• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 283
  • 64
  • 62
  • 29
  • 9
  • 8
  • 7
  • 6
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 600
  • 84
  • 79
  • 68
  • 61
  • 58
  • 57
  • 56
  • 56
  • 55
  • 54
  • 51
  • 49
  • 48
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Influence of the environment on the fatigue properties of alumina ultra-thin coatings and silicon and nickel thin films

Baumert, Eva K. 20 September 2013 (has links)
This dissertation presents the investigation of three thin film materials used in microelectromechanical systems (MEMS): alumina, silicon, and nickel. For this purpose, novel experimental techniques to test thin films under MEMS-relevant loading conditions were developed in order to study environmental effects and the underlying fatigue mechanisms of amorphous alumina ultra-thin coatings, mono-crystalline brittle silicon thin films, and poly-crystalline ductile nickel thin films. Knowledge of these mechanisms is necessary to improve the reliability of MEMS, especially of those devices operating in harsh environments. MEMS resonators were used to investigate both the fatigue and time-dependent behavior of alumina, silicon, and nickel. While micro-resonators were used in prior studies to research the fatigue properties of mono- and polycrystalline silicon, this work is the first in (1) using them to investigate fatigue properties of ultra-thin coatings and metallic films and in (2) using micro-resonators to investigate the time-dependent fatigue behavior of silicon films. For fatigue testing, the micro-resonators were subjected to fully-reversed loading at resonance (≈40 kHz for alumina-coated silicon, ≈8 kHz for nickel). Experiments were conducted in air at 30 °C, 50% relative humidity (RH) or 80 °C, 90% RH and testing was carried out over a broad range of applied stresses. The resonance frequency evolution proved to be a metric for the accumulated damage, which could be further quantified using finite element analysis. In addition, scanning and transmission electron microscopy were used to examine the extent of fatigue damage. For testing under static loads, the resonators were subjected to external loading using a micromanipulator and probe-tip. Experiments with atomic-layer-deposited alumina investigated the cohesive and interfacial fatigue properties of alumina coatings of four different thicknesses, ranging from nominally 4.2 nm to 50.0 nm on silicon micro-resonators. Fatigue loading led to both cohesive and interfacial damage, while static loading did not result in any damage. Both the cohesive and interfacial fatigue crack growth rates are approximately one order of magnitude higher at 80 °C, 90% RH than at 30 °C, 50% RH and seem to increase with increasing strain energy release rate. A combination of compressive loading and the silicon sidewall's surface roughness is believed to cause the observed fatigue behavior. Experiments with 10-micrometer-thick deep reactive ion etched silicon micro-resonators investigated two aspects: whether surface oxidation is the critical parameter in silicon thin film fatigue and time-dependent failure in silicon as a potential underlying cause of resonator failures in the low cycle fatigue (LCF, <17 cycles, corresponding to ≈5 min) regime. To confirm whether surface oxidation is the critical parameter in silicon thin film fatigue, the influence of oxygen diffusion barrier alumina coatings on the fatigue behavior was investigated. The coatings led to an increase in fatigue life by at least two orders of magnitude compared to uncoated devices in the harsh environment, which not only confirms reaction layer fatigue (RLF) as governing fatigue mechanism in silicon thin films, but also constitutes a practical solution to significantly increase fatigue lifetimes. Previous LCF data were inconsistent with the RLF model, given that thick surface oxidation is unrealistic for tests lasting only few minutes. Accordingly, time-dependent failure in silicon was investigated as underlying cause and the observation of resonator failures under static loading indeed suggest that time-dependent crack growth may be responsible for LCF failures. Experiments with metallic micro-resonators investigated the fatigue crack initiation in 20-micrometer-thick electro-deposited nickel under MEMS-relevant conditions, such as extreme stress gradients resulting in non-propagating cracks, fully-reversed loading (over a large range of stress amplitudes), exposure to mild and harsh environments, and accumulation of billions of cycles. Under these circumstances, extrusions form locally at the notch root (within few million cycles at high stress amplitudes). Very thick local oxides (only at the location of the extrusions) of up to 1100 nm were observed in the harsh environment, with thinner oxides (up to 700 nm) in the mild environment. Micro-cracks form in the oxide but do not propagate given the extreme stress gradients. Finite element analysis confirmed that oxidation and micro-cracking lead to changes in the resonance frequency, which are consistent with the experimental results. Accumulation of cyclic plasticity appears to also lead to a decrease in resonance frequency which scales with applied strain.
392

Mathematical modeling of cellulase production in an airlift bioreactor / Modélisation mathématique de la production de cellulase dans un réacteur airlift

Bannari, Rachid January 2009 (has links)
Fossil fuel is an important energy source, but is unavoidabiy running out. Since the cellulosic material is the most abundant source of organic matter, the ethanol, which is produced from cellulosic waste materials, is gaining more and more attention. These materials are cheap, renewable and their availability makes them superior compared to other raw materials. The cellulose must be hydrolyzed to glucose before it can be fermented to ethanol. The enzymatic hydrolysis of cellulose using cellulase enzymes is the most widely used method. The production cost of cellulase enzymes is the major cost in ethanol manufacture. To optimize the cost of ethanol production, enzyme stability needs to be improved through maintaining the activity of the enzymes and by optimizing the production of the cellulase. The aim of researchers, engineers and industrials is to get more biomass for the same cost. The filamentous fungus Trichoderma reesei has a long history in the production of the cellulase enzymes. This production can be influenced strongly by varying the growth media and culture conditions (pH, temperature, DO, agitation,... ). At present, it is my opinion that no modelling study has included both the hydrodynamic and kinetic aspects to investigate the effect of shear and mass transfer on the morphology of microorganisms that influence the rheology of the broth and production of cellulase. This thesis presents the development of a mathematical model for cellulase production and the growth of biomass in an airlift bioreactor. The kinetic model is coupled with the methodology of two-phase flow using mathematical models based on the bubble break-up and coalescence to predict mass transfer rate, which is one of the critical factor in the fermentation. A comparison between the results obtained by the developed model and the experimental data is given and discussed. The design proposed for the airlift geometry by Ahamed and Vermette enables us to get a high mass transfer and production rate. The results are very promising with respect to the potential of such a model for industrial use as a prediction tool, and even for design.
393

Experimental investigation of the stability of the colmation zone around leaky sewers

Nikpay, Mitra 08 December 2015 (has links) (PDF)
Sewage exfiltration from a sanitary and combined sewer systems and its percolation into porous medium results in a clogged or colmation layer in the nearby soil. In order to develop a comprehensive understanding of raw sewage transport mechanisms in porous media, investigations were carried out on the micro-scale properties of the multiphase system. In our laboratory experiments, the role of surfactants as a major organic chemical compound in wastewater was evaluated by using a surfactant solution as an artificial wastewater percolating into a porous media, represented by using columns and Plexiglas model. We studied flows of water and surfactants solution in saturated porous medium to detect the dynamic effects by means of measuring pressure and permeability as well as by visualization of flow regions and consequence for porosity along interfaces between water and surfactants solution. The tests revealed that mechanisms at interfaces between fluids and solids as well as between water and surfactants solution (i.e. wastewater) are significantly influencing the flow behavior. At the interfaces surfactant molecules are adsorbed or accumulate, respectively, and subsequently inducing electrical charges to those layers, altering the properties of fluids and these interfaces. Depending on the conditions, channels might be narrowed and thus decreasing the flow rate with a later erosion and increase of flow rates, or the flow and thus the erosive capacity might become intensified along the interface between surfactants solution and neighbouring water. In conclusion, the results of tests proved the surfactants to be an important controlling factor in the hydraulic properties of wastewater percolating into soil.
394

Cohesive zone modeling for predicting interfacial delamination in microelectronic packaging

Krieger, William E. R. 22 May 2014 (has links)
Multi-layered electronic packages increase in complexity with demands for functionality. Interfacial delamination remains a prominent failure mechanism due to mismatch of coefficient of thermal expansion (CTE). Numerous studies have investigated interfacial cracking in microelectronic packages using fracture mechanics, which requires knowledge of starter crack locations and crack propagation paths. Cohesive zone theory has been identified as an alternative method for modeling crack propagation and delamination without the need for a pre-existing crack. In a cohesive zone approach, traction forces between surfaces are related to the crack tip opening displacement and are governed by a traction-separation law. Unlike traditional fracture mechanics approaches, cohesive zone analyses can predict starter crack locations and directions or simulate complex geometries with more than one type of interface. In a cohesive zone model, cohesive zone elements are placed along material interfaces. Parameters that define cohesive zone behavior must be experimentally determined to be able to predict delamination propagation in a microelectronic package. The objective of this work is to study delamination propagation in a copper/mold compound interface through cohesive zone modeling. Mold compound and copper samples are fabricated, and such samples are used in experiments such as four-point bend test and double cantilever beam test to obtain the cohesive zone model parameters for a range of mode mixity. The developed cohesive zone elements are then placed in a small-outline integrated circuit package model at the interface between an epoxy mold compound and a copper lead frame. The package is simulated to go through thermal profiles associated with the fabrication of the package, and the potential locations for delamination are determined. Design guidelines are developed to reduce mold compound/copper lead frame interfacial delamination.
395

Studies of frictional interface behaviour : experiments and modelling

Mulvihill, Daniel Martin January 2012 (has links)
Predictive models of structures containing frictional joints presently suffer from poor descriptions of interface behaviour at the joints. This thesis aims to address this shortfall by furthering the physical understanding of parameters affecting interface behaviour such as friction and contact stiffness. Aspects of friction and contact stiffness relevant to the characterisation of fretting joints are investigated by a combined modelling and experimental approach. Friction and wear behaviour in gross-slip fretting are investigated by in-line and rotational fretting tests. New 3D topography parameters are found to be useful in the analysis of surfaces during fretting. Wear-scar shape is found to be dependent on material. A phenomenon whereby friction increases during the gross-slip phase of individual cycles is found to be due to wear-scar interaction primarily through the interference of local features distributed over the contact area. These features are similar in size to the applied fretting stroke. A simple model to explain the behaviour is put forward which shows that wear-scar shape determines the form of the friction variation. A finite-element (FE) model of the interaction of an elastic-plastic asperity junction is used to predict sliding friction coefficients. The modelling differs from previous work by: permitting greater asperity overlaps, enforcing an interface shear strength, and allowing material failure. The results are also used to predict friction coefficients for a stochastic rough surface. The magnitudes of the predicted friction coefficients are generally representative of experimental measurements. Results suggest that friction arises from both plasticity and tangential interface adhesion. Contact stiffness is studied for both fretting and non-fretting. A technique to isolate the true interface stiffness from results derived from load-deflection data is developed by comparing experimental and FE results. In the fretting wear case, comparison of tangential contact stiffness results in the literature with FE results reveals an interface whose compliance dominates the response to the extent that stiffness is proportional to contact area. In fretting tests such as this, wear debris is thought to be a factor contributing to high interface compliance. Non-fretting experiments performed here show that, at higher pressures, interface domination is reduced as the contact approaches the smooth case. Experiments are performed where contact stiffness is measured simultaneously by both ultrasound and digital image correlation. The effect of normal and tangential loading upon the contact stiffness (normal and tangential) is investigated. Experimental evidence showing that ultrasound measures an ‘unloading’ stiffness while DIC measures a ‘loading’ stiffness is obtained for the case of tangential loading where the ‘DIC stiffness’ decreases with increasing tangential load whereas the ‘ultrasound stiffness’ remains approximately constant. On average, ultrasound gives magnitudes 3.5 and 2.5 times stiffer than the DIC results for the normal and tangential stiffness cases, respectively. The difference in magnitudes can largely be physically explained, and is relatively small considering the significant differences between the techniques. Therefore, both methods can claim to give valid measurements of contact stiffness – though each has its own limitations which are outlined herein.
396

Développement d'une méthode lagrangienne de simulation d'écoulements turbulents à phases séparées / Development of a Lagrangian approach for computing turbulent separated two-phase flows

Renaud-Assemat, Irène 22 July 2011 (has links)
Les écoulements turbulents à phases séparées sont présents dans de très nombreuses applications. Cependant, la simulation de tels écoulements avec une interface déformable constitue l'un des problèmes les plus complexes de la mécanique des fluides numérique. La prise en compte du bilan des contraintes normales est au cœur du problème de déformation de l'interface. Dans le travail présenté ici, nous développons un algorithme permettant de simuler des écoulements diphasiques incompressibles et turbulents en suivant le déplacement de l'interface par une approche lagrangienne. Les équations de Navier-Stokes instationnaires écrites en variables vitesse-pression sont résolues dans les deux phases en utilisant des maillages curvilignes orthogonaux. Dans un premier temps, nous introduisons un schéma de raccordement des vitesses tangentielles et des cisaillements. Ce schéma est appliqué afin de simuler l'interaction de deux écoulements turbulents séparés par une interface plane. La turbulence est traitée par une approche de simulation des grandes échelles utilisant un modèle dynamique. Un algorithme original est ensuite développé dans le but de satisfaire de façon non-itérative à la fois la continuité des vitesses normales et des contraintes normales sur l'interface et l'incompressibilité dans les deux phases. Différentes simulations d'écoulements diphasiques avec interface déformable sont réalisées afin de valider ces développements. / Turbulent incompressible two-phase separated flows are present in many applications. However, simulation of such flows with a moving interface is one of the most challenging problems in todays computational fluid dynamics. Taking properly into account the normal stress budget accross the interface is the main difficulty of moving interface problems. This work deals with the development of a boundary-fitted method for computing turbulent incompressible two-phase flows. The interface displacement is achieved through a Lagrangian approach. The unsteady Navier-Stokes equations written in a velocity- ressure formulation are solved within the two phases using an orthogonal curvilinear grid. In a first step, we introduce a scheme allowing tangential velocities and shear stresses to match across the interface. We apply this technique to compute the countercurrent flow generated by two streams separated by a plane interface. This scheme is then applied to compute various situations involving the interaction between two turbulent flows separated by a flat interface. The turbulence is treated by using the Large Eddy Simulation approach with a dynamic model. An original algorithm is then developed to satisfy without any internal iteration the continuity of normal velocities and stresses across the interface and the incompressibility condition within both phases. Several simulations of two-phase flows with a moving interface are carried out to validate these developments.
397

Simulations de Dynamique Particulaire Dissipative pour le calcul de tension interfaciale dans des systèmes eau/tensioactif/huile / Dissipative Particle Dynamics simulations to compute interfacial tension in water/surfactant/oil systems

Deguillard, Estelle 29 October 2014 (has links)
La tension interfaciale est une grandeur physico-chimique d'intérêt pour de nombreuses industries et notamment l'industrie pétrolière. Cette grandeur est l'un des paramètres qui permet d'optimiser le rendement d'un puits de pétrole. La difficulté liée à sa mesure dans les conditions réservoirs a amené à étudier les systèmes eau/tensioactif/huile par simulation moléculaire. Ce travail a permis de montrer que la Dynamique Particulaire Dissipative (DPD) était un outil adapté pour l’étude de systèmes eau/tensioactif/huile sous différents aspects, de la caractérisation de la structure des interfaces au calcul de la tension interfaciale. Cette thèse a permis la démonstration de l’influence non-négligeable de la variation des paramètres de la force harmonique, l’amplitude K et la distance d’équilibre r0 , sur le calcul de la tension interfaciale et sur la structure des interfaces à forte concentration en tensioactif. En effet, la structure des tensioactifs aux interfaces est le résultat d’une balance subtile entre les forces intra et inter moléculaire. L’étude d’une population modèle de tensioactifs non chargés a permis de montrer que la DPD reproduit bien l'évolution de la tension interfaciale en fonction de la concentration en tensioactif en solution et en fonction du coefficient de partage de tensioactifs modèles non chargés. Une méthodologie est proposée pour caractériser les systèmes contenant des interfaces et où la tension interfaciale est calculée.Des travaux prospectifs ont permis de montrer que la DPD permettait d'étudier des phénomènes liés à la tension interfaciale comme le mûrissement d'Ostwald dans les émulsions d'huile dans l'eau. Ces derniers travaux ouvrent la voie à l’étude d’autres systèmes d’intérêt pour le milieu pétrolier comme le décollement de gouttes de pétroles adsorbées sur des parois ou l’étude d’émulsions pétrolières. / The interfacial tension is a physical-chemical property that numerous industrial areas have an interest of especially the petroleum industry. This property is one of the many which helps to optimize production wells' rate of return. Measuring that property in reservoir's conditions (high pressure and temperature) is highly difficult and led to study water/surfactant/oil systems using molecular modeling. The difficulty to measure that specific physical-chemical property linked to the pressure and temperature conditions in the reservoirs led the scientists to study water/surfactant/oil systems using molecular modeling. This thesis establishes that the Dissipative Particle Dynamics (DPD) is able to study water/surfactant/oil systems. The study of the effect of the variation of the harmonic force's parameters, namely the force constant K and the equilibrium distance r0, demonstrated that their variation can heavily influence the interfacial tension computation. Actually, a subtle balance exists between the intra and inter-molecular interactions, which influences the local structure of the surfactants at the oil-water interface, modifies the interfacial tension and influences the interface stability. It was demonstrated that DPD reproduces the variation of interfacial tension with the bulk surfactant concentration and the effect of the variation of hydrophobicity of models of un-charged surfactants on interfacial tension by mean of their coefficient partition. We established a method to properly study systems containing interfaces where interfacial tension is computed. Prospective work showed that DPD was a good tool to study microscopic phenomenon which can be observed macroscopically like the Ostwald ripening in oil in water emulsions. This is a first step before studying others systems of interest for the petroleum industry such as oil/water emulsion or the adsorption of oil droplets on rock wall.
398

Implantes de alumina em gradiente funcional de porosidade recobertos com hidroxiapatita e biovidro: avaliação da osseointegração / Alumina implants with functional gradient of porosity coated with hydroxyapatite and bioactive glass: evaluation of osseointegration

Claudia Cristiane Camilo 26 October 2010 (has links)
Esta pesquisa tem como finalidade desenvolver implantes de alumina com núcleo denso e superfície gradualmente porosa (FGM) recobertos com materiais bioativos - hidroxiapatita e biovidro. Materiais porosos são estudados como solução para a osseointegração, porém apresenta déficit nas suas propriedades mecânicas. Estruturas bifásicas foram desenvolvidas por pesquisadores com o propósito de promover crescimento tecidual, sem afetar significativamente sua propriedade mecânica, no entanto ocorre delaminação. Neste trabalho é proposta uma estrutura em gradiente funcional que visa aprimorar as propriedades mecânicas conjugadas com a sinalização celular e com integração óssea. O tamanho, a morfologia de poros e também a porosidade são parâmetros fundamentais para boa resposta tecidual e integração do implante, pois afetam a viabilidade e a afinidade celular. Para essa finalidade a busca por uma espessura efetiva de porosidade se faz fundamental para alto desempenho do implante. Peças de alumina porosas infiltradas com materiais bioativos foram fabricadas e estudadas in vivo, em tíbias de ratos da raça Wistar durante 14, 18, 21 e 28 dias, para investigar a qualidade do crescimento de tecido ósseo. O estudo com implantes porosos recobertos foi realizado para avaliar e padronizar a superfície porosa do gradiente funcional. Os animais foram analisados com densidade mineral óssea (DMO), as tíbias foram caracterizadas na interface osso-implante e nos poros com histologia, com EDS-line-scan, com radiografias e com ensaios de cisalhamento. Implantes de alumina com 70% de porosidade foram comparados com recobrimento bioativo e sem recobrimento in vivo e ex-vivo. Nos resultados, os implantes recobertos aceleram o processo de osseointegração. Essa característica foi mais evidente no período de 28 dias de implantação com aumento de 24% na tensão de cisalhamento. Após validar uma superfície porosa e osseointegrável para a superfície do gradiente funcional, foram aplicadas técnicas diferenciadas para manufaturar peças com núcleo denso e superfície com gradiente de porosidade. As peças com FGM foram manufaturadas com a utilização de duas técnicas, dipping e co-prensagem e foram analisadas com microscopia eletrônica de varredura. Com o método de manufatura de co-prensagem foram obtidas peças com superfície gradualmente porosa, com transição de densificação contínua, sem delaminação. Os implantes de alumina em gradiente funcional com 70 % de porosidade na superfície mais externa, recobertos por bioativos apresentam potencial para aplicações em implantes ósseos ou dentários. / The present thesis reports on the development of alumina implants with dense core and gradually porous surface (FGM) covered with bioactive materials, hydroxyapatite (HA) and bioactive glass. Porous materials have been studied to provide tissue ingrowth, however they strongly affect the mechanical properties of the implant. Biphasic structures have been developed by some researchers to promote tissue growth without affecting the mechanical properties, although delamination may occur. This study proposes a functional gradient structure to improve both the mechanical properties of the material and cell signaling. The size and morphology of the pores as well as their porosity are key parameters for good tissue response and implant integration, since they affect the viability and cell affinity, and an effective porosity thickness becomes essential for a high performance of the implant. Porous alumina implants coated with bioactive materials were fabricated and studied in vivo in rat tibia for 14, 18, 21, and 28 days to investigate the quality of bone tissue growth. The study of porous coated implants was performed to evaluate and standardize the porous surface of the functional gradient. The animals were examined with bone mineral density (BMD), the tibiae were characterized in the bone-implant interface and the pores were analyzed with histology, EDS line-scan, X-ray and shear tests. Alumina with 70% porosity was compared with and without bioactive coating in vivo and ex vivo. The results showed that the covered implants accelerated the osseointegration process. This characteristic is more evident within 28 days of deployment with a 24% increase in shear stress. After validating a porous and osteointegrated surface for the surface of the functional gradient, several techniques were applied to manufacture parts with dense core and surface with gradient of porosity. The pieces were manufactured with FGM using two techniques, dipping and co-pressing and were analyzed by scanning electron microscopy. The manufacturing method of co-pressing allowed obtaining pieces with gradually porous surface and continuous transition of densification without delamination. On the outermost surface, alumina implants with functional gradient and 70% porosity and coated with bioactive materials presented potential for application to bone or dental implants.
399

Estudo experimental e modelagem matemática de ondas no escoamento estratificado óleo-água em tubulação levemente inclinada / Experimental study and mathematical modeling of waves in slightly-inclined oil-water stratified pipe flow

Mello, Diego Oliveira de 08 October 2007 (has links)
Embora o escoamento estratificado óleo-água seja comum na indústria do petróleo, existem poucos trabalhos na literatura sobre a estrutura ondulatória encontrada no escoamento em dutos ascendentes ou descendentes. O objetivo deste trabalho é entender e caracterizar as estruturas interfaciais ondulatórias em escoamentos estratificados óleo e água em dutos levemente inclinados e comparar com os resultados retirados da modelagem proposta. Uma primeira tentativa de modelar a onda interfacial óleo-água através da equação da energia bifásica unidimensional para regime permanente é apresentada e comparada aos resultados obtidos experimentalmente. Valores de comprimento de onda foram coletados para quatro ângulos de inclinação a partir da horizontal (-5º, -2º, 2º e 5º) e diversos pares de vazão de óleo e água. Os dados foram extraídos de frames de vídeos de alta resolução através de uma técnica manual. Um software baseado em LabView foi desenvolvido para possibilitar a automação da obtenção do comprimento de onda e amplitude. Os comprimentos de onda obtidos com a técnica automática foram comparados com os dados obtidos através da técnica manual. O mensuramento é bem satisfatório e sugere que a ferramenta experimental proposta possa ser aplicada para o estudo de qualquer padrão de escoamento óleo-água, onde uma estrutura ondulatória possa ser identificada. A validade da modelagem da onda interfacial proposta foi avaliada através da comparação entre os resultados teóricos e dados experimentais. A concordância observada é encorajadora. / Even though the oil-water stratified flow pattern has a common occurrence in the upstream oil industry, quite often in directional wells, there are only a few works in the literature dealing with its interfacial wavy structure. This work has the mean goal of comprehending a characterizing the interfacial wave structure in inclined water-oil stratified pipe flow, comparing it with the proposed model. A model, based on the steady-state one-dimensional two-phase flow energy equation is presented and compared to our experimental data. Wave lengths and amplitude data were collected at four inclinations from the horizontal (-5º, -2º, 2º and 5º) and several oil and water flow rates. The data were extracted form high-resolution video images through a manual technique. A LabView based software was developed in order to obtain the lengths and amplitude automatically. Wave length obtained from it were compared to the manual technique data. The satisfactory measurement suggests the applicability of the experimental tool to any water-oil pipe flow pattern, where a wave structure can be identified. The validity by the comparison between theoretical and experimental data. The agreement observed is promising.
400

Análise da interface entre argamassas de concreto com adição de fino basáltico e cinza da casca de arroz por meio de nanoindentação

Wilbert, Daniel Gustavo Brusius 22 July 2015 (has links)
Submitted by Silvana Teresinha Dornelles Studzinski (sstudzinski) on 2015-10-28T11:36:30Z No. of bitstreams: 1 Daniel Gustavo Brusius Wilbert_.pdf: 4731645 bytes, checksum: 08c801a9545a481516dfe01632256d9c (MD5) / Made available in DSpace on 2015-10-28T11:36:30Z (GMT). No. of bitstreams: 1 Daniel Gustavo Brusius Wilbert_.pdf: 4731645 bytes, checksum: 08c801a9545a481516dfe01632256d9c (MD5) Previous issue date: 2015-07-22 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / FAPERGS - Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul / O setor da construção civil é responsável por um grande impacto ambiental, destacando-se dois principais fatores, a quantidade de matéria-prima consumida e de resíduos gerados. Estes resíduos, em grande parte apresentam um grande potencial de reciclagem. Dentre estes resíduos, os de concreto apresentam um excelente potencial de utilização. Inúmeras pesquisas já comprovaram a viabilidade de utilização do Agregado Reciclado de Concreto (ARC). Porém, a menor qualidade do ARC em comparação aos agregados naturais, resultada em queda no desempenho destes concretos, principalmente nas propriedades de durabilidade. Como consequência ocorre um enfraquecimento da zona de transição entre a argamassa velha e a nova. Em função desta queda de desempenho ao se utilizar ARC, a presente pesquisa teve por objetivo a análise desta zona de transição, através do estudo da interface entre duas argamassas de concreto por meio da técnica de nanoindentação. Para esta análise foram moldados agregados reciclados de concretos modificados, todos no traço referência (sem adição), e posteriormente aplicada uma nova camada de argamassas com diferentes traços. Os traços variaram entre dois tipos de adição (Finos Basálticos – FB e Cinza da Casca de Arroz – CCA), em diferentes teores de adição ao cimento, 0, 5, 10 e 15% para os finos e 0, 5 7,5 e 10% para a CCA. Após cura de 63 dias, as amostras foram preparadas para a realização dos ensaios. Para a análise das medidas de nanoindentação na interface, foram propostos três métodos de análise. As propriedades macroestruturais foram avaliadas aos 28 dias, como módulo de elasticidade dinâmico, resistência à compressão, resistência à tração por compressão diametral e absorção de água por capilaridade. Os resultados demonstraram a melhora das propriedades macroestruturais das argamassas com 15% de FB e CCA em relação à referência. Foram identificadas alterações na região de interface entre as argamassas no traço com 15% de finos de basalto e em todos os traços com CCA, que apresentaram os melhores resultados. A comparação entre a região mais próxima à zona de transição resultou, para todos os traços, em valores semelhantes aos obtidos em regiões de pastas mais distantes à zona de transição, demonstrando que o uso de uma argamassa antiga na condição seca (simulando um agregado reciclado seco) melhorou as condições da zona de transição com a argamassa nova. / Construction is responsible for a large environmental impact, highlighting two main factors: consume of raw materials and generation of waste materials. By other hand, construction and demolition waste has a good potential of recycling. Many studies have demonstrated the viability of using recycled concrete coarse aggregate (RCA) in new concrete. However, due to the RCA’s properties, most results point to a lower durability of the concrete. It is also consensus that the main reasons for the lower quality of the new concrete are the mortar layer adhered to the natural aggregate and the weakening in the new Interfacial Transition Zone (ITZ) between the old and the new mortar. This study analyze the new interfacial transition zone in these concretes through nanoindentation. There were produced recycled concrete aggregates without addition of filler, and over these aggregates there were produced a new mortar layer with different mix compositions. There were used basaltic filler and rice husk ash-RHA in different levels of addition: 0, 5, 10 and 15% for the filler, and 0, 5, 7,5 and 10% for the ash. Their interfaces were evaluated using different methodologies. Modulus of elasticity, compressive strength, tensile strength and capillarity were determined. The use of fines improved the mortar properties in relation to the reference, especially those with 15% filler and the samples with RHA. The region near to the ITZ shows similar elastic moduli values to those obtained in the paste, in all mortars, proving that using dry recycled aggregates the new mortar loose water to the aggregates and increase their mechanical properties.

Page generated in 0.0912 seconds