Spelling suggestions: "subject:"interferon.""
81 |
Le rôle et la régulation du pyroglutamylated RF-amide peptide dans le tissu adipeux lors de l’obésitéJossart, Christian 08 1900 (has links)
L’obésité est définie comme un surplus de masse adipeuse. Cette condition représente un problème de santé publique devenu pandémique dans les pays industrialisés. Elle prédispose à des maladies potentiellement mortelles comme le diabète de type 2, les maladies cardiovasculaires et la stéatose hépatique non-alcoolique.
L’accumulation du tissu adipeux intra-abdominal, formé d’adipocytes, est corrélée avec la résistance à l’insuline. L’augmentation de la masse adipeuse se fait par l’hyperplasie des préadipocytes, la différenciation des préadipocytes en adipocytes et l’hypertrophie des adipocytes. La différenciation des préadipocytes se fait selon l’adipogenèse qui est régulée par une multitude de facteurs, mais qui est inhibée pas les stimuli inflammatoires qui sont aussi responsables de la résistance à l’insuline et de l’apparition des problèmes de santé liés à l’obésité.
Nous avons identifié un nouveau système de régulation autocrine/paracrine de l’adipogenèse dans les cellules du tissu adipeux. Le pyroglutamylated RF-amide peptide (QRFP), qui était connu pour son rôle dans la régulation de l’appétit, est un activateur de l’adipogenèse par l’activation de son récepteur, le G protein-coupled receptor 103 (GPR103). Le QRFP est exprimé dans les macrophages et les adipocytes alors que le GPR103 de sous-type b est exprimé dans les adipocytes seulement. Un traitement des adipocytes avec le QRFP augmente le captage des acides gras, l’accumulation de lipides ainsi que l’expression et l’activité de l’enzyme LPL. Le QRFP augmente aussi l’expression des gènes des transporteurs d’acides gras CD36 et FATP1, de l’enzyme activatrice d’acides gras ACSL1 et des facteurs de transcription PPAR-γ et C/EBP-α, qui sont tous impliqués dans l’adipogenèse. En plus de ses effets sur l’adipogenèse, le QRFP possède aussi un effet inhibiteur sur l’activité lipolytique induite par les catécholamines.
Nous avons montré que l’expression du QRFP est diminuée dans le tissu adipeux des souris obèses. Selon nos résultats, cette diminution pourrait être expliquée par une augmentation des endotoxines circulantes chez les obèses, appelée endotoxémie métabolique, qui agirait, entre autres, par l’induction des interférons dans les macrophages. Les voies de signalisation de ces effets ont aussi été identifiées. Nous avons montré un autre exemple de stimulus inflammatoire qui régule les signaux adipogènes à la baisse. / Obesity is defined as an excess of fat tissue mass. Obesity is a public health problem which became pandemic in developed countries. The condition of obesity predisposes to potentially fatal diseases like type 2 diabetes, cardiovascular diseases and non-alcoholic steatohepatitis.
The increase in intra-abdominal adipose tissue mass is intimately associated with the development of insulin resistance. An increase in fat tissue mass occurs by preadipocytes hyperplasia, preadipocytes differentiation into adipocytes and adipocyte hypertrophy. The differentiation of preadipocytes occurs during adipogenesis and is regulated by multiple factors but inhibited by inflammatory stimuli that are responsible for insulin resistance and the emergence of obesity-related dysfunctions.
We identified a new autocrine/paracrine system of regulation of adipogenesis in adipose tissue cells. The pyroglutamylated RF-amide peptide (QRFP), previously known for its role in the regulation of appetite, is an activator of adipogenesis by activating its receptor, G protein-coupled receptor 103 (GPR103). QRFP is expressed in adipocytes and macrophages whereas the GPR103 subtype b is expressed in adipocytes only. Treatment of adipocytes with QRFP increases fatty acids uptake, lipid accumulation, LPL enzyme expression and activity. QRFP upregulates gene expressions of fatty acids transporters CD36 and FATP1, of the fatty acid activating enzyme ACSL1 and of transcription factors PPAR-γ and C/EBP-α, which are all involved in adipogenesis. In addition to its effects on adipogenesis, QRFP shows an inhibitory effect on lipolytic activity induced by catecholamines.
We have shown that QRFP expression is decreased in adipose tissues of obese mice. According to our results, this decrease could be explained by an increase of circulating endotoxins in obesity, called metabolic endotoxemia, which mediate its effect, in part, by the induction of interferons in macrophages. Signaling pathways of these effects have been identified. We demonstrated another example of inflammatory stimulus downregulating adipogenic signals.
|
82 |
Characterization of natural Killer cell response to human entomegalovirus infected dentrilic cellsMagri, Giuliana 31 March 2011 (has links)
S'ha establert un sistema experimental autòleg per a poder estudiar la resposta de les cèl.lules Natural Killer (NK) contra les cèl.lules dendrítiques derivades de monòcits (moDC), infectades pel Cytomegalovirus humà (HCMV). Els nostres resultats mostren que les cèl.lules NK responen contra les moDC infectades per HCMV, que presenten una expressió de les molècules MHC de classe I a superficie reduïda. Específicament, demostrem que la infecció per HCMV disminueix l'expressió en superficie d'HLA-E en les moDC, alliberant així la inhibició de les cèl.lules NK NKG2A+. Mostrem que els NKR anomenats NKp46 i DNAM-1 tenen un paper dominant en el reconeixement de les moDC infectades per HCMV i evidenciem la importància de la dinàmica dels mecanismes d'immunoevassió en la susceptibilitat a la resposta NK. Finalment, trobem que els interferons de tipus I i la IL-12 secretats en resposta a la infecció per HCMV, a més de participar en l'activació de la cèl.lula NK i en la secreció d'IFN-, inhibeixen l'expressió i la funció de NKG2D en les cèl.lules NK, com un mecanisme de regulació potencial per prevenir la reactivitat NK contra cèl.lules veïnes sanes. / Suitable experimental conditions have been established to dissect the role of NK cell receptors (NKR) and cytokines in the NK cell response against autologous human cytomegalovirus (HCMV) infected monocyte derived dendritic cells (moDC). Our results reveal that NK cells are capable of responding to HCMV infected moDC that have down-regulated surface MHC class I molecules. In particular, we prove that HCMV infection decreases surface HLA-E expression on moDC, thus releasing NKG2A+ NK cells from inhibition. We show that NKp46 and DNAM-1 NKR play a dominant role in the recognition of HCMV infected moDC and we provide evidences stressing the importance of the dynamics of viral immune evasion mechanisms in NK cell susceptibility. Finally, we find that type I interferons and IL-12 secreted in response to HCMV infection, beyond their participation in NK cell activation and IFN- secretion, transiently inhibit the expression and function of NKG2D in NK cells, thus providing a potential regulatory feedback mechanism to prevent NK cell reactivity against bystander healthy cells.
|
83 |
Newcastle Disease Virus Virulence: Mechanism of the Interferon Antagonistic Activity of the V Protein and Characterization of a Putative Virulence-Specific Antibody to the Attachment Protein: a dissertationAlamares, Judith G. 05 May 2008 (has links)
Newcastle disease virus (NDV) is a member of the genus Avulavirus of the Paramyxoviridaefamily of enveloped negative-stranded RNA viruses. The virus causes respiratory, neurological, or enteric disease in many species of birds, resulting in significant losses to the poultry industry worldwide. Strains of the virus are classified into three pathotypes based on the severity of disease in chickens. Avirulent strains that produce mild or asymptomatic infections are termed lentogenic, whereas virulent strains are termed velogenic. Strains of intermediate virulence are termed mesogenic.
The envelope of NDV virions contains two types of glycoproteins, the hemagglutinin-neuraminidase (HN) and fusion (F) proteins. HN mediates three functions: 1) virus attachment to sialic acid-containing receptors; 2) neuraminidase activity that cleaves sialic acid from progeny virions to prevent self-aggregation; and, 3) complementation of the F protein in the promotion of fusion.
Though it is widely accepted that cleavage of a fusion protein precursor is the primary determinant of NDV virulence, it is not the sole determinant. At least two other proteins, HN and the V protein, contribute to virulence. The V protein possesses interferon (IFN) antagonistic activity. The long-range goal of these studies is to understand the roles of HN and V in the differential virulence patterns exhibited by members of the NDV serotype.
The first aim is to compare the IFN antagonistic activity of the V protein from a lentogenic and a mesogenic strain of the virus. The results of this study demonstrate that the V protein of the mesogenic strain Beaudette C (BC) exhibits greater IFN antagonistic activity than that of the lentogenic strain La Sota. Hence, the IFN antagonistic activities of the two V proteins correlate with their known virulence properties.
Comparison of the C-terminal regions of La Sota and BC V proteins revealed four amino acid differences. The results demonstrate that the IFN antagonistic activity of La Sota V increases when any one of these residues is mutated to the corresponding residue in BC V. Conversely, the IFN antagonistic activity of BC V decreases when any one of these four residues is mutated to the corresponding residue in La Sota V. However, no single residue accounts for the difference in IFN antagonistic activity between the two V proteins. Also, analysis of La Sota V and BC V proteins with multiple mutations in these positions revealed that the four residues are collectively responsible for the difference in the IFN antagonistic activity of the two V proteins. Finally, characterization of chimeric La Sota/BC V proteins showed that the N-terminal region also contributes to the IFN antagonistic activity of V.
Contrary to an earlier report, results described here demonstrate that the NDV V protein does not target STAT1 for degradation. However, both La Sota and BC V proteins target interferon regulatory factor (IRF)-7 for degradation and promote the conversion of full-length IRF-7 to a lower molecular weight form (IRF-7*). This is the first demonstration that IRF-7 is targeted by a paramyxovirus V protein. The amount of IRF-7* decreases in a dose-dependent manner in the presence of a proteasome inhibitor, suggesting that IRF-7* is a degradation product of IRF-7. Furthermore, the BC V protein promotes complete conversion of IRF-7 to IRF7*, whereas the La Sota V protein does so less efficiently. Again, this is consistent with the difference in IFN antagonistic activity of the two V proteins, and in turn, with their virulence.
The second aim is to characterize an HN-specific monoclonal antibody called AVS-I. A previous study suggested that AVS-I recognizes an epitope that is conserved in lentogenic strains and raises the possibility that this epitope may colocalize with a determinant of virulence in HN. To further characterize antibody AVS-I and the epitope it recognizes, we (i) determined its specificity for several additional strains of the virus, (ii) mapped its binding to HN in competition with our own antibodies, (iii) determined its functional inhibition profile, and (iv) isolated and sequenced an AVS-I escape mutant. The results demonstrate that AVS-I binds to a conformational epitope at the carboxy terminus of HN. This suggests that this region of HN may define a determinant of virulence. However, it was also shown that AVS-I, which was previously thought to be specific for avirulent strains of NDV, actually recognizes individual mesogenic and velogenic strains.
In conclusion, the data presented in this dissertation contributes to a greater understanding of the molecular basis for NDV virulence and may aid in development of antiviral strategies and generation of recombinant NDVs suitable for use in cancer and gene therapy.
|
84 |
Etude de la différenciation et des fonctions des monocytes classiques au cours de l'infection par le cytomégalovirus murin / Study of classical monocytes differentiation and functions during murine cytomegalovirus infectionFries, Anissa 29 September 2016 (has links)
Les monocytes classiques (cMo) sont des phagocytes mononucléés circulant dans le sang et capables de migrer vers les tissus enflammés pour s’y différencier en monocytes inflammatoires, cellules dendritiques dérivées de monocytes (MoDC), macrophages (MoM) ou cellules myéloïdes suppressives. Selon le contexte physiopathologique, les cellules dérivées de cMo peuvent être bénéfiques ou néfastes. Dans l’infection par le cytomégalovirus murin (MCMV) leur rôle est controversé. Les divergences apparentes dans la littérature pourraient s’expliquer par l’utilisation de souches distinctes de souris ou de virus, l’étude d’organes différents, et la confusion existante sur l’identité et la plasticité de différents sous-types de cellules dérivées de cMo. Par des analyses transcriptionnelles, morphologiques et fonctionnelles, mon travail de thèse montre que, dans la rate de souris infectées par MCMV, les cMo se différencient simultanément en monocytes inflammatoires, MoDC et MoM. Cette différenciation est abrogée lorsque les cMo sont incapables de répondre aux interférons de type I (IFN-I), massivement produits dans les infections virales, qui boostent l’immunité intrinsèque antivirale et promeuvent l’activation des cellules immunitaires innées et adaptatives. La déplétion des cMo compromet le contrôle de l’infection et les réponses des cellules Natural Killer et des lymphocytes T CD8+. Mon travail montre que, dans les souris infectées par MCMV, les cMo se différencient, de manière dépendante de l’IFN-I, en trois sous-types cellulaires distincts qui contribuent à la fois au contrôle de la réplication virale et à la promotion de réponses immunitaires innées et adaptatives protectrices. / Classical monocytes (cMo) are mononuclear phagocytes mainly localized in the blood at steady state. Upon inflammation cMo migrate into inflamed tissues where they can differentiate in inflammatory monocytes, monocyte-derived dendritic cells (MoDC), monocyte-derived macrophages (MoM) or myeloid derived suppressor cells (MDSC). Depending on the physiopathological context, cMo-derived cells can be beneficial or detrimental. There are major discrepancies between published reports on the role of cMo during MCMV infection. This may be due to the use of distinct strains of mice or of virus, to the study of different organs, or to the confusion existing in the field regarding the identity and the plasticity of the different types of cMo-derived cells. During my PhD, by combining gene expression profiling, morphological, phenotypical and functional studies, I have shown that splenic cMo in MCMV-infected mice encompass cells that had simultaneously differentiated in vivo into either inflammatory monocytes, MoDC or MoM. This cMo differentiation is abrogated in the absence of responsiveness to type I interferons (IFN-I), which are highly produced during viral infections and boosting cell-intrinsic anti-viral immunity as well as promoting the activation of innate and adaptive immune responses. cMo depletion compromises the control of MCMV replication and the antiviral responses of Natural Killer cells and CD8+ T lymphocytes. My PhD work demonstrates that, in MCMV-infected mice, cMo differentiate, via an IFN-I-dependent pathway, into three distinct cell subtypes that are involved both in the control of MCMV replication and in the induction of protective innate and adaptive immunity.
|
85 |
Study of transcription factors involved in the upregulation of IL-10 expression in human CD4 T cells costimulated by T cell receptor and type I interferon / Etude chez l'homme des facteurs de transcriptions impliqués dans l'expression de l'IL-10 par les cellules T CD4 co-stimulées par le TCR et l'interferon de type IGovender, Umeshree 22 March 2016 (has links)
L'objectif de cette thèse a été d'étudier le mécanisme de la coopération entre les voies de signalisation du TCR et de l'interféron de type I qui est responsable de l'augmentation d'expression de la cytokine anti-inflammatoire IL-10 dans les lymphocytes T CD45RA+CD4+ humains. En utilisant une approche transcriptomique et d'interférence d'ARNm, j'ai observé que les voies IFN et TCR contrôlent différemment l'expression des STATs et que les BATFs sont induits par l'IFN et augmentés par la costimulation TCR/IFN. STAT3 a été identifié comme régulateur majeur de l'IL-10 et il est recruté à proximité d'un site de liaison pour BATF au locus IL-10. Sur la base d'essais de co-silencing des trois BATFs, nous avons proposé que les BATFs contrôlent l'amplitude de la réponse IFN en agissant comme facteurs de transcription " pionniers ". D'autres résultats obtenus par une étude transcriptomique d'environ 200 gènes, montrent des contributions uniques et combinées des voies TCR et de l'IFN dans le programme d'expression de gènes des lymphocytes CD45RA+CD4+ activés et indiquent que d'autres facteurs de transcription pourraient réguler l'IL-10. Cette étude est susceptible d'apporter une connaissance plus large de mécanismes impliqués dans la régulation croisée entre les voies TCR et IFN. / In CD4 T cells several transcription factors (TFs) regulate expression of the anti-inflammatory cytokine IL-10. I investigated how type I interferon (IFN) cytokines and T cell receptor (TCR) pathways cooperate toward early upregulation of IL-10 in human CD45RA+ CD4+ T cells. I interrogated the role of the STAT and BATF family by transciptomics and RNAi-mediated gene-silencing. IFN and TCR induced STAT2 and STAT3 expression, respectively, while the BATFs were induced early by IFN and further enhanced by TCR/IFN together. STAT3 was the major regulator of TCR- and TCR/IFN-mediated IL-10 while STAT2 contributed to the latter. STAT3 was recruited adjacent to a BATF-binding site at the IL-10 locus early in response to TCR/IFN. Co-silencing of the three BATFs led to a marked decrease in TCR- and TCR/IFN-mediated IL-10. We propose that the BATFs control the magnitude of the IFN response as pioneer factors. Additional results of transcriptional profiling of ± 200 genes, including TFs downstream of TCR and IFN and TFs involved in IL-10 regulation, revealed that TCR and IFN provide unique and combined contributions to the early CD45RA+CD4+ T cell gene activation program and identified other potential TFs involved in TCR/IFN-mediated IL-10 transcription. This study may provide broad mechanistic bases for crosstalk between the TCR- and IFN-pathways.
|
86 |
Distinct Behaviors of Infected and Bystander Dendritic Cells Following Exposure to Dengue Virus: A DissertationNightingale, Zachary Davis 17 September 2007 (has links)
Dengue viruses (DV) are re-emerging mosquito-borne pathogens for which four distinct lineages, grouped based on serology and referred to as serotypes 1-4 (DIV-D4V), have been described. Epidemiological data imply that re-infection with a "heterologous" serotype, i.e, one other than that to which the individual was originally exposed, enhances the risk for development of severe disease, dengue hemorrhagic fever (DHF). The hallmark of DHF is a transient capillary leakage syndrome of rapid onset, temporally associated with the resolution of fever and viremia. In its most grave form, the vascular permeability phenomenon in DHF may progress to dengue shock syndrome (DSS), which is often fatal in the absence of appropriate medical care.
Despite the fulminant nature of vascular leakage during DHF/DSS, this phenomenon does not appear to be due to direct cytopathic effects of DV. Rather, inappropriate reactivation and/or regulation of dengue-specific memory are the prevailing theorized (immunopathological) etiologies. Traditional vaccine development techniques have proven insufficient for DV, since any vaccine must offer complete protection against all four serotypes to avoid enhanced pathology on natural viral challenge. Understanding the underlying mechanisms that contribute to dengue disease, particularly the development of dengue-specific memory, is therefore of critical importance.
Dengue immunopathology and the specific aspects of immunological memory that determine disease severity are heatedly debated. Previous research in our lab has suggested that T cell responses contribute to the severity of dengue illness. Clinical data indicate enhanced immune activation in more grave cases of DV infection, and serotype cross-reactive T cells from multiple individuals are present after both primary and secondary dengue infections. However, little is known about the conditions under which T cells are primed and dengue-specific memory is generated.
Dendritic cells (DCs) are bone marrow-derived cells that play a central role in directing activity within the immune system. DCs shape quantitative and qualitative aspects of adaptive immunity, and therefore the intrinsic characteristics of host memory to a pathogen. DCs are essential in generating primary immune responses, due to their particular effectiveness in stimulating naïve T cells. DCs also play important roles in the reactivation of memory to an infectious agent, and as reservoirs for the dissemination of invading microorganisms. Exposure to pathogens or their products initiates a series of phenotypic and functional changes in DCs, termed maturation. DC maturation involves a coordinated response of immunomodulatory surface molecule elaboration and cytokine production, culminating in antigen presentation to, and co-stimulation of, T cells specific for the invading agent. The DC response is ostensibly tailored to facilitate effective elimination by regulating effective downstream interactions of the DC with T cells.
A number of viruses have evolved to infect DCs and alter their functional behavior, facilitating their own survival within the host, and the herd. DV readily infects DCs both in primary cell cultures and in vivo. However, reports on the effects of DV infection on DC maturation vary both with regard to some of the cytokines produced, and the phenotypes of infected versus bystander cells. Although DCs appear to be activated following DV exposure, responses on the single-cell level appear to depend on the infection state of the cell, hypothetically driven by intracellular virus-mediated effects. Therefore, downstream responses to these divergent populations - i.e., actively infected cells versus uninfected bystander cells - are likely to be the consequence of at least two modes of DC behavior. Because DCs play a pivotal role in adaptive immune development, and because the resulting memory response appears to be critical in affecting disease pathology after heterologous DV re-infection, I sought to explore the phenomena of DC maturation in response to dengue exposure, and to begin to answer the question of how active infection alters the functional capabilities of DCs. Notably, primary dengue infection is generally well-controlled with minimal pathology. Therefore, this thesis addresses the hypothesis that DV infection of DCs results in cellular activation and stimulation of antiviral immunity, despite virus-mediated alteration of DC maturation.
In order to address this hypothesis, I examined both DV infection-dependent and independent effects on DC functional responses including surface molecule regulation secretory activity, and CD4 T cell allostimulatory priming. DCs derived from human peripheral blood monocytes were readily infected with multiple strains of DV. DV infection of DCs derived from separate donors was dose-dependent, with substantial variability in DC susceptibility to infection. Exposure to live DV activated surface molecule expression in DCs, similar to the effects of defined maturation stimuli including a combination of TNF-α and IFN-α, or LPS. In addition, UV-inactivated DV induced expression of cell surface molecules, albeit to a lesser extent than did live virus demonstrating inherent stimulatory properties of DV particles. Using intracellular staining for DV envelope (E) protein, I detected increased surface molecule expression on both infected DCs and uninfected bystander DCs from the same culture, as compared to mock-infected DCs. These data indicate that activation was not prevented in cells undergoing active viral replication. However, the degree of surface molecule induction depended on the infection state of the cell. Infected DCs had enhanced PD-L2 and MHC II expression relative to uninfected bystander cells, while PD-L1, CD80, CD86, and MHC I expression were suppressed with active infection. Therefore, intracellular DV replication altered the process of cell surface molecule regulation within these cells.
DV infection of DCs also resulted in the secretion of a broad array of cytokines and chernokines. These included the antiviral cytokine IFN-α, inflammatory cytokines TNF-α, IL-6, and IL-1α, and inflammatory chemokines IP10, MCP-1, MIP-1α, and RANTES. DV infection did not induce DC production of the IL-12 p70 heterodimer, and secretion of the immunosuppressive cytokine IL-10 was low in most experiments. Similar to the results seen with surface molecule induction, UV inactivation of DV reduced, but did not eliminate, cytokine and chemokine responses. At the single-cell level, TNF-α and IP10 production profiles of infected DCs and uninfected bystander DCs were distinct. DV infection in DCs reduced production of IP10, but stimulated TNF-α as compared to uninfected bystander cells in the same culture. Blocking experiments demonstrated that IFN-α/β produced by DCs in response to infection actively inhibited viral protein expression and drove IP10, but not TNF-α, production.
DV infection of DCs did not consistently suppress DC stimulation of allogeneic CD4 T cell proliferation. In cases where infection enhanced DC stimulatory function, T cell proliferation was less pronounced than that induced by DCs activated with exogenous TNF-α plus IFN-α. Increasing multiplicity of infection (MOI) of DCs with DV resulted in increasing DC infection rates, but a statistically significant trend at the highest MOIs for decreased T cell alloproliferation, suggesting that direct infection of DCs reduces their CD4 T cell priming function. MOI-dependent reduction in DC stimulatory function depended on replication-competent virus. Increased MOIs during DV infection of DCs did not cause an elevation in detectable IL-10 in supernatants derived from T-DC co-cultures. In addition, increased DV MOI of DCs was not associated with increased levels of either IL-13 or IFN-γ in supernatants from T-DC co-culture, suggesting that actively infected DC do not skew CD4 T cells towards a specific Th phenotype. These data demonstrate that DV infection induces functional maturation of DCs that is modified by the presence of virus through both IFN-dependent and independent mechanisms. However, the allostimulatory phenotype of DCs was not universally enhanced, nor was it skewed towards antiviral (Th1)-type responses.
These data suggest a model whereby dengue infection during primary illness results in controlled immune stimulation through activation of bystander DCs, and the generation of mixed Th-type responses. Direct DV infection of DCs appears to attenuate activation of, and potentially clearance by, antiviral mechanisms. During secondary infection, reduced IP10 production and enhanced TNF-α secretion by infected cells coupled with MHC I downregulation and enhanced PD-L2 expression, would subvert both Th1 CD4 T cell recruitment and result in CD8 T cell suppression and death. Furthermore, DV-specific effects on DCs would allow for continued viral replication in the absence of effective clearance. These DV-mediated effects would modify T cell memory responses to infected DC, and potentially facilitate the expansion of pathologic T cell subsets. Contributing to this pathological cascade, antibody-dependent enhancement of infection in monocytic cells and macrophages would shift antigen presentation and cytokine production paradigms, increasing the risk of DHF.
|
87 |
Recognition of Neutrophil Extracellular Traps by the Cytosolic DNA Sensor cGASApel, Falko 11 February 2019 (has links)
Neutrophile Granulozyten produzieren „Neutrophil Extracellular Traps“ (NETs), ein mit antimikrobiellen Molekülen bestücktes Netzwerk aus Chromatinfasern, das während eines Zelltodprogramms namens „NETosis“ von den sterbenden Neutrophilen ausgestoßen wird. Ihre netzartige Struktur erlaubt es ihnen, eine weitere Verbreitung des Infektionserregers zu verhindern; zudem erzeugen sie eine hohe lokale Konzentration an toxischen Molekülen, die Mikroorganismen töten können. Unter normalen Bedingungen werden NETs von Nukleasen zerkleinert und anschließend von Makrophagen entfernt. Wenn dieser Aufräummechanismus gestört ist, aktivieren NETs das Immunsystem und führen zur Produktion von Autoantikörpern oder entzündungsfördernden Zytokinen. NETs werden mit einer wachsenden Liste von inflammatorischen und Autoimmunerkrankungen in Verbindung gebracht. Wie genau dabei NETs durch das Immunsystem erkannt werden, ist noch nicht bekannt.
In der vorliegenden Arbeit zeige ich, dass NETs durch den zytosolischen DNA Sensor „cyclic GMP-AMP synthase“ (cGAS) detektiert werden können und dass dadurch die Expression von Typ I Interferonen (TIIFN) induziert wird. Zu Beginn demonstriere ich, dass NETs durch rekombinantes cGAS erkannt werden und dass mit isolierten NETs stimulierte Immunzellen cGAS-abhängig TIIFN produzieren. Des Weiteren zeige ich, dass Neutrophile, die NETosis begehen, in Nachbarzellen ebenfalls cGAS-anhängig TIIFN induzieren können. Abschließend konnte ich diese Ergebnisse in einem in vivo Mausmodel für systemische NET-Produktion bestätigen. Die vorliegende Arbeit zeigt einen Mechanismus, wie NETs durch das Immunsystem erkannt werden und dadurch sowohl zur Entstehung als auch zur Progression von Krankheiten beitragen kann. Sie ermöglicht dementsprechend die Entwicklung neuer Interventionsstrategien, welche zur Heilung oder Linderung einer Vielzahl von Erkrankungen beitragen können. / The first line of cellular defense of the immune system are neutrophils. They are the most abundant white blood cell, which exert an array of antimicrobial effector functions. Neutrophils release neutrophil extracellular traps (NETs), a composite of chromatin and antimicrobial molecules, into the extracellular space during a form of regulated cell death called NETosis. Their net-like structure prevent further dissemination of the invader and establishes a high local concentration of toxic molecules that mediate pathogen killing. NETs provide a platform for undesired immune activation and contribute to the production of autoantibodies and pro-inflammatory cytokines. NETs are implicated in a growing list of inflammatory and autoimmune diseases, but the exact mechanism how NETs are recognized by the immune system is not fully understood.
In this study, I demonstrate that the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) senses NETs and induces the production of type I interferons (TIIFN). I first showed that NETs are recognized by recombinant cGAS and that cells treated with isolated NETs produce TIIFN in a cGAS dependent mechanism. Secondly, I demonstrate that neutrophils undergoing NETosis are taken up by neighboring immune cells and induce cGAS-dependent TIIFN expression. Lastly, I confirmed our in vitro results in a mouse model of systemic NET induction. Wildtype mice injected with Concanavalin A significantly upregulate the expression of interferon stimulated genes, while cGAS-/- mice and Cybb-/- mice, which are incapable of producing NETs, fail to induce this response.
|
88 |
Modulation de la voie de signalisation RIG-I/MAVS/IRFs dans les cellules épithéliales pulmonaires par les nanoparticules d'argent au cours de l'infection par le virus de la grippe / Silver nanoparticules disable mitochondrial antiviral immunity in lung epithelial cells by targeting Retinoic acid-Inducible Gene I/ Interferon Regulatory Factor signalling pathway during the influenza virus infectionDieu, Alexandra 30 November 2016 (has links)
Le virus Influenza de type A (IAV) est un agent pathogène hypervariable responsable d’une infection respiratoire aiguë appelée la grippe. L’hyper-variabilité de ce virus IAV lui permet d’être résistant aux traitements antiviraux et est responsable de l’apparition des épidémies de grippe saisonnières. Il est donc essentiel d’établir de nouveaux traitements curatifs « à spectre large » insensibles aux variations du virus de la grippe. Les nanoparticules d’argent (NPs-Ag) sont les nanomatériaux métalliques les plus présents dans le secteur de la santé. En effet, leurs propriétés physico-chimiques leur confèrent de nombreuses capacités telles que la modulation des réponses immunitaires au niveau du poumon et des effets antimicrobiens. Quelques études ont démontré le potentiel anti-IAV des NPs-Ag lorsqu’elles sont placées directement en contact avec le virus IAV. Cependant, aucune de ces études ne porte sur les effets des NPs-Ag dans un contexte physiologique constitué d’une infection grippale suivie d’un traitement. D’autre part, au jour d’aujourd’hui, on ignore les mécanismes d’action mis en place par ces NPs-Ag et les effets induits par l’interaction de ces NPs-Ag avec le système immunitaire dans le contexte d’une infection par l’IAV. Dans ce travail de thèse, l’objectif est d’identifier les mécanismes d’action mis en place par les NPs-Ag au cours de l’infection par le virus IAV et également d’identifier si ces NPs-Ag pourraient être utilisées comme traitement curatif.Dans ce manuscrit de thèse, nous avons pu identifier, dans les cellules épithéliales pulmonaires, un nouveau mécanisme de modulation des NPs-Ag sur la réponse anti-IAV précoce médiée, entre autres, par la sécrétion de la chimiokine CCL5 et de l’IFN-. En effet, les NPs-Ag ciblent spécifiquement la voie de signalisation RIG-I-MAVS-IRFs, activée suite à l’infection par l’IAV et qui est liée à la mitochondrie. Ces NPs-Ag ciblent également en parallèle, à la fois le réseau mitochondrial et le flux autophagique. L’ensemble de ces effets conduit à une redistribution des facteurs de régulation des IFNs (IRFs), les empêchant potentiellement d’interagir avec d’autres facteurs de la voie de signalisation RIG-I/MAVS, ce qui pourrait expliquer l’inhibition de la sécrétion de CCL5 et de l’IFN-b, induite par le virus influenza de type A, par les nanoparticules d’argent. / The Influenza A virus (IAV) is a hyper-variable pathogen causing acute respiratory infection known as Flu. Its hyper-variability allows it to be resistant to antiviral treatment. It is therefore essential to establish new curative "broad spectrum" treatments. Silver nanoparticles (NPs-Ag) are the most metallic nanomaterials present in the health sector and are potent microbicidal agents with major concerns about their use on humans because of their toxicity. Some studies have shown the antiviral effect of NPs-Ag against IAV, but not in a physiological context of Flu. Moreover, the antiviral and immunomodulation mechanisms of NPs-Ag during infection by IAV is still unclear. Here, we show that intra-tracheal administration of AgNPs to influenza infected mice or treatment of human lung epithelial cells with AgNPs resulted in exacerbated inflammation, reduced viral clearance and enhanced mortality associated to different regulation of KC (pro-inflammatory cytokine functionally homologue to human IL-8) and CCL-5 (interferon-related cytokine) in the lung. In this PhD thesis, we identified in lung epithelial cells, a new mechanism explaining dampening of mitochondrial antiviral immunity by AgNPs through alteration of the mitochondrial network leading to redistribution of IFNs regulatory factors 7, which prevents nuclear translocation of these factors. Finally, AgNPs increased LC3 positive vesicles and p62 expression, indicating that AgNPs modify the autophagy flux in lung epithelial cells. Thus, the NPs-Ag Ag inhibited the early anti-IAV response by specifically targeting the RIG-I/MAVS/IRFs signaling pathway resulting in down- regulation of CCL-5 and IFN-ß expression induced by IAV.
|
89 |
Role of NOX2 and DUOX2 in the antiviral airway responsesFink, Karin 01 1900 (has links)
Les voies respiratoires sont exposées à une panoplie de pathogènes. Lors d’une infection virale respiratoire les cellules qui recouvrent ces voies participent activement à la défense immunitaire contre ces derniers en limitant la propagation du virus et en engendrant une réponse proinflammatoire. Un évènement clef dans ces processus est l’activation des facteurs de transcription, notamment le « Nuclear Factor » (NF)-κB et l’« Interferon Regulatory Factor -3 » (IRF-3), qui régulent l’expression des cytokines antivirales et proinflammatoires.
Des données récentes démontrent que les dérivés actifs de l’oxygène (ROS), produits suite à une infection virale, ont la capacité de réguler les voies de signalisation enclenchées par NF-κB et IRF-3. Une source importante de ROS est la famille de NADPH oxydases (NOX), qui contient les membres NOX1-5 et DUOX1 et 2. L’objectif de notre étude était d’identifier la NOX qui régule les mécanismes antiviraux et proinflammatoires suite à l’infection avec le virus respiratoire syncytial (RSV), qui cause des complications respiratoires majeures, et le virus Sendai (SeV), un modèle viral non-pathogène.
Nos travaux ont permis d’identifier que NOX2 est une molécule clef dans la réponse proinflammatoire suite à l’infection virale. Plus spécifiquement, NOX2 est important pour l’activation de NF-κB et la sécrétion des cytokines régulées par ce dernier. De plus, nous avons observé une forte augmentation de la présence de DUOX2 dans les cellules de voies respiratoires humaines infectées par SeV. Une étude plus approfondie nous a permis de caractériser qu’une synergie entre deux cytokines secrétées lors de l’infection, soit l’interféron (IFN)β et le TNFα est responsable de l’induction de DUOX2. Nous avons aussi découvert que DUOX2 confère une activité antivirale et est nécessaire pour maintenir les taux des cytokines antivirales tardives IFNβ et IFNλ.
Lors d’une infection avec RSV, l’induction de DUOX2 n’est pas détectable. Nous avons mis en évidence que RSV interfère avec l’expression de DUOX2 ce qui pourrait suggérer sa pathogénicité.
En conclusion, nos travaux démontrent pour la première fois une implication spécifique des NADPH oxydase NOX2 et DUOX suite aux infections virales respiratoires. / The mucosal linings of the airways are constantly exposed to an array of microbial pathogens. During the course of respiratory viral infection, Airway epithelial cells (AEC) actively participate in the innate antiviral immune response by limiting the spread of respiratory viruses and by fostering a proinflammatory environment that attracts and activates players of the immune system. A key step in the establishment of the antiviral and proinflammatory state is the activation of Transcription Factors (TFs), such as Nuclear Factor (NF)-κB and Interferon Regulatory Factor 3 (IRF-3), which regulate the expression of antiviral and proinflammatory cytokines.
For the efficient functioning of these events, the signaling pathways involved underlie strict regulatory mechanisms. Recent data suggest that Reactive Oxygen Species (ROS), which are produced upon viral infection, are able to regulate these intracellular signaling pathways. One important source of ROS is the NADPH oxidase (NOX) family of enzymes, which is composed of NOX1-5 and Dual Oxidase (DUOX) 1 and DUOX2. The aim of our study was to identify the NADPH oxidase(s) that regulate(s) antiviral and proinflammatory mechanisms following infection of AEC with Respiratory syncytial virus (RSV), which causes major human lower respiratory tract complications, and Sendai virus (SeV), a non pathogenic virus.
During the course of our studies we identified that NOX2 is a key molecule in the early proinflammatory response to RSV and SeV infection. We demonstrate that NOX2 is necessary for the activation of NF-κB. Consequently, NOX2 impacts on the proinflammatory cytokine secretion upon AEC infection. Further, we observed that expression of the ROS-generating NADPH oxidase DUOX2 is strongly increased following infection of AEC with SeV. We identified that DUOX2 induction requires the synergistic stimulation by IFNβ and TNFα. Importantly, DUOX2 exhibited ROS-dependent antiviral action. We identified that DUOX2 was necessary for sustaining the levels of late antiviral cytokines IFNβ and IFNλ.
When AEC were infected with RSV, DUOX2 expression was barely detectable. Our data reveal that RSV has developed an evasion mechanism to counteract DUOX2 induction likely contributing to RSV pathogenicity.
In conclusion, our work demonstrates for the first time the specific implication of NOX2 and DUOX2 in the antiviral and proinflammatory response to respiratory virus infection.
|
90 |
Pathogenesis of hantavirus infection in the endothelial cell modelKraus, Annette Alexandra 20 October 2004 (has links)
Hantaviren sind wichtige menschliche Krankheitserreger und können das Hämorrhagische Fieber mit renalem Syndrome (HFRS) auslösen, welches sich durch endotheliale Dysfunktion kennzeichnet. Pathogene und nicht-pathogene Hantaviren replizieren sich in Endothelzellen, ohne zytopathische Effekte auszulösen. Dies legt nahe, dass immunpathologische Mechanismen eine entscheidende Rolle in der Pathogenese spielen. Wir haben die antivirale Antwort nach Infektion mit dem pathogenen Hantaan Virus (HTNV) sowie mit dem weniger pathogenen Tula Virus (TULV) in humanen Endothelzellen (HUVEC) verglichen. Die mit HTNV und auch die mit TULV infizierten Zellen zeigten eine erhöhte Expression von Antigen-präsentierenden Molekülen. Hierbei induzierte TULV die Expression von HLA Klasse I-Molekülen noch effizienter. HTNV sorgte für die Induktion von Interferon (IFN)-???während dieses Zytokin im Überstand von TULV-infizierten HUVEC kaum nachzuweisen war. Trotzdem konnte die Hochregulation von HLA Klasse I-Molekülen auf HTNV- und TULV-infizierten Zellen durch anti-IFN-?-Antikörper blockiert werden. Interessanterweise wurde das antiviral wirksame MxA-Protein, welches die virale Replikation hemmt, bereits 16 Stunden nach einer Infektion mit TULV induziert. Im Gegensatz dazu war MxA in HTNV-infizierten Zellen erst nach 48 Stunden der Infektion nachzuweisen. Der Kinetik der MxA-Expression entsprechend, replizierte sich TULV nur sehr schwach in HUVEC, wohingegen HTNV-infizierte Zellen hohe Virustiter aufwiesen, die nach 48 Stunden der Infektion wieder zurückgingen. Beide Hantavirus-Spezies waren jedoch gleichermaßen effizient in der Lage, sich in Vero E6-Zellen zu replizieren, denen die IFN-induzierte MxA-Antwort fehlt. Die verzögerte Induktion des MxA nach einer Infektion der HUVEC mit HTNV, könnte die Virusausbreitung ermöglichen und mit zur Pathogenese des HFRS beitragen. Das Risiko, sich während der Arbeit im Forschungslabor versehentlich mit Hantaviren zu infizieren, macht spezielle Sicherheitsmaßnahmen zwingend erforderlich. Die Wirkung von chemischen oder physikalischen Inaktivierungsmethoden wurde an HTNV-infizierten Proben untersucht. Die beschriebenen Maßnahmen zur Virus-Desinfektion sind geeignet, eine sichere Handhabung der Proben zu gewährleisten. / Hantaviruses represent important human pathogens and can induce hemorrhagic fever with renal syndrome (HFRS), which is characterised by endothelial dysfunction. Both pathogenic and nonpathogenic hantaviruses replicate without causing any apparent cytopathic effect suggesting that immunopathological mechanisms play an important role in pathogenesis. We compared the antiviral response triggered by Hantaan virus (HTNV), a pathogenic hantavirus associated with HFRS, and Tula virus (TULV), a rather nonpathogenic hantavirus, in human umbilical vein endothelial cells (HUVEC). Both HTNV- and TULV-infected cells showed increased levels of molecules involved in antigen presentation. However, TULV-infected HUVEC more rapidly upregulated HLA class I molecules. Interestingly, HTNV clearly induced the production of interferon (IFN)-( whereas expression of this cytokine was barely detectable in the supernatant or in extracts from TULV-infected HUVEC. Nevertheless, upregulation of HLA class I on both TULV- and HTNV-infected cells could be blocked by neutralising anti-IFN-( antibodies. Most strikingly, antiviral MxA protein, which interferes with hantavirus replication, was induced already 16 h after infection with TULV. In contrast, HTNV-infected HUVEC showed no expression of MxA until 48 h postinfection. In accordance with the kinetics of MxA expression TULV only inefficiently replicated in HUVEC whereas HTNV-infected cells produced high titers of virus particles that decreased 48 h postinfection. Both hantavirus species, however, could replicate equally well in Vero E6 cells which lack an IFN-induced MxA response. Thus, a delayed induction of antiviral MxA in endothelial cells after infection with HTNV could allow viral dissemination and contribute to the pathogenesis leading to HFRS. The potential risk of accidental infection by hantaviruses in a clinical or research laboratory necessitates special precautionary measures. To study the elimination of hantavirus infectivity, the effects of different chemical and physical inactivation and depletion procedures were investigated on HTNV-containing materials. The virus inactivation and depletion methods described herein are suitable to prepare non-infectious samples for further use in immunological, virological and cell biological assays.
|
Page generated in 0.1363 seconds