enraison de la nature du calcul leibnizienne tant physique que géométrique je démontre que c'était précisément lapureté géométrique de son esprit qui faisait obstacle à l’invention géométrique du marquis. En deuxième lieu jeprésente la description des controverses qui ont éclaté entre Leibniz et Nieuwentiijt sur la questions de fondementdu calcul, tout en précisant sur les écrits leibniziennes la nature symbolique ambiguë de différentielles. L'autrecontroverse, entre Rolle et Varignon, sert à décrire les contrainte institutionnelles du développement du calculaussi que les explication fondatrices de la part de Varignon qui indique la futur transformation newtonienne ducalcul infinitésimal. Enfin le commentaire, d'après ladite idée unificatrice, marque sur des exemplesmathématiques la transformation algébrique de la géométrie grecque pendant le XVIIe siècle tout en illustrant lesarticles de l'Analyse et comparant ses sources bernoulliennes. / The basis of my dissertation consists in three rather distinct parts, that is Czech translation, a commentaryand introduction to the famous Analyse des infiniment petitis by marquis the l'Hospital. Nevertheless I unify thewhole in virtue of the leibnizien metaphysical idea of the law of continuity governing the symbolic systemfundamental to the differential calculus of Leibniz. Concerning the first part of the introduction I represent the socalled academical or official picture of marquis de l'Hospital based on the Éloge by Bernard de Fontenelle. I usethis picture as a background to the so called hidden picture of the marquis, which consists in the analysis of thephysico-geometrical problems solved by the marquis de l'Hospital in comparison to those of Johann Bernoulli,based naturally on the correspondence of the two of them. I demonstrate, regarding the nature of the calculusboth physical and geometrical, that it was precisely the geometrical purity of his mind had forbidden him to makeinventions in geometry, unlike Johann Bernoulli. In the third part I describe the controversies that made part ofthe development of the calculus; firstly the controversy between Nieuwentijt and Leibniz concerning thefundamental questions of calculus. I precise on this occasion my views on the nature of leibnizian calculus asstated above, that is ambiguous symbolism of differentials. The second controversy, between Rolle and Varignonputs forward institutional obstacles of the development of the calculus as well as the foundational attempts madeby Varignon that indicated the future transformation of the calculus according to the spirit of Newton. Finally thecommentary, by the symbolic idea above, indicates the algebraical shift of the 17th century geometry; illustratesarticles of the Analyse des infiniment petits and shows the dependence on Bernoulli's inventions. / Práce je věnována přelomové, epochální práci prvního období infinitesimálního počtu, Analyse desinfiniment petits Guillauma, markýze de l'Hospitala. Dělí se na tři podstatné části: překlad, komentář a úvodnístudii. Účelem je představit toto dílo v jeho jedinečných okolnostech jeho vzniku a zároveň určit jeho obecnémísto v dějinách matematických idejí. Úvodní studie je věnována především osobnosti markýze de l'Hospitala.Na pozadí rozvoje infinitesimálního počtu se vykresluje jeho po dlouhou dobu oficiální obraz v dějináchmatematiky. V druhé části se rozebírá blízký lidský i matematický vztah markýze de l'Hospitala s JohannemBernoullim; a na základě rozboru markýzových geometrických úspěchů se ve srovnání s řešeními JohannaBernoulliho, bratra Jakoba a Leibnize se podává obecná charakteristika prvního infinitesimálního počtu cobygeometrické i fyzikální teorie a možností jeho objevitelských cest prostřednictvím analogií založených nanejzazším požadavku harmonie přírody. Třetí část úvodní studie v historických souvislostech sporů a výměnstran základů diferenciálního počtu objasňuje z hlavní ideje Leibnizovy symbolické přírody, totiž zákonakontinuity, povahu diferenciálního znaku dx, jeho radikální novost a argumenty ospravedlnění přesnostiinfinitesimálního počtu. Druhá kontroverze, která je v práci představena, probíhá mezi Rollem a Varignonem;podstatnými rysy jsou institucionální podmínky rozvoje počtu a Varignonovy pokusy o důkazy nekonečněmalých v Newtonově duchu. Komentář Analýzy nekonečně malých slouží k historickému, filologickému afilosofickému objasnění nových metod a dokládá utváření Analýzy nekonečně malých z jejích zdrojů, tj.přednášek Johanna Bernoulliho markýzi de l'Hospitalovi a jejich dopisové výměny
4

Langues de Arnold de la famille standard double Explosion de cycle dans la famille quadratique

Dezotti, Alexandre 07 June 2011 (has links) (PDF)
La connexité des langues de Arnold de la famille standard double est démontrée par déformation quasiconforme. Je donne un équivalent pour les coefficients du développement en série de Laurent de l'inverse des coordonnées de Böttcher pour les polynômes quadratiques dont le point critique s'échappe. Une généralisation d'une inégalité qui sert à déterminer un domaine á l'intérieur duquel il n'y a pas de valeur critique de la fonction multiplicateur est obtenue en utilisant les différentielles quadratiques. Les travaux de Lévine sur une condition de non locale connexité de Julia infiniment satellite renormalisables sont repris, suivis de l'étude d'un modèle géométrique des renormalisations satellites générant un modèle topologique hypothétique d'un compact invariant dans l'ensemble de Julia de ces polynômes.
5

Propriétés algébriques des structures menues ou minces, rang de Cantor Bendixson, espaces topologiques généralisés

Milliet, Cédric 10 December 2009 (has links) (PDF)
Les structures menues apparaissent dans les années 1960 de paire avec la conjecture de Vaught, dont elles sont les seuls contre-exemples possibles. Les structures minces sont introduites par Belegradek, et englobent à la fois les structures minimales et menues. Il est bien connu que les ensembles définissables d'une structure mince sont rangés par le rang de Cantor-Bendixson, lorsque l'on fixe un ensemble fini de paramètres. L'étude de ces structures est rendue difficile par le fait que si l'on augmente cet ensemble de paramètres, le rang croît, et on ne sait maîtriser sa croissance. Nous présentons des propriétés de calcul de ce rang, une condition de chaîne descendante locale sur les groupes définissables (par des formules faisant intervenir des paramètres de la clôture algébrique d'un ensemble fini), ainsi qu'une notion de presque stabilisateur local. Nous en déduisons des propriétés algébriques des structures minces : un corps mince de caractéristique positive est localement de dimension finie sur son centre (une réponse au problème 6.1.5 de Wagner, Simple Theories), et un groupe mince infini a un sous groupe abélien infini (cela répond en particulier à la question 2.8 de Wagner, "Groups in simple theories"). Nous nous intéressons ensuite aux structures menues infiniment définissables, et montrons que les groupes d'arité finie infiniment définissables (par des formules n'utilisant que les paramètres d'un ensemble fini) sont l'intersection de groupes définissables (réponse au problème 6.1.14 du livre de Wagner). Nous étendons le résultat aux demi-groupes, anneaux, corps, catégories et groupoïdes infiniment définissables (toujours avec un nombre fini de paramètres), et donnons des résultats de définissabilité locale pour les groupes et corps simples et menus, infiniment définissables sur un ensemble quelconque de paramètres. Enfin, nous réintroduisons le rang de Cantor dans son contexte topologique et montrons que la dérivée de Cantor peut être vue comme un opérateur de dérivation dans un semi-anneau d'espaces topologiques. Dans l'idée de trouver un rang de Cantor global pour les théories stables, nous essayons de nous débarrasser du mot dénombrable omniprésent lorsque l'on fait de la topologie, en le remplaçant par un cardinal régulier k. Nous développons une notion d'espace k-métrique, de k-topologie, de k-compacité etc. et montrons un k-analogue du lemme de métrisabilité d'Urysohn, et du théorème de Cantor-Bendixson.
6

Propriétés algébriques des structures menues ou minces, rang de Cantor Bendixson, espaces topologiques généralisés / Algebraic properties of small and weakly small structures, Cantor-Bendixson rank and generalised topological spaces

Milliet, Cédric 10 December 2009 (has links)
Les structures menues apparaissent dans les années 60 en lien avec la conjecture de Vaught. Les structures minces englobent à la fois les structures minimales et menues. Les ensembles définissables d'une structure mince sont rangés par le rang de Cantor-Bendixson. Nous présentons des propriétés de calcul de ce rang, une condition de chaîne descendante locale sur les groupes acl(0)-définissables ainsi qu'une notion de presque stabilisateur local, et en déduisons des propriétés algébriques des structures minces : un corps mince de caractéristique positive est localement de dimension finie sur son centre, et un groupe mince infini a un sous groupe abélien infini. Nous nous intéressons ensuite aux structures menues infiniment définissables, et montrons que les groupes d'arité finie infiniment 0-définissable sont l'intersection de groupes définissables. Nous étendons le résultat aux demi-groupes, anneaux, corps, catégories et groupoïdes infiniment 0-définissables, et donnons des résultats de définissabilité locale pour les groupes et corps simples et menus, infiniment définissables sur des paramètres quelconques. Enfin, nous réintroduisons le rang de Cantor dans son contexte topologique et montrons que la dérivée de Cantor peut être vue comme un opérateur de dérivation dans un semi-anneau d'espaces topologiques. Dans l'idée de trouver un rang de Cantor global pour les théories stables, nous essayons de nous débarrasser du mot dénombrable omniprésent lorsque l'on fait de la topologie, en le remplaçant par un cardinal régulier k. Nous développons une notion d'espace k-métrique, de k-topologie, de k-compacité etc. et montrons un k-analogue du lemme de métrisabilité d'Urysohn, et du théorème de Cantor-Bendixson. / Abstract. Small structures appear in the '60s together with Vaught's conjecture. Weakly small structures include both minimal and small structures. Definable sets in a weakly small structure are ranked by Cantor-Bendixson rank. We show computational properties of this rank, which imply a local descending chain condition on acl(0)-definable subgroups, and introduce a notion of local almost stabiliser. We deduce algebraic properties of weakly small structures. Among them, a weakly small field of positive characteristic is locally finite dimensional over its centre, and an infinite weakly small group has an infinite abelian subgroup. We then turn to small type-definable structures, showing that finitary small type 0-de_nable groups are the intersection of definable groups. We extend the result to finitary small type 0- definable monoids, rings, fields, categories and groupoids. We give local definability results concerning groups and fields type definable over an arbitrary set of parameters in small and simple theories. Finally, we reintroduce the Cantor Bendixson rank in its topological context, and show that the Cantor derivative can be seen as a derivation in a semi-ring of topological spaces. In an attempt to find a global Cantor rank for stable structures, we try to eliminate the word denumerable, omnipresent when one does topology, by replacing it by a regular cardinal k. We develop the notions of k-metrisable space, k-topology, k-compactness etc. and show an analogue of Urysohn's metrisability lemma and Cantor-Bendixson theorem.
7

Cascades log-infiniment divisibles et analyse multiresolution. Application à l'étude des intermittences en turbulence.

Chainais, Pierre 30 November 2001 (has links) (PDF)
Les cascades log-infiniment divisibles fournissent un cadre général à l'étude de la propriété d' invariance d'échelle. Nous introduisons ces objets en décrivant l'évolution historique des différents modèles proposés pour décrire le phénomène d'intermittence statistique en turbulence. Nous nous appliquons alors à préciser une définition formelle des cascades log-infiniment divisibles. Nous remplaçons aussi les accroissements, usuels en turbulence, par les coefficients d'une transformée en ondelettes associée à une analyse multirésolution, outil dédié à l'analyse temps-échelle. Une réflexion approfondie sur la signification du formalisme nous amène à démontrer sa flexibilité pour la modélisation, ainsi que sa richesse en lien avec les cascades multiplicatives, les processus de Markov, l'équation de Langevin, l'équation de Fokker-Planck...Grâce à l'étude des cascades log-Poisson composées, nous proposons une vision originale du phénomène d'intermittence statistique. Ensuite, des estimateurs des exposants de lois d'échelle (éventuellement relatives) sont étudiés en insistant sur la correction du biais et la détermination d'intervalles de confiance. Nous les appliquons à des données de télétrafic informatique. Nous expliquons pourquoi une procédure usuelle d'estimation du spectre multifractal appliquée aux mouvements linéaires stables fractionnaires risque de mener à une méprise. Enfin, le lien entre intermittence statistique et intermittence spatio-temporelle (structures cohérentes) en turbulence est étudié à partir de l'enregistrement de signaux de vitesse et de pression conjointement en espace et en temps dans un écoulement turbulent. De fortes dépressions associées à des tourbillons filamentaires sont détectées. Une analyse statistique des coefficients d'ondelette de la vitesse conditionnée à ces événements nous permet de décrire l'influence de ces structures cohérentes à différents nombres de Reynolds.
8

Estimations et tests non paramétriques en tomographie quantique homodyne

Méziani, Katia 09 December 2008 (has links) (PDF)
En optique quantique, la reconstruction de l'état quantique (fonction de Wigner ou matrice de densité infini-dimensionnelle) d'un faisceau de lumière correspond en statistique à un problème inverse trés mal posé. Premièrement, nous proposons des estimateurs de la matrice de densité basés sur les fonctions \textit{pattern} et des estimateurs à noyau de la fonction de Wigner. Nous faisons l'hypothèse que la matrice de densité inconnue appartient à une classe non paramétrique définie en accord avec les exemples étudiés par les physiciens. Nous en déduisons pour la fonction de Wigner associée à cette matrice des propriétés de décroissance rapide et de régularité. Deuxièmement, nous estimons une fonctionnelle quadratique de la fonction de Wigner par une U-statistique d'ordre deux sur une classe plus large. Cette fonctionnelle peut être vue comme une indication sur la pureté de l'état quantique considéré. Nous en déduisons un estimateur adaptatif aux paramètres de régularité de la fonction de Wigner. La dernière partie de ce manuscrit est consacrée au problème de test d'adéquation à la matrice de densité. Cette procédure est construite à partir d'un estimateur de type projection sur les fonctions \textit{pattern}. Nous étudions les bornes supérieures de type minimax de toutes ces procédures. Les procédures d'estimation de la matrice de densité et de test d'adéquation à une matrice de densité sont implémentées et leurs performances numériques sont étudiées.

Page generated in 0.099 seconds