391 |
Determining Interfacial Adhesion Performance and Reliability for Microelectronics Applications Using a Wedge Test MethodSingh, Hitendra Kumar 18 January 2005 (has links)
Fracture mechanics is an effective approach for characterizing material resistance to interfacial failure and for making interface reliability predictions. Because interfacial bond integrity is a major concern for performance and reliability, the need to evaluate the fracture and delamination resistance of an interface under different environmental conditions is very important. This study investigates the effects of temperature, solution chemistry and environmental preconditioning, in several solutions on the durability of silicon/epoxy and glass/epoxy systems. A series of experiments was conducted using wedge test specimens to investigate the adhesion performance of the systems subjected to a range of environmental conditions. Both silicon and glass systems were relatively insensitive to temperature over a range of 22-60°C, but strongly accelerated by temperatures above 60°C, depending on the environmental chemistry and nature of the adhesive system used.
Silicon/commercial epoxy specimens were subjected to preconditioning in deionized (DI) water and more aggressive solution mixtures prior to wedge insertion to study the effect of prior environmental exposure time on the system. The wedge test data from preconditioned specimens were compared with standard wedge test results and the system was insensitive to preconditioning in DI water but was affected significantly by preconditioning in aggressive environments. Plots describing - G (crack velocity versus applied strain energy release rate) characteristics for a particular set of environmental conditions are presented and a comparison is made for different environmental conditions to quantify the subcritical debonding behavior of systems studied. A kinetic model to characterize subcritical debonding of adhesives for microelectronic applications is also proposed based on molecular interactions between epoxy and a silane coupling agent at the interface and linear elastic fracture mechanics, which could help predict long-term deterioration of interfacial adhesion. / Master of Science
|
392 |
Studies on Electrochemical Properties of Positive Electrodes for Use in Aqueous Li-ion and Ca-ion Batteries / 水系リチウムイオンおよびカルシウムイオン電池用正極の電気化学特性に関する研究LEE, CHANGHEE 24 September 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23515号 / 工博第4927号 / 新制||工||1769(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 安部 武志, 教授 陰山 洋, 教授 作花 哲夫 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
393 |
Hybrid Carbon Fiber/ZnO Nanowires Polymeric Composite for Stuctural and Energy Harvesting ApplicationsMasghouni, Nejib 01 July 2014 (has links)
Despite the many attractive features of carbon fiber reinforced polymers (FRPs) composites, they are prone to failure due to delamination. The ability to tailor the fiber/matrix interface FRPs is crucial to the development of composite materials with enhanced structural performance. In this dissertation, ZnO nanowires (NWs) were grown on the surface of carbon fibers utilizing low temperature hydrothermal synthesis technique prior to the hybrid composite fabrication. The scanning electron microscopy revealed that the ZnO nanowires were grown uniformly on the surface of the carbon fabric. The surface grown ZnO NWs functionally-graded the composite material properties and ensured effective load transfer across the interface. To assess the influence of the ZnO NWs growth, reference samples were also prepared by exposing the carbon fabric to the hydrothermal conditions. The damping properties of the hybrid ZnO NWs-CFRP composite were examined using the dynamic mechanical analysis (DMA) technique. The results showed enhanced energy dissipation within the hybrid composite. Quasi-static tensile testing revealed that the in-plane and out-of-plane strengths and moduli of the hybrid FRP composite were also boosted.
The interlaminar shear strength (ILSS) measurements suggested the improvement in the mechanical properties of the composite to the enhanced adhesion between the ZnO nanowires and the other constituents (carbon fiber and epoxy). It was necessary thus, to utilize the molecular dynamics simulations (MD) to investigate the adhesion within the CFRP structure upon growing the ZnO nanowires on the surface of the carbon fibers. Molecular models of the carbon fibers, the epoxy matrix and the ZnO nanowires were built. The resulting molecular structures were minimized and placed within a simulation box with periodic boundary conditions. The MD simulations were performed using the force field COMPASS to account for the empirical energy interactions between the different toms in the simulation box. Proper statistical thermodynamics were employed to relate the dynamics of the molecular model to the macroscale thermodynamic states (pressure, temperature and volume). Per the computed potential energies of the different components of the composite, it was found that the polar surfaces in the ZnO structures facilitates good adhesion properties in the graphite-epoxy composite.
Besides the attractive mechanical properties of the ZnO nanowires, their piezoelectric and semiconductor properties were sought to design an energy harvesting device. To ensure sufficient charges collection from the mechanically stressed individual ZnO nanowires, a copper layer was sputtered on top of the ZnO nanowires which introduced also a Schottky effect. The mechanical excitation was provided by exposing the device to different vibration environment. The output voltage and currents were measured at the conditions (in terms of frequency and resistive load). It was demonstrated that the electrical output could be enhanced by stacking up similar devices in series or in parallel.
Finally, in an attempt to exploit the reversibility of the electromechanical coupling of the energy harvesting device, the constitutive properties of the hybrid ZnO nanowires-CFRP composite were estimated using the Mori-Tanaka approach. This approach was validated by a finite element model (FEM). The FEM simulations were performed on a representative volume element (RVE) to reduce the computational time. The results demonstrated that the mechanical properties of the hybrid ZnO NWs-CFRP composite were better than those for the baseline CFRP composite with identical carbon fiber volume fraction (but with no ZnO NWs) which confirmed the experimental findings. Furthermore, the electro-elastic properties of the hybrid composite were determined by applying proper boundary conditions to the FE RVE.
The work outlined in this dissertation will enable significant advancement in the next generation of hybrid composites with improved structural and energy harvesting multifunctionalties. / Ph. D.
|
394 |
DESIGN AND MECHANISTIC UNDERSTANDING OF THE NONAQUEOUS ELECTROLYTE SOLVATION STRUCTURE TOWARDS OPTIMIZED INTERFACIAL PROPERTIES IN SECONDARY BATTERIESZheng Li (16496061) 05 August 2024 (has links)
<p> The interfacial reactions of the electrolytes at the electrode-electrolyte interface determine critical properties of the battery chemistries including the reaction reversibility, kinetic, and thermal stability etc. Rationally designing the solvation structure of the liquid electrolytes is paramount in altering their interfacial behaviors and achieving desirable battery performance. This thesis aims to provide fundamental understandings to the electrolyte solvation structure design in its correlations to the battery interphase stability and formation mechanism, interfacial desolvation kinetic, and thermal stability, providing strategies to build next-generation secondary batteries with improved energy density, wide-temperature capability, and thermal safety. </p>
<p>Developing high-voltage lithium metal battery (LMB) with metallic Li anode and nickel-rich metal oxide cathode is a feasible approach to enhance the battery energy density. However, inferior interfacial stabilities of conventional electrolytes towards highly reductive anode and oxidative cathode cause severe parasitic reactions. This thesis investigates the solvation structures of ether-based electrolytes and their interfacial decomposition pathways to selectively control the solid electrolyte interphase (SEI) composition. Combined theoretical and experimental studies demonstrate that lessening the coordination strength of the solvent molecules can improve the ion aggregating degrees in the solvation shell and preferentially promote the anion decomposition. Detailed surficial characterizations identify that weakly-solvating electrolytes generate robust SEIs with enriched inorganic components on anode and cathode surface, which kinetically prohibits parasitic reactions. The strategy successfully facilitates the long-term cycling of high energy LMBs. Weakening the solvent coordination ability is also identified effective to promote the desolvation kinetic and realize high battery energy retention at low temperatures.</p>
<p>The approach of tailoring ion-pairing behavior to achieve stabilized electrode-electrolyte interface is further validated in multivalent battery systems such as Magnesium-ion batteries (MIBs). Multivalent cations like Mg2+ and Zn2+ possess high electron density which results in strong coordination to solvent molecules and hindered desolvation process. They usually induce large reaction overpotential and low efficiency. The methoxy-amine-based electrolytes for MIBs are selected in terms of elucidating their interfacial failure mechanism and the solvation structure-dependent reaction stabilities with Mg metal anode. The study reveals an unknown amine solvent dehydrogenation mechanism that compromises the Mg anode stability. The tight coordination between solvent amine group (-NH2) and cation causes its direct reduction with H2 release. The dehydrogenation products tend to diffuse into the liquid electrolyte phase, which promotes the interfacial electrolyte decay. This work also demonstrates the approach to strengthen the solvent molecule stabilities via restructuring the Mg2+ solvation shell. Introducing anion coordination to Mg2+ can effectively relief the amine-cation interaction and suppress its reduction. As the result, hundreds of stable cycling from Mg metal anode with more than 99.6 % efficiency is achieved.</p>
<p>Finally, the thermal stability of electrolytes featuring various solvation structures are studied in LMBs via quantitative thermal analysis and surficial characterization techniques. The thermal runaway of batteries which is known to be initiated via SEI decomposition and propagated by exothermic electrode-electrolyte reactions exhibit great dependence on the solvation structures of the liquid electrolytes. The results suggest that strong solvent-coordinating electrolytes with solvent-separated ion pair structures are prone to exothermic reduction decompositions. While the organic-rich SEI tends to decompose at low temperatures and initiate thermal runaway easily. Therefore, designing electrolytes with anion involved solvation shells that generate inorganic SEI can effectively mitigate the thermal runaway behavior. Supplementary research focusing on the thermal safety of Potassium-ion battery also indicates the critical role of SEI stability on the overall battery safety aspect, which is governed by the electrolyte composition.</p>
|
395 |
Reinigung und Charakterisierung einer lysosomalen Phospholipase A1 aus MakrophagenKreuzeder, Julia 04 December 2008 (has links)
Makrophagen sind professionelle phagozytische Zellen, welche körpereigene gealterte oder toten Zellen und in den Körper eingedrungene Krankheitserreger aufnehmen. Die phagozytierten Partikel werden von lysosomalen Hydrolasen abgebaut und daraus hervorgehende Antigene an Zellen des spezifischen Immunsystems präsentiert. Aufgabe der lysosomalen Phospholipase A1 (PLA1) ist der Abbau von Phospholipiden. Sie spielt damit nicht nur eine elementare Rolle bei dem Abbau von Phospholipidmembranen nach Phago- und Autophagozytose, sondern kann auch an der Generation von Lipidantigenen beteiligt sein. Die vorliegende Arbeit bietet zum ersten Mal Hinweise auf die Sequenz der lysosomalen PLA1. Mittels proteinbiochemischer Reinigung und nachfolgender massenspektrometrischer Sequenzanalyse wurden zwei Proteinkandidaten identifiziert, welche der lysosomalen PLA1-Aktivität zugrunde liegen können. Des Weiteren werden ausführliche Untersuchungen zu den Katalyseeigenschaften des Enzyms an Liposomen präsentiert. Die Lipidzusammensetzung der Membran beeinflusst maßgeblich die Aktivität der lysosomalen PLA1. So haben in die Membran integrierte anionische Phospholipide eine stark enzymaktivierende Wirkung. Eine Erhöhung der Ionenstärke oder des pH-Wertes vermindern die Bindungsfähigkeit der lysosomalen PLA1 an die Membran und damit deren Aktivität. Dies lässt vermuten, dass elektrostatische Wechselwirkungen eine Rolle bei der Membranbindung spielen. Das Enzym besitzt pIs / Macrophages are professional phagocytes which engulf and degrade senescent and dead cells as well as pathogens. Phagocytosed particles are subsequently degraded by lysosomal enzymes. The lysosomal phospholipase A1 (PLA1) degrades phospholipids, the major components of biological membranes and, hence, plays a mandatory role in decomposition of phagocytosed and autophagocytosed membranes. Furthermore the enzyme might play a role in the processing of lipid antigens for immune presentation. Nevertheless, the gene encoding this important enzyme activity is as yet unknown. Here, we used proteinbiochemical methods to isolate the lysosomal PLA1 activity from RAW B cells and identified resulting sequences by tandem mass spectrometry. This analysis revealed for the first time two putative protein candidates responsible for lysosomal PLA1 activity. Using native enzyme fractions and liposome-embedded substrate, we show that PLA1 activity depends on the presence of anionic phospholipids, low pH and low ionic strength. Lysosomal PLA1 only attaches to membranes with anionic but not zwitterionic charges. High ionic strength impairs binding demonstrating that electrostatic attraction is responsible for membrane partitioning. Upon binding the enzyme remains on membranes for numerous catalytic cycles. The enzyme’s pIs at
|
396 |
Materials Approaches for Transparent ElectronicsIheomamere, Chukwudi E. 12 1900 (has links)
This dissertation tested the hypothesis that energy transferred from a plasma or plume can be used to optimize the structure, chemistry, topography, optical and electrical properties of pulsed laser deposited and sputtered thin-films of ZnO, a-BOxNy, and few layer 2H-WS2 for transparent electronics devices fabricated without substrate heating or with low substrate heating. Thus, the approach would be compatible with low-temperature, flexible/bendable substrates. Proof of this concept was demonstrated by first optimizing the processing-structure-properties correlations then showing switching from accumulation to inversion in ITO/a-BOxNy/ZnO and ITO/a-BOxNy/2H-WS2 transparent MIS capacitors fabricated using the stated processes. The growth processes involved the optimization of the individual materials followed by growing the multilayer stacks to form MIS structures. ZnO was selected because of its wide bandgap that is transparent over the visible range, WS2 was selected because in few-layer form it is transparent, and a-BOxNy was used as the gate insulator because of its reported atomic smoothness and low dangling bond concentration. The measured semiconductor-insulator interfacial trap properties fall in the range reported in the literature for SiO2/Si MOS structures. X-ray photoelectron spectroscopy (XPS), Hall, photoluminescence, UV-Vis absorption, and X-ray diffraction (XRD) measurements investigated the low-temperature synthesis of ZnO. All films are nanocrystalline with the (002) XRD planes becoming more prominent in films grown with lower RF power or higher pressure. Low power or high chamber pressure during RF magnetron sputtering resulted in a slower growth rate and lower energetic conditions at the substrate. Stoichiometry improved with RF power. The measurements show a decrease in carrier concentration from 6.9×1019 cm-3 to 1.4×1019 cm-3 as power increased from 40 W to 120 W, and an increase in carrier concentration from 2.6×1019 cm-3 to 8.6×1019 cm-3 as the deposition pressure increased from 3 to 9 mTorr. The data indicates that in the range of conditions used, bonding, stoichiometry, and film formation are governed by energy transfer from the plasma to the growing film. XPS characterizations, electrical measurements, and atomic force microscopy (AFM) measurements reveal an increase in oxygen concentration, improved dielectric breakdown, and improved surface topography in a-BOxNy films as deposition pressure increased. The maximum breakdown strength obtained was ~8 MVcm-1, which is comparable to a-BN. Metal-Insulator-Metal (MIM) structures of a-BOxNy grown at 10 and 15 mTorr suggest a combination of field-enhanced Schottky emission and Frenkel-Poole emission are likely transport mechanisms in a-BOxNy. In comparison, better fitted data was gotten for field enhanced Schottky emission which suggests the more dominant mechanism. The static dielectric constant range is 3.26 – 3.58 for 10 and 15 mTorr films. Spectroscopic ellipsometry and UV-Vis spectroscopy measured a bandgap of 3.9 eV for 15 mTorr grown a-BOxNy. 2H-WS2 films were grown on both quartz and a-BOxNy which revealed that the XRD (002) planes became more prominent as substrate temperature increased to 400 oC. AFM shows nano-grains at lower growth pressure. Increasing the growth pressure to 1 Torr resulted in the formation of larger particles. XPS chemical analysis reveals improved sulfur to tungsten ratios as pressure increased. Sulfur deficient films were n-type, whereas sulfur rich conditions produced p-type films. Frequency dependent C-V and G-V measurements revealed an interface trap concentration (Nit) of 7.3×1010 cm-2 and interface state density (Nss) of 7.5×1012 eV-1cm-2 for the transparent ITO/a-BOxNy/ZnO MIS structures, and approximately 2 V was required to switch the a-BOxNy/ZnO interface from accumulation to inversion. Using 2H-WS2 as the channel material, the ITO/a-BOxNy/2H-WS2 required approximately 4 V to switch from inversion to accumulation in both n and p-channel MIS structures. Interface trap concentrations (Nit) of 1.6×1012 cm-2 and 3.2×1010 cm-2, and interface state densities (Nss) of 1.6×1012 eV-1cm-2 and 6.5×1012 eV-1cm-2 were calculated for n and p-channel 2H-WS2 MIS structures, respectively. The data from these studies validate the hypothesis and demonstrate the potential of ZnO, a-BOxNy, and few layer 2H-WS2 for transparent electronics.
|
397 |
Influence of the environment on the fatigue properties of alumina ultra-thin coatings and silicon and nickel thin filmsBaumert, Eva K. 20 September 2013 (has links)
This dissertation presents the investigation of three thin film materials used in microelectromechanical systems (MEMS): alumina, silicon, and nickel. For this purpose, novel experimental techniques to test thin films under MEMS-relevant loading conditions were developed in order to study environmental effects and the underlying fatigue mechanisms of amorphous alumina ultra-thin coatings, mono-crystalline brittle silicon thin films, and poly-crystalline ductile nickel thin films.
Knowledge of these mechanisms is necessary to improve the reliability of MEMS, especially of those devices operating in harsh environments.
MEMS resonators were used to investigate both the fatigue and time-dependent behavior of alumina, silicon, and nickel. While micro-resonators were used in prior studies to research the fatigue properties of mono- and polycrystalline silicon, this work is the first in (1) using them to investigate fatigue properties of ultra-thin coatings and metallic films and in (2) using micro-resonators to investigate the time-dependent fatigue behavior of silicon films.
For fatigue testing, the micro-resonators were subjected to fully-reversed loading at resonance (≈40 kHz for alumina-coated silicon, ≈8 kHz for nickel). Experiments were conducted in air at 30 °C, 50% relative humidity (RH) or 80 °C, 90% RH and testing was carried out over a broad range of applied stresses. The resonance frequency evolution proved to be a metric for the accumulated damage, which could be further quantified using finite element analysis. In addition, scanning and transmission electron microscopy were used to examine the extent of fatigue damage. For testing under static loads, the resonators were subjected to external loading using a micromanipulator and probe-tip.
Experiments with atomic-layer-deposited alumina investigated the cohesive and interfacial fatigue properties of alumina coatings of four different thicknesses, ranging from nominally 4.2 nm to 50.0 nm on silicon micro-resonators. Fatigue loading led to both cohesive and interfacial damage, while static loading did not result in any damage. Both the cohesive and interfacial fatigue crack growth rates are approximately one order of magnitude higher at 80 °C, 90% RH than at 30 °C, 50% RH and seem to increase with increasing strain energy release rate. A combination of compressive loading and the silicon sidewall's surface roughness is believed to cause the observed fatigue behavior.
Experiments with 10-micrometer-thick deep reactive ion etched silicon micro-resonators investigated two aspects: whether surface oxidation is the critical parameter in silicon thin film fatigue and time-dependent failure in silicon as a potential underlying cause of resonator failures in the low cycle fatigue (LCF, <17 cycles, corresponding to ≈5 min) regime.
To confirm whether surface oxidation is the critical parameter in silicon thin film fatigue, the influence of oxygen diffusion barrier alumina coatings on the fatigue behavior was investigated. The coatings led to an increase in fatigue life by at least two orders of magnitude compared to uncoated devices in the harsh environment, which not only confirms reaction layer fatigue (RLF) as governing fatigue mechanism in silicon thin films, but also constitutes a practical solution to significantly increase fatigue lifetimes.
Previous LCF data were inconsistent with the RLF model, given that thick surface oxidation is unrealistic for tests lasting only few minutes. Accordingly, time-dependent failure in silicon was investigated as underlying cause and the observation of resonator failures under static loading indeed suggest that time-dependent crack growth may be responsible for LCF failures.
Experiments with metallic micro-resonators investigated the fatigue crack initiation in 20-micrometer-thick electro-deposited nickel under MEMS-relevant conditions, such as extreme stress gradients resulting in non-propagating cracks, fully-reversed loading (over a large range of stress amplitudes), exposure to mild and harsh environments, and accumulation of billions of cycles.
Under these circumstances, extrusions form locally at the notch root (within few million cycles at high stress amplitudes). Very thick local oxides (only at the location of the extrusions) of up to 1100 nm were observed in the harsh environment, with thinner oxides (up to 700 nm) in the mild environment. Micro-cracks form in the oxide but do not propagate given the extreme stress gradients. Finite element analysis confirmed that oxidation and micro-cracking lead to changes in the resonance frequency, which are consistent with the experimental results. Accumulation of cyclic plasticity appears to also lead to a decrease in resonance frequency which scales with applied strain.
|
398 |
Mathematical modeling of cellulase production in an airlift bioreactor / Modélisation mathématique de la production de cellulase dans un réacteur airliftBannari, Rachid January 2009 (has links)
Fossil fuel is an important energy source, but is unavoidabiy running out. Since the cellulosic material is the most abundant source of organic matter, the ethanol, which is produced from cellulosic waste materials, is gaining more and more attention. These materials are cheap, renewable and their availability makes them superior compared to other raw materials. The cellulose must be hydrolyzed to glucose before it can be fermented to ethanol. The enzymatic hydrolysis of cellulose using cellulase enzymes is the most widely used method. The production cost of cellulase enzymes is the major cost in ethanol manufacture. To optimize the cost of ethanol production, enzyme stability needs to be improved through maintaining the activity of the enzymes and by optimizing the production of the cellulase. The aim of researchers, engineers and industrials is to get more biomass for the same cost. The filamentous fungus Trichoderma reesei has a long history in the production of the cellulase enzymes. This production can be influenced strongly by varying the growth media and culture conditions (pH, temperature, DO, agitation,... ). At present, it is my opinion that no modelling study has included both the hydrodynamic and kinetic aspects to investigate the effect of shear and mass transfer on the morphology of microorganisms that influence the rheology of the broth and production of cellulase. This thesis presents the development of a mathematical model for cellulase production and the growth of biomass in an airlift bioreactor. The kinetic model is coupled with the methodology of two-phase flow using mathematical models based on the bubble break-up and coalescence to predict mass transfer rate, which is one of the critical factor in the fermentation. A comparison between the results obtained by the developed model and the experimental data is given and discussed. The design proposed for the airlift geometry by Ahamed and Vermette enables us to get a high mass transfer and production rate. The results are very promising with respect to the potential of such a model for industrial use as a prediction tool, and even for design.
|
399 |
Experimental investigation of the stability of the colmation zone around leaky sewersNikpay, Mitra 08 December 2015 (has links) (PDF)
Sewage exfiltration from a sanitary and combined sewer systems and its percolation into porous medium results in a clogged or colmation layer in the nearby soil. In order to develop a comprehensive understanding of raw sewage transport mechanisms in porous media, investigations were carried out on the micro-scale properties of the multiphase system. In our laboratory experiments, the role of surfactants as a major organic chemical compound in wastewater was evaluated by using a surfactant solution as an artificial wastewater percolating into a porous media, represented by using columns and Plexiglas model. We studied flows of water and surfactants solution in saturated porous medium to detect the dynamic effects by means of measuring pressure and permeability as well as by visualization of flow regions and consequence for porosity along interfaces between water and surfactants solution.
The tests revealed that mechanisms at interfaces between fluids and solids as well as between water and surfactants solution (i.e. wastewater) are significantly influencing the flow behavior. At the interfaces surfactant molecules are adsorbed or accumulate, respectively, and subsequently inducing electrical charges to those layers, altering the properties of fluids and these interfaces. Depending on the conditions, channels might be narrowed and thus decreasing the flow rate with a later erosion and increase of flow rates, or the flow and thus the erosive capacity might become intensified along the interface between surfactants solution and neighbouring water. In conclusion, the results of tests proved the surfactants to be an important controlling factor in the hydraulic properties of wastewater percolating into soil.
|
400 |
Cohesive zone modeling for predicting interfacial delamination in microelectronic packagingKrieger, William E. R. 22 May 2014 (has links)
Multi-layered electronic packages increase in complexity with demands for functionality. Interfacial delamination remains a prominent failure mechanism due to mismatch of coefficient of thermal expansion (CTE). Numerous studies have investigated interfacial cracking in microelectronic packages using fracture mechanics, which requires knowledge of starter crack locations and crack propagation paths. Cohesive zone theory has been identified as an alternative method for modeling crack propagation and delamination without the need for a pre-existing crack. In a cohesive zone approach, traction forces between surfaces are related to the crack tip opening displacement and are governed by a traction-separation law. Unlike traditional fracture mechanics approaches, cohesive zone analyses can predict starter crack locations and directions or simulate complex geometries with more than one type of interface.
In a cohesive zone model, cohesive zone elements are placed along material interfaces. Parameters that define cohesive zone behavior must be experimentally determined to be able to predict delamination propagation in a microelectronic package. The objective of this work is to study delamination propagation in a copper/mold compound interface through cohesive zone modeling. Mold compound and copper samples are fabricated, and such samples are used in experiments such as four-point bend test and double cantilever beam test to obtain the cohesive zone model parameters for a range of mode mixity. The developed cohesive zone elements are then placed in a small-outline integrated circuit package model at the interface between an epoxy mold compound and a copper lead frame. The package is simulated to go through thermal profiles associated with the fabrication of the package, and the potential locations for delamination are determined. Design guidelines are developed to reduce mold compound/copper lead frame interfacial delamination.
|
Page generated in 2.3388 seconds