• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 283
  • 64
  • 62
  • 29
  • 9
  • 8
  • 7
  • 6
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 600
  • 84
  • 79
  • 68
  • 61
  • 58
  • 57
  • 56
  • 56
  • 55
  • 54
  • 51
  • 49
  • 48
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

Interfacial Properties of Ultrathin- Film Metal Electrodes: Studies by Combined Electron Spectroscopy and Electrochemistry

Cummins, Kyle 2012 May 1900 (has links)
A pair of studies investigating the deposition and surface chemical properties of ultrathin metal films were pursued: (i) Pt-Co alloys on Mo(110); and (ii) Pd on Pt(111). Experimental measurement was based on a combination of electron spectroscopy (low energy ion scattering spectroscopy, X-ray photoelectron spectroscopy, Auger electron spectroscopy, and low energy electron diffraction) and electrochemistry (voltage efficiency, voltammetry, and coulometry). Mixed-metal preparation of Pt-Co films by thermal vapor deposition (TVD) resulted in a thin-film binary alloy. Careful analysis revealed a substantial divergence between the composition at the interface and that in the interior. This outcome was observed for all compositions and allowed for the construction of a ?surface phase diagram?. The proclivities of the alloys of pre-selected compositions towards enhanced catalysis of the oxygen-reduction reaction were assessed in terms of their voltage efficiencies, as manifested by the open-circuit potential (OCP) in O2-saturated dilute sulfuric acid electrolyte. The particular alloy surface, Pt3Co (XPt=3,XCo=1), whether from the thin film or a bulk single crystal, exhibited the highest OCP, a significant improvement over pure Pt but still appreciably lower than the thermodynamic limit. Under test conditions, the degradation of thusly-prepared films was primarily due to Co corrosion. Ultrathin Pd films on well-defined Pt(111) surfaces, with coverages from 0.5 to 8 monolayers (ML), were prepared by surface-limited redox replacement reaction (galvanic exchange) of underpotentially deposited Cu. Spectroscopic data revealed that films prepared in this manner are elementally pure, pseudomorphic to the substrate, and stable, independent of the surface coverage (?) of palladium. Analysis of the voltammetric profiles in the hydrogen evolution region revealed unique properties of hydrogen adsorption unseen in bulk electrodes. Notably, at 1 ML coverage, a step-free film was produced that did not exhibit hydrogen absorption. At higher coverages, digital (layer-by-layer) deposition gave way to 3D islands in a Stranski- Krastanov growth mode; under these conditions, onset of bulk-like behavior was observed. This method makes possible the synthesis of well-ordered noble-metal films in the absence of high-temperature treatment
412

Studies on Poly(N,N-dimethylaminoethyl methacrylate) Composite Membranes for Gas Separation and Pervaporation

Du, Runhong January 2008 (has links)
Membrane-based acid gas (e.g., CO2) separation, gas dehydration and humidification, as well as solvent dehydration are important to the energy and process industries. Fixed carrier facilitated transport membranes can enhance the permeation without compromising the selectivity. The development of suitable fixed carrier membranes for CO2 and water permeation, and understanding of the transport mechanism were the main objectives of this thesis. Poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) composite membranes were developed using microporous polysulfone (PSF) or polyacrylonitrile (PAN) substrates. The PDMAEMA layer was crosslinked with p-xylylene dichloride via quaternization reaction. Fourier transform infrared, scanning electron microscopy, adsorption tests, and contact angle measurements were conducted to analyze the chemical and morphological structure of the membrane. It was shown that the polymer could be formed into thin dense layer on the substrates, while the quaternary and tertiary amino groups in the side chains of PDMAEMA offered a high polarity and hydrophilicity. The solid-liquid interfacial crosslinking of PDMAEMA led to an asymmetric crosslinked network structure, which helped minimize the resistance of the membrane to the mass transport. The interfacially formed membranes were applied to CO2/N2 separation, dehydration of CH4, gas humidification and ethylene glycol dehydration. The membranes showed good permselectivity to CO2 and water. For example, a CO2 permeance of 85 GPU and a CO2/N2 ideal separation factor of 50 were obtained with a PDMAEMA/PSF membrane at 23oC and 0.41 MPa of CO2 feed pressure. At 25oC, the permeance of water vapor through a PDMAEMA/PAN membrane was 5350 GPU and the water vapor/methane selectivity was 4735 when methane was completely saturated with water vapor. On the other hand, the relative humidity of outlet gas was up to 100 % when the membrane was used as a hydrator at 45oC and at a carrier gas flow rate of 1000 sccm. For used for dehydration of ethylene glycol at 30oC, the PDMAEMA/PSF membrane showed a permeation flux of ~1 mol/(m2.h) and a permeate concentration of 99.7 mol% water at 1 mol% water in feed. This work shows that the quaternary and tertiary amino groups can be used as carriers for CO2 transport through the membrane based on the weak acid-base interaction. In the presence of water, water molecules in the membrane tend to form a water "path" or water "bridge" which also help contribute to the mass transport though the membrane. In addition, CO2 molecules can be hydrated to HCO3-, which reaction can be catalyzed by the amino groups, the hydrated CO2 molecules can transport through the water path as well as the amino groups in the membrane. On the other hand, for processes involving water (either vapor or liquid) permeation, the amino groups in the membrane are also helpful because of the hydrogen bonding effects.
413

Mechanical and Tribological Aspects of Microelectronic Wire Bonding

Satish Shah, Aashish January 2010 (has links)
The goal of this thesis is on improving the understanding of mechanical and tribological mechanisms in microelectronic wire bonding. In particular, it focusses on the development and application of quantitative models of ultrasonic (US) friction and interfacial wear in wire bonding. Another objective of the thesis is to develop a low-stress Cu ball bonding process that minimizes damage to the microchip. These are accomplished through experimental measurements of in situ US tangential force by piezoresistive microsensors integrated next to the bonding zone using standard complementary metal oxide semiconductor (CMOS) technology. The processes investigated are thermosonic (TS) Au ball bonding on Al pads (Au-Al process), TS Cu ball bonding on Al pads (Cu-Al process), and US Al wedge-wedge bonding on Al pads (Al-Al process). TS ball bonding processes are optimized with one Au and two Cu wire types, obtaining average shear strength (SS) of more than 120 MPa. Ball bonds made with Cu wire show at least 15% higher SS than those made with Au wire. However, 30% higher US force induced to the bonding pad is measured for the Cu process using the microsensor, which increases the risk of underpad damage. The US force can be reduced by: (i) using a Cu wire type that produces softer deformed ball results in a measured US force reduction of 5%; and (ii) reducing the US level to 0.9 times the conventionally optimized level, the US force can be reduced by 9%. It is shown that using a softer Cu deformed ball and a reduced US level reduces the extra stress observed with Cu wire compared to Au wire by 42%. To study the combined effect of bond force (BF) and US in Cu ball bonding, the US parameter is optimized for eight levels of BF. For ball bonds made with conventionally optimized BF and US settings, the SS is ≈ 140 MPa. The amount of Al pad splash extruding out of bonded ball interface (for conventionally optimized BF and US settings) is between 10–12 µm. It can be reduced to 3–7 µm if accepting a SS reduction to 50–70 MPa. For excessive US settings, elliptical shaped Cu bonded balls are observed, with the major axis perpendicular to the US direction. By using a lower value of BF combined with a reduced US level, the US force can be reduced by 30% while achieving an average SS of at least 120 MPa. These process settings also aid in reducing the amount of splash by 4.3 µm. The US force measurement is like a signature of the bond as it allows for detailed insight into the tribological mechanisms during the bonding process. The relative amount of the third harmonic of US force in the Cu-Al process is found to be five times smaller than in the Au-Al process. In contrast, in the Al-Al process, a large second harmonic content is observed, describing a non-symmetric deviation of the force signal waveform from the sinusoidal shape. This deviation might be due to the reduced geometrical symmetry of the wedge tool. The analysis of harmonics of the US force indicates that although slightly different from each other, stick-slip friction is an important mechanism in all these wire bonding variants. A friction power theory is used to derive the US friction power during Au-Al, Cu-Al, and Al-Al processes. Auxiliary measurements include the current delivered to the US transducer, the vibration amplitude of the bonding tool tip in free-air, and the US tangential force acting on the bonding pad. For bonds made with typical process parameters, several characteristic values used in the friction power model such as the ultrasonic compliance of the bonding system and the profile of the relative interfacial sliding amplitude are determined. The maximum interfacial friction power during Al-Al process is at least 11.5 mW (3.9 W/mm²), which is only about 4.8% of the total electrical power delivered to the US transducer. The total sliding friction energy delivered to the Al-Al wedge bond is 60.4 mJ (20.4 J/mm²). For the Au-Al and Cu-Al processes, the US friction power is derived with an improved, more accurate method to derive the US compliance. The method uses a multi-step bonding process. In the first two steps, the US current is set to levels that are low enough to prevent sliding. Sliding and bonding take place during the third step, when the current is ramped up to the optimum value. The US compliance values are derived from the first two steps. The average maximum interfacial friction power is 10.3 mW (10.8 W/mm²) and 16.9 mW (18.7 W/mm²) for the Au-Al and Cu-Al processes, respectively. The total sliding friction energy delivered to the bond is 48.5 mJ (50.3 J/mm²) and 49.4 mJ (54.8 J/mm²) for the Au-Al and Cu-Al processes, respectively. Finally, the sliding wear theory is used to derive the amount of interfacial wear during Au-Al and Cu-Al processes. The method uses the US force and the derived interfacial sliding amplitude as the main inputs. The estimated total average depth of interfacial wear in Au-Al and Cu-Al processes is 416 nm and 895 nm, respectively. However, the error of estimation of wear in both the Au-Al and the Cu-Al processes is ≈ 50%, making this method less accurate than the friction power and energy results. Given the error in the determination of compliance in the Al-Al process, the error in the estimation of wear in the Al-Al process might have been even larger; hence the wear results pertaining to the Al-Al process are not discussed in this study.
414

Studies on Poly(N,N-dimethylaminoethyl methacrylate) Composite Membranes for Gas Separation and Pervaporation

Du, Runhong January 2008 (has links)
Membrane-based acid gas (e.g., CO2) separation, gas dehydration and humidification, as well as solvent dehydration are important to the energy and process industries. Fixed carrier facilitated transport membranes can enhance the permeation without compromising the selectivity. The development of suitable fixed carrier membranes for CO2 and water permeation, and understanding of the transport mechanism were the main objectives of this thesis. Poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) composite membranes were developed using microporous polysulfone (PSF) or polyacrylonitrile (PAN) substrates. The PDMAEMA layer was crosslinked with p-xylylene dichloride via quaternization reaction. Fourier transform infrared, scanning electron microscopy, adsorption tests, and contact angle measurements were conducted to analyze the chemical and morphological structure of the membrane. It was shown that the polymer could be formed into thin dense layer on the substrates, while the quaternary and tertiary amino groups in the side chains of PDMAEMA offered a high polarity and hydrophilicity. The solid-liquid interfacial crosslinking of PDMAEMA led to an asymmetric crosslinked network structure, which helped minimize the resistance of the membrane to the mass transport. The interfacially formed membranes were applied to CO2/N2 separation, dehydration of CH4, gas humidification and ethylene glycol dehydration. The membranes showed good permselectivity to CO2 and water. For example, a CO2 permeance of 85 GPU and a CO2/N2 ideal separation factor of 50 were obtained with a PDMAEMA/PSF membrane at 23oC and 0.41 MPa of CO2 feed pressure. At 25oC, the permeance of water vapor through a PDMAEMA/PAN membrane was 5350 GPU and the water vapor/methane selectivity was 4735 when methane was completely saturated with water vapor. On the other hand, the relative humidity of outlet gas was up to 100 % when the membrane was used as a hydrator at 45oC and at a carrier gas flow rate of 1000 sccm. For used for dehydration of ethylene glycol at 30oC, the PDMAEMA/PSF membrane showed a permeation flux of ~1 mol/(m2.h) and a permeate concentration of 99.7 mol% water at 1 mol% water in feed. This work shows that the quaternary and tertiary amino groups can be used as carriers for CO2 transport through the membrane based on the weak acid-base interaction. In the presence of water, water molecules in the membrane tend to form a water "path" or water "bridge" which also help contribute to the mass transport though the membrane. In addition, CO2 molecules can be hydrated to HCO3-, which reaction can be catalyzed by the amino groups, the hydrated CO2 molecules can transport through the water path as well as the amino groups in the membrane. On the other hand, for processes involving water (either vapor or liquid) permeation, the amino groups in the membrane are also helpful because of the hydrogen bonding effects.
415

Mechanical and Tribological Aspects of Microelectronic Wire Bonding

Satish Shah, Aashish January 2010 (has links)
The goal of this thesis is on improving the understanding of mechanical and tribological mechanisms in microelectronic wire bonding. In particular, it focusses on the development and application of quantitative models of ultrasonic (US) friction and interfacial wear in wire bonding. Another objective of the thesis is to develop a low-stress Cu ball bonding process that minimizes damage to the microchip. These are accomplished through experimental measurements of in situ US tangential force by piezoresistive microsensors integrated next to the bonding zone using standard complementary metal oxide semiconductor (CMOS) technology. The processes investigated are thermosonic (TS) Au ball bonding on Al pads (Au-Al process), TS Cu ball bonding on Al pads (Cu-Al process), and US Al wedge-wedge bonding on Al pads (Al-Al process). TS ball bonding processes are optimized with one Au and two Cu wire types, obtaining average shear strength (SS) of more than 120 MPa. Ball bonds made with Cu wire show at least 15% higher SS than those made with Au wire. However, 30% higher US force induced to the bonding pad is measured for the Cu process using the microsensor, which increases the risk of underpad damage. The US force can be reduced by: (i) using a Cu wire type that produces softer deformed ball results in a measured US force reduction of 5%; and (ii) reducing the US level to 0.9 times the conventionally optimized level, the US force can be reduced by 9%. It is shown that using a softer Cu deformed ball and a reduced US level reduces the extra stress observed with Cu wire compared to Au wire by 42%. To study the combined effect of bond force (BF) and US in Cu ball bonding, the US parameter is optimized for eight levels of BF. For ball bonds made with conventionally optimized BF and US settings, the SS is ≈ 140 MPa. The amount of Al pad splash extruding out of bonded ball interface (for conventionally optimized BF and US settings) is between 10–12 µm. It can be reduced to 3–7 µm if accepting a SS reduction to 50–70 MPa. For excessive US settings, elliptical shaped Cu bonded balls are observed, with the major axis perpendicular to the US direction. By using a lower value of BF combined with a reduced US level, the US force can be reduced by 30% while achieving an average SS of at least 120 MPa. These process settings also aid in reducing the amount of splash by 4.3 µm. The US force measurement is like a signature of the bond as it allows for detailed insight into the tribological mechanisms during the bonding process. The relative amount of the third harmonic of US force in the Cu-Al process is found to be five times smaller than in the Au-Al process. In contrast, in the Al-Al process, a large second harmonic content is observed, describing a non-symmetric deviation of the force signal waveform from the sinusoidal shape. This deviation might be due to the reduced geometrical symmetry of the wedge tool. The analysis of harmonics of the US force indicates that although slightly different from each other, stick-slip friction is an important mechanism in all these wire bonding variants. A friction power theory is used to derive the US friction power during Au-Al, Cu-Al, and Al-Al processes. Auxiliary measurements include the current delivered to the US transducer, the vibration amplitude of the bonding tool tip in free-air, and the US tangential force acting on the bonding pad. For bonds made with typical process parameters, several characteristic values used in the friction power model such as the ultrasonic compliance of the bonding system and the profile of the relative interfacial sliding amplitude are determined. The maximum interfacial friction power during Al-Al process is at least 11.5 mW (3.9 W/mm²), which is only about 4.8% of the total electrical power delivered to the US transducer. The total sliding friction energy delivered to the Al-Al wedge bond is 60.4 mJ (20.4 J/mm²). For the Au-Al and Cu-Al processes, the US friction power is derived with an improved, more accurate method to derive the US compliance. The method uses a multi-step bonding process. In the first two steps, the US current is set to levels that are low enough to prevent sliding. Sliding and bonding take place during the third step, when the current is ramped up to the optimum value. The US compliance values are derived from the first two steps. The average maximum interfacial friction power is 10.3 mW (10.8 W/mm²) and 16.9 mW (18.7 W/mm²) for the Au-Al and Cu-Al processes, respectively. The total sliding friction energy delivered to the bond is 48.5 mJ (50.3 J/mm²) and 49.4 mJ (54.8 J/mm²) for the Au-Al and Cu-Al processes, respectively. Finally, the sliding wear theory is used to derive the amount of interfacial wear during Au-Al and Cu-Al processes. The method uses the US force and the derived interfacial sliding amplitude as the main inputs. The estimated total average depth of interfacial wear in Au-Al and Cu-Al processes is 416 nm and 895 nm, respectively. However, the error of estimation of wear in both the Au-Al and the Cu-Al processes is ≈ 50%, making this method less accurate than the friction power and energy results. Given the error in the determination of compliance in the Al-Al process, the error in the estimation of wear in the Al-Al process might have been even larger; hence the wear results pertaining to the Al-Al process are not discussed in this study.
416

PLA and cellulose based degradable polymer composites

Oka, Mihir Anil 06 April 2010 (has links)
We studied PLA-microcrystalline cellulose composites, focusing on the effects of processing, particle size and surface modification. The thermal and mechanical properties of these PLA based composites were studied and the effect of cellulose addition on PLA degradation was analyzed. For our system, the degradation rate was found to depend on initial sample crystallinity, pH of the degradation media and cellulose content of the composite. Composites were prepared using solution processing and melt mixing methods. The processing methods influenced the polymer's ability to crystallize affecting the mechanical properties. Isothermal crystallization studies carried out to study the kinetics of crystallization showed melt processed samples to have lower half time for crystallization and higher value for the Avrami exponent. The crystallization rate of PLA was also found to depend on surface chemical composition of cellulose particles and the particle size. Influence of filler surface modification on the composite properties was studied via grafting of lactic acid and polylactic acid to cellulose particles and the effect of filler size was studied using hydrolyzed microcrystalline cellulose particles. A simple esterification reaction that required no external catalyst was used for surface modification of cellulose particles. Surface modification of cellulose particles enhanced the static and dynamic mechanical properties of the composite samples due to improvement in the PLA-cellulose compatibility that resulted in better interfacial interactions. The utility of cellulose, available from a renewable resource, as an effective reinforcement for PLA is demonstrated.
417

Modeling and simulation of stress-induced non-uniform oxide scale growth during high-temperature oxidation of metallic alloys.

Saillard, Audric 25 March 2010 (has links)
The metallic alloys employed in oxidizing environment at high temperature rely on the development of a protective oxide scale to sustain the long-term aggressive exposition. However, the oxide scale growth is most of the time coupled with stress and morphological developments limiting its lifetime and then jeopardizing the metallic component reliability. In this study, a mechanism of local stress effect on the oxidation kinetics at the metal/oxide interface is investigated. The objective is to improve the understanding on the possible interactions between stress generation and non-uniform oxide scale growth, which might result in a precipitated mechanical failure of the system. Two different oxides are studied, alumina and chromia, in two different industrial systems, thermal barrier coatings and solid oxide fuel cell interconnects. A specific thermodynamic treatment of local oxide phase growth coupled with stress generation is developed. The formulation is completed with a phenomenological macroscopic framework and a numerical simulation tool is developed allowing for realistic analyses. Two practical situations are simulated and analyzed, concerning an SOFC interconnect and a thermal barrier coating system, for which oxide scale growth and associated stress and morphological developments are critical. The consequence of the non-uniform oxide growth on the system resistance to mechanical failure is investigated. Finally, the influences of material-related properties are studied, providing optimization directions for the design of metallic alloys which would improve the mechanical lifetime of the considered systems.
418

Carbon geological storage - underlying phenomena and implications

Espinoza, David Nicolas 22 July 2011 (has links)
The dependency on fossil fuels faces resource limitations and sustainability concerns. This situation requires new strategies for greenhouse gas emission management and the development of new sources of energy. This thesis explores fundamental concepts related to carbon geological storage, including CO2-CH4 replacement in hydrate-bearing sediments. In particular it addresses the following phenomena: - Interfacial tension and contact angle in CO2-water-mineral and CH4-water-mineral systems. These data are needed to upscale pore phenomena through the sediment porous network, to define multiphase flow characteristics in enhanced gas recovery operations, and to optimize the injection and storage CO2 in geological formations. - Coupled processes and potential geomechanical implications associated to CH4-CO2 replacement in hydrate bearing sediments. Results include physical monitoring data gathered for CH4 hydrate-bearing sediments during and after CO2 injection. - Performance of cap rocks as trapping structures for CO2 injection sites. This study focuses on clay-CO2-water systems and CO2 breakthrough through highly compacted fine-grained sediments. Long term experiments help evaluate different sediments according to their vulnerability to CO2, predict the likelihood and time-scale of breakthrough, and estimate consequent CO2 leaks.
419

Effects of interfaces and preferred orientation on the electrical response of composites of alumina and silicon carbide whiskers

Bertram, Brian D. 14 November 2011 (has links)
Ceramic-matrix composites of alumina and silicon carbide whiskers have recently found novel commercial application as electromagnetic absorbers. However, a detailed understanding of how materials issues influence the composite electrical response, which underpins this application, has been absent until now. In this project, such composites were electrically measured over a wide range of conditions and modeled in terms of various aspects of the microstructure in order to understand how they work. For this purpose, three types of composites were made by different methods from the same set of ceramic powder blends loaded with different volume fractions of whiskers. In doing so, the interfaces between whiskers, the preferred orientations of whiskers, and the structure of electrically-connected whisker clusters were varied; the whisker aspect-ratio distributions were the same for all methods. At the electrode interfaces, Schottky barriers at the junctions of the electrically-percolating wide-bandgap semiconductor whiskers on the surface were responsible for a significant portion of the total measured impedance. The associated electrical response was studied on the microscopic and macroscopic level, and the gap between these different scales was bridged. Also, a modeling approach was developed for the non-linear behavior of the composite which results from these barriers. In regards to the whiskers within the composite bulk, the effects of various factors on the wide-band frequency dependence of the dielectric response and dc conductivity were explained and contextualized for the electromagnetic absorber application. Such factors include whisker preferred orientation, electrical percolation and cluster structure, the interfaces between electrically-connected SiC whiskers, and porosity. A quantitative correlation between the anisotropy of the microstructure and that of the conductivity was found, and was understood in terms of the interfacial SiC-Al2O3-SiC conduction mechanism. This behavior was shown to differ from the behavior commonly observed for other disordered mixtures of relatively conductive particles dispersed inside insulating polymer hosts. A description of this new mechanism was developed based on an observed correlation between the temperature dependencies of the static and radio-frequency electrical responses. Also, the aforementioned non-linear response model was expanded upon to describe conduction through and across electrically-percolated clusters. The model demonstrates how loading and interface behavior influence the topology and the strength of the non-linear response of the clusters.
420

Experimentelle Untersuchung von geschichteten Luft/Wasser Strömungen in einem horizontalen Kanal

Sühnel, Tobias, Prasser, Horst-Michael, Vallée, Christophe 31 March 2010 (has links) (PDF)
Für die Untersuchung von Luft/Wasser-Strömungen wurde ein horizontaler Acrylglas-Kanal mit rechteckigem Querschnitt gebaut. Der Kanal ermöglicht Gleich- und Gegenstrom-Versuche bei Atmosphärendruck, insbesondere die Untersuchung der Schwallströmung. Es wurden optische Messungen mit einer Hochgeschwindigkeits-Kamera durchgeführt, die durch synchronisierte dynamische Druckmessungen ergänzt wurden. Für die Analyse der Bilder wurde eine Methode zur Erfassung der Phasengrenze entwickelt und diese anhand möglicher Anwendungen getestet. Die Druckmessungen zeigten, dass der Druck bei Schwallströmungen um einige Kilopascal ansteigt und wieder abfällt, sobald der Schwall aus dem Kanal austritt. Zudem wurden Geschwindigkeiten in der flüssigen Phase mittels nicht invasiver Verfahren gemessen. Das durchschnittliche Geschwindigkeits-Profil am Kanaleintritt wurde mit Ultraschall-Köpfen bestimmt. Die Ermittlung des Geschwindigkeitsfeldes in einem Schwall erfolgte mit PIV (Particle Image Velocimetry).

Page generated in 0.2639 seconds