Spelling suggestions: "subject:"intermetallic"" "subject:"intermetallics""
71 |
Microstructure and texture development during high-strain torsion of NiAl / Mikrostruktur- und Texturentwickung während der Torsionsverformung von NiAlKlöden, Burghardt 20 January 2007 (has links) (PDF)
In this study polycrystalline NiAl has been subjected to torsion deformation. Torsion has been used because of its characteristics. By this deformation mode high shear strains (gamma = 18 in this study) can be imposed on the sample. The deformation conditions are well-defined because of the local deformation mode, which is simple shear. Due to the monoclinic sample symmetry one half of the pole figure is needed in order to obtain the complete texture information, which is more than is needed e.g. by extrusion or rolling. Therefore, texture analysis might be more sensitive with respect to texture components. Furthermore, torsion deformation is characterized by being inhomogeneous in terms of the amount of shear strain and shear strain rate along the sample radius. The shear strain gradient makes the analysis of different stages of deformation on the same sample (i.e. under the same deformation conditions) possible. Another characteristic being special for torsion is that samples change their length, although no axial stress is applied. This effect is known as Swift effect and will be analyzed in detail. The deformation, microstructure and texture development subject to the shear strain are studied by different techniques (Electron Back-Scatter and High Energy Synchrotron Radiation). Beside the development of microstructure and texture with shear strain, the effect of an initial texture as well as the deformation temperature on the development of texture and microstructure constitute an important part of this study. Therefore, samples with three different initial textures were deformed in the temperature range T = 700K – 1300K. The development of the microstructure is characterized by two different regimes depending on the deformation temperature T. For T up to 1000K, continuous dynamic recrystallization (CDRX) takes place. This mechanism leads to the deformation-induced dislocations forming low angle grain boundaries (LAGBs) or being incorporated into them and the successive transformation of these boundaries into high angle grain boundaries (HAGBs) by a further increase of their misorientation. The predictions of this model were compared with the experimental results. The shear stress – shear strain curves are characterized by a peak at low strains, which is followed by softening and a steady state at high strains. This condition is fulfilled for a number of samples, but especially <111> oriented samples do not show a softening stage at low temperatures. Grain refinement takes place for all samples and the average grain size decreases with temperature. The predicted LAGB decrease is in best agreement with the experiments at the lowest temperatures (T = 700K and 800K). Deviations from the model can be explained by the temperature dependence of the grain boundary mobility. For temperatures T > 1000K, discontinuous dynamic recrystallization (DDRX) occurs, by which new grains form by nucleation and subsequent growth. The texture is characterized by two components, {100}<100> (cube, C) and {110}<100> (Goss, G). The intensity of G increases with temperature, while that of C decreases independent of the initial orientation. Both components have their maximum deviated about the 1 axis. The deviation is larger for grains containing the C component and decreases with temperature. Grains containing the G component have the smaller deviation, which decreases with temperature and strain. Texture simulations based on the full constraint Taylor model under the assumption of {110}<100> and {110}<110> slip were done with the experimental <110> and <111> fibres as well as a theoretical <100> fibre and a {100}<100> single orientation (ideal as well as rotated about the torsion axis). The G component is predicted by the simulations and is therefore a deformation texture. However the C component does not appear in the simulation. It therefore must originate by different mechanisms. For the non-<100> oriented samples, possibly nucleation is responsible for the formation of C oriented nuclei. Simulations with single orientations lead to the conclusion, that the ideal C orientation rotates about the 1 axis, while other C orientations, which are rotated about the torsion axis, increasingly converge towards the G component with strain. A single G orientation on the other hand is stable against such a rotation and is therefore the most likely steady state texture. Based on these results it is proposed, that ideally C oriented nuclei rotate until an orientation is reached into which they grow. These new grains are further rotated up to a critical angle, at which a part of them disappears either by adjacent grains or new C oriented nuclei. The recrystallization texture for T > 1000K is most likely the C component as well. Torsional creep of NiAl is characterized by a stress exponent, which depends on temperature and an activation energy, which is stress dependent. A model incorporating both dependencies is proposed and applied to the creep data. It is shown that these equations are able to describe the experimental findings. Thus creep of NiAl based on this model is dominated by non-diffusional processes such as cross slip of <100> screw dislocations for T 1000K. For T > 1000K the stress exponent and the activation energy are in a region, which according to previous reports is rather dominated by dislocation-climb controlled creep. The Swift effect, due to which samples change their axial dimension during torsion without applied axial stress, is observed for NiAl. It is strongly related to the texture development and in the case of NiAl the C component is identified as being responsible for shortening, whereas the G component leads to lengthening as long as it is not aligned with the shear system. Both tendencies can be explained based on the active slip systems. Simulations fail to predict the experimental observation, because the C component is not present. HESR and EBSD were compared with respect to local texture measurements. It was concluded depending on the average grain size HESR has an advantage in terms of grain statistics. For DDRX samples however, both methods are limited. Local texture inhomogeneities can be better detected using EBSD, whereas for an overall local texture information HESR is better suited.
|
72 |
Gallium-based Solid Liquid Interdiffusion Bonding of Semiconductor Substrates near room temperature / Gallium basiertes Solid Liquid Inter-Diffusion Fügen von Halbleitersubstraten nahe RaumtemperaturFroemel, Joerg 11 August 2015 (has links) (PDF)
Within this work, bonding technologies based upon the alloying of gallium with other metals to assemble semiconductor substrates for the possible application of encapsulation and 3D-integration of micro systems and devices have been researched. Motivated by the important demand to achieve low temperature processes, methods with bonding temperatures below 200°C were investigated. Necessary technologies like the deposition of gallium as thin film and subsequent micro structuring have been developed. The alloying between gallium and gold as well as gallium and copper was analysed in detail. A good correlation between the elemental composition of the interface and its mechanical and electrical parameters was established, particularly regarding its thermal dependence. It emerged that in case of combination Au/Ga Kirkendall void are extensively formed whereby serious problems with mechanical strength as well as hermeticity emerged. In case of Cu/Ga, this problem is existent to a much lesser degree; it was possible to create hermetic tight bonds. For the necessary pre-treatment of copper, several methods could be successfully demonstrated. In summary, the development of bonding technologies based upon metallic interfaces that exhibit electric conductance, high strength and hermetic seal could be demonstrated. / In dieser Arbeit werden Bondverfahren zum Fügen von Halbleitersubstraten für mögliche Anwendungen für die Verkapselung und 3D-Integration von Bauelementen der Mikrosystemtechnik erforscht, die auf der Legierungsbildung von Gallium mit anderen Metallen beruhen. Motiviert von der zentralen Anforderung an niedrige Prozesstemperaturen wurden Methoden mit Fügetemperaturen deutlich unter 200°C untersucht. Dafür nötige Technologien zum Abscheiden von Gallium als Dünnschicht und das anschließende Mikrostrukturieren wurden entwickelt. Die Legierungsbildung zwischen Gallium und Gold sowie zwischen Gallium und Kupfer wurde im experimentell im Detail analysiert. Dabei konnte eine gute Korrelation zwischen der stofflichen Zusammensetzung und den mechanischen bzw. elektrischen Parametern der Zwischenschicht, auch und insbesondere hinsichtlich ihrer Temperaturabhängigkeit gefunden werden. Es stellte sich heraus, dass im Falle der Kombination Au/Ga Kirkendall Hohlräume in einer Menge entstehen, die zu erheblichen Problemen bezüglich mechanischer Festigkeit und Dichtheit der Fügeverbindung führen. Bei der Materialkombination Cu/Ga hingegen trat dieses Problem nur begrenzt auf; es war möglich hermetisch dichte Verbindungen herzustellen. Für die bei Kupfer nötige Vorbehandlung wurden mehrere Methoden erfolgreich getestet. Insgesamt konnte die Entwicklung von Fügetechnologien gezeigt werden, die metallische Zwischenschichten verwenden, elektrisch leitfähig sind, sehr gute Festigkeiten aufweisen und hermetisch dicht sind.
|
73 |
Metastabile intermetallische Phasen durch Niedertemperaturtransformationen von SubhalogenidenKaiser, Martin 06 December 2014 (has links) (PDF)
Maßgeschneiderte Eigenschaften von Funktionsmaterialien sind ein fundamentaler Aspekt für die Technologien unserer Gesellschaft und deren Weiterentwicklung. In diesem Zusammenhang bilden die Modifizierung bestehender Synthesestrategien und die Entwicklung neuartiger Synthesewege die grundlegende Voraussetzung für Innovation. Der Zugang zu den benötigten Materialien wird in den bis dato angewandten Synthesemethoden häufig durch die thermodynamische Stabilität einer Verbindung begrenzt.
Zielstellung der vorliegenden Arbeit ist es, eine Strategie zur postsynthetischen Umwandlung und Modifizierung bereits vorhandener komplex strukturierter Feststoffe anzuwenden, durch die es gelingt, Zugang zu weiteren Materialien zu erhalten. Als Feststoffprekursoren wurden hierfür verschiedene ternäre und quaternäre, bismutreiche Subhalogenide gewählt, die bei niedrigen Temperaturen bis 70 °C mit dem Reduktionsmittel n-Butyllithium (nBuLi) zur Reaktion gebracht wurden, um diese in topochemischen Reaktionen zu neuen intermetallischen Phasen umzuwandeln.
Die Bismutsubiodide Bi12Ni4I3, Bi8Ni8SI2 und Bi28Ni25I5 enthalten intermetallische Stäbe, deren Querschnitte nur vier bis elf Atome umfassen, was effektiven Durchmessern von ca. 0,8 bis 1,2 nm entspricht. Zudem befinden sich Iodidionen in den Kristallstrukturen, die die metallischen Stäbe voneinander separieren. Die reduktiven Behandlungen dieser Feststoffprekursoren führten jeweils zur quantitativen Deinterkalation der Iodidionen und dadurch zur Zusammenlagerung der metallischen Stäbe zu kompakten Stabpackungen. In Pseudomorphosen wurden zum einen Kristalle erhalten, die eine Vielzahl parallel angeordneter Bi3Ni-Faserbündel enthielten, zum anderen bildeten sich die bisher unbekannten, kristallinen Phasen Bi8Ni8S und Bi28Ni25.
Während bei den Umwandlungen die strukturellen Charakteristiken der intermetallischen Teilstrukturen der Bismutsubiodide auf die reduzierten Phasen übertragen werden, ändern sich die elektronischen Situationen mit der Variation der Elektronenzahl. Dies lässt sich besonders gut am Beispiel der Umwandlung des Bismutsubiodids Bi28Ni25I5 in die reduzierte Phase Bi28Ni25 verdeutlichen.
Die elektronische Struktur ändert sich durch die Reduktion kaum, sodass die zusätzlichen Elektronen im intermetallischen Teil antibindende Zustände füllen. Das intermetallische Bindungssystem verhält sich dabei wie ein strukturell rigides Elektronenreservoir und toleriert die Änderung der Elektronenzahl bei der topochemischen Umwandlung zu Bi28Ni25. Mit der elektronisch ungünstigen Situation geht die Metastabilität der reduzierten intermetallischen Phase einher.
Die reduktive Behandlung des Bismutsubiodids Bi13Pt3I7 führte nicht nur zur selektiven topochemischen Deinterkalation von Iodidionen sondern zusätzlich zum Ausbau von Bismutatomen, wodurch die in Bi13Pt3I7 vorhandenen Iodidobismutatschichten in Iodidschichten umgewandelt werden. Die intermetallischen Schichten der Ausgangsverbindung bleiben erhalten und nähern sich an, sodass das bis dato unbekannte Bismutsubiodid Bi12Pt3I5 resultiert. Das topotaktische Fortbestehen der intermetallischen Schichten zeigt sich dabei an intermediär gebildeten Kompositkristallen aus Mutter- und Tochterverbindung.
Durch den Abbau der isolierenden Iodidobismutat¬schichten erfolgen die elektronische Kopplung der intermetallischen Schichten und der Übergang des zwei-dimensionalen Metalls Bi13Pt3I7 in das dreidimensionale Metall Bi12Pt3I5. Die topochemische Reaktion wird durch eine Reaktionstemperatur von 45 °C limitiert: Bei erhöhter Reaktionstemperatur bis 70 °C tritt eine Umstrukturierung unter weiterem Iod- und Bismutausbau auf, und die metastabile, binäre Phase Bi2Pt(hP9) wird aufgebaut.
Die dichte Kristallstruktur des erstmals dargestellten Bismutsubchlorids Bi12Rh3Cl2 baut sich aus einem intermetallischen [Bi4Rh]-Netzwerk auf, in dessen Kanäle Chloridionen eingeschlossen sind. Im Zuge der Niedertemperaturreaktion mit nBuLi erfolgt ein unerwarteter quantitativer Austausch der Chloridionen gegen Bismutatome, der die Kristalle des Subchlorids in Kristalle der binären Verbindung Bi14Rh3 überführt. Die kristallchemische Analyse zeigte, dass den [RhBi8/2]-Antiprismen des [Bi4Rh]-Netzwerks die Funktion von Scharnieren zukommt, welche eine Aufweitung des intermetallischen Netzwerks ermöglichen.
So entstehen breite Diffusionspfade, und es resultiert ein dreidimensionales Transportsystem für den enormen Massetransport durch den Kristall. Bei der Austauschreaktion werden die zuvor unabhängig voneinander leitenden intermetallischen Stränge kantenverknüpfter [RhBi8/2]-Würfel elektrisch kontaktiert. Die physikalischen Eigenschaften ändern sich dabei maßgeblich: Aus dem eingeschränkten Metall Bi12Rh3Cl2 entsteht der metastabile Supraleiter Bi14Rh3.
Mit zunehmender Kenntnis über die Strategien zur postsynthetischen Umwandlung und Modifizierung komplexer Strukturen können diese grundsätzlich dazu beitragen, Materialien mit technologisch relevanten Eigenschaften darzustellen.
Insbesondere Phasen, die nur bei hohen Temperaturen thermodynamische Stabilität erlangen oder sogar unter allen Bedingungen metastabil vorliegen, werden durch die geschickte Wahl der Synthesestrategie zugänglich. Möglicherweise werden mit dem wachsenden Wissen zu neuartigen Synthesestrategien die chemischen und physikalischen Eigenschaften eines Materials auf diesem Weg gezielt veränderbar. Insbesondere die herausragenden Stabilitäten der nanoskaligen, intermetallischen Stäbe werfen zudem die Frage auf, ob diese durch die Reaktion mit oberflächenaktiven Reagenzien vereinzelt werden können, um neuartige nanoskalige Leiter herzustellen.
|
74 |
Metastabile intermetallische Phasen durch Niedertemperaturtransformationen von SubhalogenidenKaiser, Martin 25 November 2014 (has links)
Maßgeschneiderte Eigenschaften von Funktionsmaterialien sind ein fundamentaler Aspekt für die Technologien unserer Gesellschaft und deren Weiterentwicklung. In diesem Zusammenhang bilden die Modifizierung bestehender Synthesestrategien und die Entwicklung neuartiger Synthesewege die grundlegende Voraussetzung für Innovation. Der Zugang zu den benötigten Materialien wird in den bis dato angewandten Synthesemethoden häufig durch die thermodynamische Stabilität einer Verbindung begrenzt.
Zielstellung der vorliegenden Arbeit ist es, eine Strategie zur postsynthetischen Umwandlung und Modifizierung bereits vorhandener komplex strukturierter Feststoffe anzuwenden, durch die es gelingt, Zugang zu weiteren Materialien zu erhalten. Als Feststoffprekursoren wurden hierfür verschiedene ternäre und quaternäre, bismutreiche Subhalogenide gewählt, die bei niedrigen Temperaturen bis 70 °C mit dem Reduktionsmittel n-Butyllithium (nBuLi) zur Reaktion gebracht wurden, um diese in topochemischen Reaktionen zu neuen intermetallischen Phasen umzuwandeln.
Die Bismutsubiodide Bi12Ni4I3, Bi8Ni8SI2 und Bi28Ni25I5 enthalten intermetallische Stäbe, deren Querschnitte nur vier bis elf Atome umfassen, was effektiven Durchmessern von ca. 0,8 bis 1,2 nm entspricht. Zudem befinden sich Iodidionen in den Kristallstrukturen, die die metallischen Stäbe voneinander separieren. Die reduktiven Behandlungen dieser Feststoffprekursoren führten jeweils zur quantitativen Deinterkalation der Iodidionen und dadurch zur Zusammenlagerung der metallischen Stäbe zu kompakten Stabpackungen. In Pseudomorphosen wurden zum einen Kristalle erhalten, die eine Vielzahl parallel angeordneter Bi3Ni-Faserbündel enthielten, zum anderen bildeten sich die bisher unbekannten, kristallinen Phasen Bi8Ni8S und Bi28Ni25.
Während bei den Umwandlungen die strukturellen Charakteristiken der intermetallischen Teilstrukturen der Bismutsubiodide auf die reduzierten Phasen übertragen werden, ändern sich die elektronischen Situationen mit der Variation der Elektronenzahl. Dies lässt sich besonders gut am Beispiel der Umwandlung des Bismutsubiodids Bi28Ni25I5 in die reduzierte Phase Bi28Ni25 verdeutlichen.
Die elektronische Struktur ändert sich durch die Reduktion kaum, sodass die zusätzlichen Elektronen im intermetallischen Teil antibindende Zustände füllen. Das intermetallische Bindungssystem verhält sich dabei wie ein strukturell rigides Elektronenreservoir und toleriert die Änderung der Elektronenzahl bei der topochemischen Umwandlung zu Bi28Ni25. Mit der elektronisch ungünstigen Situation geht die Metastabilität der reduzierten intermetallischen Phase einher.
Die reduktive Behandlung des Bismutsubiodids Bi13Pt3I7 führte nicht nur zur selektiven topochemischen Deinterkalation von Iodidionen sondern zusätzlich zum Ausbau von Bismutatomen, wodurch die in Bi13Pt3I7 vorhandenen Iodidobismutatschichten in Iodidschichten umgewandelt werden. Die intermetallischen Schichten der Ausgangsverbindung bleiben erhalten und nähern sich an, sodass das bis dato unbekannte Bismutsubiodid Bi12Pt3I5 resultiert. Das topotaktische Fortbestehen der intermetallischen Schichten zeigt sich dabei an intermediär gebildeten Kompositkristallen aus Mutter- und Tochterverbindung.
Durch den Abbau der isolierenden Iodidobismutat¬schichten erfolgen die elektronische Kopplung der intermetallischen Schichten und der Übergang des zwei-dimensionalen Metalls Bi13Pt3I7 in das dreidimensionale Metall Bi12Pt3I5. Die topochemische Reaktion wird durch eine Reaktionstemperatur von 45 °C limitiert: Bei erhöhter Reaktionstemperatur bis 70 °C tritt eine Umstrukturierung unter weiterem Iod- und Bismutausbau auf, und die metastabile, binäre Phase Bi2Pt(hP9) wird aufgebaut.
Die dichte Kristallstruktur des erstmals dargestellten Bismutsubchlorids Bi12Rh3Cl2 baut sich aus einem intermetallischen [Bi4Rh]-Netzwerk auf, in dessen Kanäle Chloridionen eingeschlossen sind. Im Zuge der Niedertemperaturreaktion mit nBuLi erfolgt ein unerwarteter quantitativer Austausch der Chloridionen gegen Bismutatome, der die Kristalle des Subchlorids in Kristalle der binären Verbindung Bi14Rh3 überführt. Die kristallchemische Analyse zeigte, dass den [RhBi8/2]-Antiprismen des [Bi4Rh]-Netzwerks die Funktion von Scharnieren zukommt, welche eine Aufweitung des intermetallischen Netzwerks ermöglichen.
So entstehen breite Diffusionspfade, und es resultiert ein dreidimensionales Transportsystem für den enormen Massetransport durch den Kristall. Bei der Austauschreaktion werden die zuvor unabhängig voneinander leitenden intermetallischen Stränge kantenverknüpfter [RhBi8/2]-Würfel elektrisch kontaktiert. Die physikalischen Eigenschaften ändern sich dabei maßgeblich: Aus dem eingeschränkten Metall Bi12Rh3Cl2 entsteht der metastabile Supraleiter Bi14Rh3.
Mit zunehmender Kenntnis über die Strategien zur postsynthetischen Umwandlung und Modifizierung komplexer Strukturen können diese grundsätzlich dazu beitragen, Materialien mit technologisch relevanten Eigenschaften darzustellen.
Insbesondere Phasen, die nur bei hohen Temperaturen thermodynamische Stabilität erlangen oder sogar unter allen Bedingungen metastabil vorliegen, werden durch die geschickte Wahl der Synthesestrategie zugänglich. Möglicherweise werden mit dem wachsenden Wissen zu neuartigen Synthesestrategien die chemischen und physikalischen Eigenschaften eines Materials auf diesem Weg gezielt veränderbar. Insbesondere die herausragenden Stabilitäten der nanoskaligen, intermetallischen Stäbe werfen zudem die Frage auf, ob diese durch die Reaktion mit oberflächenaktiven Reagenzien vereinzelt werden können, um neuartige nanoskalige Leiter herzustellen.:1 Motivation und Forschungsstand
2 Experimentelle Daten und Charakterisierungsmethoden
3 Dehalogenierung von Bismutsubhalogeniden mit eindimensionaler intermetallischer Teilstruktur
4 Topochemie an Bismutsubhalogeniden mit zweidimensionaler intermetallischer Teilstruktur und deren Niedertemperaturzersetzung
5 Topochemische Austauschreaktion im dreidimensionalen intermetallischen Netzwerk von Bismutsubhalogeniden
6 Zusammenfassung und Ausblick
Quellenverzeichnis
Abkürzungsverzeichnis
Abbildungsverzeichnis
Tabellenverzeichnis
Publikationen
Anhang
Versicherung
Erklärung
|
75 |
On the electronic phase diagram of Ba1-xKx(Fe1-yCoy)2As2 and EuFe2(As1-xPx)2 superconductors: A local probe study using Mössbauer spectroscopy and Muon Spin RelaxationGoltz, Til 28 October 2015 (has links)
In this thesis, I study the electronic and structural phase diagrams of the superconducting 122 iron pnictides systems Ba1-xKx(Fe1-yCoy)2As2 and EuFe2(As1-xPx)2 by means of the local probe techniques 57Fe Mössbauer spectroscopy (MS) and muon spin relaxation (muSR). For both isovalent substitution strategies - Co/K for Fe/Ba and P for As, respectively - the antiferromagnetic Fe ordering and orthorhombic distortion of the parent compounds BaFe2As2 and EuFe2As2 are subsequently suppressed with increasing chemical substitution and superconductivity arises, once long-range and coherent Fe magnetic order is sufficiently but not entirely suppressed.
For Ba1-xKx(Fe1-yCoy)2As2 in the charge compensated state (x/2=y), a remarkably similar suppression of both, the orthorhombic distortion and Fe magnetic ordering, as a function of increasing substitution is observed and a linear relationship between the structural and the magnetic order parameter is found. Superconductivity is evidenced at intermediate substitution with a maximum Tsc of 15 K coexisting with static magnetic order on a microscopic length scale. The appearance of superconductivity within the antiferromagnetic state can by explained by the introduction of disorder due to nonmagnetic impurities to a system with a constant charge carrier density. Within this model, the experimental findings are compatible with the predicted s± pairing symmetry.
For EuFe2(As1-xPx)2, the results from 57Fe MS and ZF-muSR reveal an intriguing interplay of the local Eu 2+ magnetic moments and the itinerant magnetic Fe moments due to the competing structures of the iron and europium magnetic subsystems. For the investigated single crystals with x=0.19 and 0.28, 57Fe MS evidences the interplay of Fe and Eu magnetism by the observation of a transferred hyperfine field below Tafm at which the Eu subsystem orders into a canted A-type AFM magnetic structure. Furthermore, an additional temperature dependent out-of-plane tilting of the static Fe hyperfine field is observed below the onset of static Eu ordering. ZF-muSR shows a strong increase of the local field at the muon site below Tafm=20 K and a crossover from isotropic to anisotropic Eu spin-dynamics between 30 and 10 K. The temperature dependence of the spin dynamics, as derived from the muSR dynamic relaxation rates, are related to a critical slowing down of Eu-spin fluctuations which extends to even much higher temperatures (~100 K). They also effect the experimental linewidth observed in the 57Fe MS experiments. The strong influence of the Eu magnetic order onto the primary observables in both methods prevents conclusive interpretation of the experimental data with respect to a putative interplay of Fe magnetism and superconductivity.
|
76 |
Einfluss intermetallischer Phasen der Systeme Al-Cu und Al-Ag auf den Widerstand stromtragender Verbindungen im Temperaturbereich von 90 °C bis 200 °CPfeifer, Stephanie 26 October 2015 (has links)
Im Netz der Elektroenergieversorgung werden einzelne Netzkomponenten und Betriebsmittel durch Verbindungen elektrisch zusammengeschaltet. Dabei werden häufig Schraubenverbindungen mit Stromschienen eingesetzt. Diese müssen über mehrere Jahrzehnte zuverlässig hohe Ströme tragen können. Abhängig von der sich einstellenden Temperatur an den Verbindungen altern diese mit der Zeit. Die Alterung wird je nach Verbindungssystem von verschiedenen Mechanismen beeinflusst, die alle parallel ablaufen. Bei ruhenden, stationären elektrotechnischen Verbindungen, deren Kontaktpartner aus verschiedenen Materialien bestehen, können abhängig von der Paarung intermetallische Phasen (IMP) entstehen. Die sich bildenden IMP haben schlechtere elektrische und mechanische Eigenschaften als die reinen Metalle. Daraus resultiert ein höherer Verbindungswiderstand. Die erzeugte Verlustleistung sowie die Temperatur der Verbindung steigen an. Dies kann zum Ausfall der Verbindung führen. In der Elektroenergietechnik werden aufgrund ihrer guten elektrischen Leitfähigkeit häufig die Werkstoffe Aluminium und Kupfer sowie das Beschichtungsmetall Silber bei Temperaturen von üblicherweise 90 °C bis 200 °C eingesetzt. Speziell bei Aluminium-Kupfer-Verbindungen, die nicht langzeitstabil sind, wird als maßgebliche Ausfallursache das Bilden von IMP gesehen.
Die IMP des Systems Al-Cu wurden in der Vergangenheit bereits vielfach untersucht. Das Übertragen der Ergebnisse auf die Problematik stromtragender Verbindungen der Elektroenergietechnik ist jedoch nicht ohne Weiteres möglich. Der relevante niedrige Temperaturbereich zwischen 90 °C und 200 °C spielt bei vielen Untersuchungen nur eine untergeordnete Rolle. Zusätzlich können die Eigenschaften der IMP bei unterschiedlichen Herstellungsverfahren voneinander abweichen. Zum System Al-Ag ist in der Literatur nur wenig bekannt. Deshalb wurden für diese Arbeit phasenreine IMP der Systeme Al-Cu und Al-Ag mit unterschiedlichen Herstellungsverfahren bei möglichst identischen Randbedingungen hergestellt. Diese wurden mit einer speziell für diese Proben entwickelten Messeinrichtung elektrisch charakterisiert und der ermittelte spezifische elektrische Widerstand der IMP und ihr Temperaturbeiwert mit Werten aus der Literatur verglichen.
An verschiedenen Schraubenverbindungen mit Stromschienen aus Aluminium und Kupfer wurden Langzeitversuche von bis zu 3 Jahren durchgeführt. Der Verbindungswiderstand wurde abhängig von der Zeit ermittelt. An ausgewählten Verbindungen wurde zusätzlich in zwei identischen Versuchen der Einfluss der Belastung mit Dauer- und Wechsellast auf das Langzeitverhalten untersucht. Mithilfe der an den IMP ermittelten elektrischen Eigenschaf-ten wurde deren Einfluss auf den Verbindungswiderstand berechnet. Die Ergebnisse dieser Modellrechnung wurden mit den Ergebnissen aus den Langzeitversuchen verglichen. Ausgewählte Verbindungen wurden dazu mikroskopisch untersucht. Es wurde festgestellt, dass die IMP nicht ausschließlich das Langzeitverhalten stromtragender Verbindungen bestimmen. Es muss mindestens ein weiterer Alterungsmechanismus einen signifikanten Einfluss haben. Die Untersuchungen deuten darauf hin, dass dabei Sauerstoff eine zentrale Rolle spielen könnte. / In electrical power supply networks a huge number of electrical joints are used to connect transmission lines, conductors, switchgears and other components. During operation these joints are aging due to different aging mechanisms. Depending on the type of the joint several aging mechanisms can take place at the same time. For stationary joints with contact partners made of different materials, the formation of intermetallic compounds (IMC) may be an issue. These IMC have worse electrical and mechanical properties compared to the pure metals. Therefore, the presence of IMC in the contact area results in a higher joint re-sistance and the temperature and the thermal power losses increase. Typical temperatures for high current joints are between 90 °C and 200 °C.
Due to their good electrical conductivity aluminum and copper are often used as conductor materials and silver as a coating material. Especially bimetal joints made of aluminum and copper are not long term stable. The formation of Al-Cu IMC is held responsible as a cause of failure. The IMC of the System Al-Cu have already been studied by several authors. However, it is difficult to apply the results directly to electrical joints in power supply networks. In many studies the low temperature range between 90 °C and 200 °C is not regarded. In addition, the properties of the IMC may vary due to different preparation processes. There is only little information about the system Al-Ag in the literature.
For this work, phase pure IMC of the systems Al-Cu and Al-Ag were prepared by different preparation processes using similar process parameters. These IMC samples were electrically characterized with a specially developed measuring device. The specific electric resistivity and the temperature coefficient of resistance were determined and compared to values taken from the literature. Various combinations of bus bar joints made of aluminum and copper were investigated in long term tests for up to three years. The joint resistance was determined as a function of time.
In addition, for selected joints two identic setups were operated with continuous load and alternating load. The long term behavior was investigated with regard to the load ap-plied. Using the results of the electrical characterization of the IMC their influence on the joint resistance was calculated theoretically. The results of the calculation were compared to the results determined in the long term tests. Selected joints were examined microscopi-cally after termination of the long term tests. It was found, that the long term behavior of bimetal electrical joints with the combination Al-Cu and Al-Ag cannot be exclusively described by the growth of IMC. At least there is one further aging mechanism involved. The studies suggest, that oxygen may have a significant influence.
|
77 |
Thermodynamische und elektrokatalytische Untersuchungen an zinkbasierten intermetallischen Verbindungen bei RaumtemperaturKriegel, René 27 June 2018 (has links)
Die vorliegende Arbeit beschäftigt sich im ersten Teil mit einer Methodenentwicklung zur korrosionsfreien Ermittlung der elektromotorischen Kraft von zinkbasierten intermetallischen Verbindungen bei Raumtemperatur. Die durchgeführten Messungen bezüglich der elektrochemischen Potentiale von Verbindungen der binären intermetallischen Phasen Cu5Zn8, ZnPd und ZnPt mit jeweils verschiedenen elementaren Zusammensetzungen dienen als Basis zur Ermittlung der jeweiligen intrinsischen Aktivitäten der Einzelkomponente Zink. Messungen an der Referenzphase Cu5Zn8 wurden dabei zur Verifizierung der entwickelten Messmethodik durchgeführt. Die Untersuchungen an ZnPd- und ZnPt-Verbindungen liefern erstmalig thermodynamische Daten dieser Phasen bei Raumtemperatur.
Der zweite Teil dieser Arbeit beschäftigt sich mit der katalytischen Untersuchung von intermetallischen äquimolaren ZnPd-Elektroden hinsichtlich der elektrolytischen Wasserstoffentwicklung. Die durchgeführten Experimente legen den Schluss nahe, dass die katalytische Aktivität der intermetallischen Elektroden durch eine gezielte anodische Vorbehandlung signifikant gesteigert werden kann. Ex situ Charakterisierungen geben Grund zu der Annahme, dass die gesteigerte katalytische Aktivität durch die simultane Präsenz von oxidischer und metallischer beziehungsweise intermetallischer Spezies hervorgerufen wird.
|
78 |
Untersuchungen zum Recycling von Aluminiumbronze in der metallverarbeitenden IndustrieJablonski, Krzysztof 25 November 2014 (has links)
Ziel der Arbeit war das mögliche Einsatzspektrum von Sekundärmaterialien im Prozess der Herstellung von Bauteilen aus Aluminiummehrstoffbronzen (CuAl15Fe5Ni2Mn2) zu erweitern, um das Werkstoffrecycling in der Gießerei auf höchstmöglichem Niveau einzusetzen. Verschiedene Raffinationsmöglichkeiten wurden analysiert und 4 davon getestet. Die Schleifstaubaufbereitung mittels Magnetbandringscheider und Permanent- Magnettrommelscheider wurde erprobt und im industriellen Maßstab getestet. Weiterhin wurde die Gasraffinationswirkung auf die Schmelze mit Stickstoff und Argon sowie mit der Zugabe von Chlor und Ammoniak getestet. Die Salzraffination der Schmelze wurde untersucht und die optimalen Raffinationszusammensetzungen wurden definiert. Die fraktionierte Kristallisation als Raffinationsmethode für die Aluminiummehrstoffbronze wurde ebenfalls untersucht. Im Anschluss wurden die Einsatzmöglichkeiten der Raffinationstechnologien in der Giessereiindustrie kritisch bewertet.:Inhaltsverzeichnis:
1. EINLEITUNG ---------------------------------------------------------------------------------------------- 6
2. AUFGABENSTELLUNG -------------------------------------------------------------------------------- 8
3. LITERATURAUSWERTUNG------------------------------------------------------------------------- 10
3.1 EINTEILUNG UND EIGENSCHAFTEN VON ALUMINIUMBRONZEN -------------------------------- 10
3.1.1 Phasen komplexer Aluminiumbronzen -------------------------------------------------- 11
3.1.2 Physikalische Eigenschaften von Aluminiumbronzen ------------------------------- 13
3.2 RAFFINATION VON ALUMINIUMBRONZE ------------------------------------------------------------ 14
3.2.1 Schrottnormen und Schrottklassifizierung ---------------------------------------------- 14
3.2.2 Möglichkeiten der Aluminiumbronzeraffination ---------------------------------------- 18
3.2.3 Grenzen der Einsetzbarkeit der Aluminiumraffinationstechnologien
für Aluminiumbronze --------------------------------------------------------------------------------- 19
4. PRÄZISIERUNG DER AUFGABENSTELLUNG ------------------------------------------------ 23
5. UNTERSUCHUNGEN ZUR SCHLEIFSTAUBAUFBEREITUNG --------------------------- 24
5.1 PHYSIKALISCH–CHEMISCHE CHARAKTERISTIK VON SCHLEIFSTAUB -------------------------- 24
5.1.1 Korngrössenbestimmung ------------------------------------------------------------------- 25
5.1.2 Chemische Analyse vom Schleifstaub -------------------------------------------------- 25
5.2 BESTIMMUNG DES ZIRKONIUMGEHALTES IM SCHLEIFSTAUB ----------------------------------- 27
5.3 UNTERSUCHUNGEN ZUR REINIGUNG VOM SCHLEIFSTAUB ------------------------------------- 27
5.4 REINIGUNG MIT EINEM TROMMELSCHEIDER ------------------------------------------------------ 32
5.4.1 Reinigung von Grobschleifstaub (Probe 1)--------------------------------------------- 34
5.4.2 Reinigung von gekauftem Schleifstaub (Probe 3) ------------------------------------ 35
5.4.3 Reinigung von Feinschleifstaub (Probe 2) --------------------------------------------- 36
6. UNTERSUCHUNGEN ZUR CHEMISCH-METALLURGISCHEN RAFFINATION VON ALUMINIUMBRONZEN ----------------------------------------------------------------------------------- 38
6.1 GASRAFFINATION ------------------------------------------------------------------------------------- 39
6.1.1 Vorbereitung und Versuchsdurchführung ---------------------------------------------- 39
6.1.2 Raffination mit Stickstoff -------------------------------------------------------------------- 41
Untersuchungen zum Recycling von Aluminiumbronze in der metallverarbeitenden Industrie
6.1.3 Raffination mit Argon ------------------------------------------------------------------------- 46
6.1.4 Raffination mit Stickstoff / Ammoniak und Argon / Ammoniak -------------------- 48
6.1.5 Untersuchungen zum Verhalten von Silicium bei der Gasraffination------------ 59
6.2 INTERMETALLISCHE FÄLLUNG ----------------------------------------------------------------------- 60
6.3 SALZRAFFINATION ------------------------------------------------------------------------------------ 64
6.3.1 Schmelzpunktbestimmung von Raffinationssalzgemischen ----------------------- 67
6.3.2 Raffination mit Schmelzsalzen ------------------------------------------------------------ 68
6.3.3 Schmelzversuche mit einzelnen Salzkomponenten --------------------------------- 74
6.3.3.1 Silicium- und Aluminiumgehalt in der Legierung vor und nach der
Raffination mit Einzelkomponenten -------------------------------------------------------------- 75
6.3.3.2 Natrium- und Calciumkonzentration in der Legierung vor und
nach der Salzraffination ----------------------------------------------------------------------------- 77
6.3.3.3 Einfluss des Fluoridgehaltes im Salz auf die Schmelze -------------------------- 78
6.3.3.4. Charakterisierung der eingesetzten Salzmischungen --------------------------- 80
6.3.3.5 Verwendung von K3AlF6 als Hauptkomponente neuer Salze ------------------- 81
6.3.3.6 Untersuchungen mit neu entwickelten Raffinationssalzen ---------------------- 82
7. FEHLERBETRACHTUNG BEI DER VERSUCHSDURCHFÜHRUNG ------------------- 86
8. BEWERTUNG DER ERGEBNISSE UND DISKUSSION ------------------------------------- 88
9. LITERATURVERZEICHNIS -------------------------------------------------------------------------- 92
|
79 |
Crystal growth and perfection of selected intermetallic and oxide compoundsSouptel, Dmitri 21 January 2005 (has links)
The aim of the present work is to clarify the interplay between the complex technological chain of crystal preparation, chemical and structural perfection of grown crystals of intermetallic compounds and oxides and their physical properties. This technological chain includes detailed studies of unknown or insufficiently known phase diagrams, their correlation with growth conditions and optimisation of process parameters for obtaining single crystals with high chemical and physical perfection. The measurements of the physical properties of the grown crystals such as superconductivity, thermoelectric or dielectric properties not only show new features and properties for application of the materials obtained, but also allow conclusions of the crystal perfection. The studies are focused on the following systems: RENi2B2C borocarbides (RE=Y, Tb or Ho) displaying superconductivity, magnetic order and a strong interplay between magnetic and superconducting properties for YNi2B2C, TbNi2B2C, HoNi2B2C, respectively; CeSi2-?Ô and Ru2Si3 as examples of systems with magnetic and promising thermoelectric properties, respectively; MgB2 and LiBC to test of theoretical predictions of the new superconducting intermetallic compounds discovered in the last years; SrTiO3 and SrZrO3 oxide compounds with special dielectric and optical properties. For this wide spectrum of substances necessarily different growth techniques were applied. That is mainly the floating zone (FZ) or travelling solvent floating zone (TSFZ) techniques with optical heating. Flux techniques were used if the vapour pressure of composing elements is high such as for Mg and Li. The crucible free FZ technique is very attractive for the crystal growth of these intermetallic and oxide compounds to avoid contamination with the crucible material, if the melts have very high chemical reactivity, high melting temperatures and if a large crystal size (at least 3-5 mm) is desired for corresponding physical measurements. One special aim in the presented work is the optimisation of the preparation and growth process features with respect to crystal perfection, establishing new relationships between process parameters, crystal perfection, crystallographic structure, composition of grown crystals and the related physical properties. Optimisation of crystal growth process requires own constitutional studies of growth relevant parts of corresponding multicomponent phase diagrams. Therefore, parts of the phase diagrams were experimentally revealed by differential thermal analysis (DTA), optical metallography and EPMA and partially combined with CALPHAD calculations.
|
80 |
Microstructure and texture development during high-strain torsion of NiAlKlöden, Burghardt 20 October 2006 (has links)
In this study polycrystalline NiAl has been subjected to torsion deformation. Torsion has been used because of its characteristics. By this deformation mode high shear strains (gamma = 18 in this study) can be imposed on the sample. The deformation conditions are well-defined because of the local deformation mode, which is simple shear. Due to the monoclinic sample symmetry one half of the pole figure is needed in order to obtain the complete texture information, which is more than is needed e.g. by extrusion or rolling. Therefore, texture analysis might be more sensitive with respect to texture components. Furthermore, torsion deformation is characterized by being inhomogeneous in terms of the amount of shear strain and shear strain rate along the sample radius. The shear strain gradient makes the analysis of different stages of deformation on the same sample (i.e. under the same deformation conditions) possible. Another characteristic being special for torsion is that samples change their length, although no axial stress is applied. This effect is known as Swift effect and will be analyzed in detail. The deformation, microstructure and texture development subject to the shear strain are studied by different techniques (Electron Back-Scatter and High Energy Synchrotron Radiation). Beside the development of microstructure and texture with shear strain, the effect of an initial texture as well as the deformation temperature on the development of texture and microstructure constitute an important part of this study. Therefore, samples with three different initial textures were deformed in the temperature range T = 700K – 1300K. The development of the microstructure is characterized by two different regimes depending on the deformation temperature T. For T up to 1000K, continuous dynamic recrystallization (CDRX) takes place. This mechanism leads to the deformation-induced dislocations forming low angle grain boundaries (LAGBs) or being incorporated into them and the successive transformation of these boundaries into high angle grain boundaries (HAGBs) by a further increase of their misorientation. The predictions of this model were compared with the experimental results. The shear stress – shear strain curves are characterized by a peak at low strains, which is followed by softening and a steady state at high strains. This condition is fulfilled for a number of samples, but especially <111> oriented samples do not show a softening stage at low temperatures. Grain refinement takes place for all samples and the average grain size decreases with temperature. The predicted LAGB decrease is in best agreement with the experiments at the lowest temperatures (T = 700K and 800K). Deviations from the model can be explained by the temperature dependence of the grain boundary mobility. For temperatures T > 1000K, discontinuous dynamic recrystallization (DDRX) occurs, by which new grains form by nucleation and subsequent growth. The texture is characterized by two components, {100}<100> (cube, C) and {110}<100> (Goss, G). The intensity of G increases with temperature, while that of C decreases independent of the initial orientation. Both components have their maximum deviated about the 1 axis. The deviation is larger for grains containing the C component and decreases with temperature. Grains containing the G component have the smaller deviation, which decreases with temperature and strain. Texture simulations based on the full constraint Taylor model under the assumption of {110}<100> and {110}<110> slip were done with the experimental <110> and <111> fibres as well as a theoretical <100> fibre and a {100}<100> single orientation (ideal as well as rotated about the torsion axis). The G component is predicted by the simulations and is therefore a deformation texture. However the C component does not appear in the simulation. It therefore must originate by different mechanisms. For the non-<100> oriented samples, possibly nucleation is responsible for the formation of C oriented nuclei. Simulations with single orientations lead to the conclusion, that the ideal C orientation rotates about the 1 axis, while other C orientations, which are rotated about the torsion axis, increasingly converge towards the G component with strain. A single G orientation on the other hand is stable against such a rotation and is therefore the most likely steady state texture. Based on these results it is proposed, that ideally C oriented nuclei rotate until an orientation is reached into which they grow. These new grains are further rotated up to a critical angle, at which a part of them disappears either by adjacent grains or new C oriented nuclei. The recrystallization texture for T > 1000K is most likely the C component as well. Torsional creep of NiAl is characterized by a stress exponent, which depends on temperature and an activation energy, which is stress dependent. A model incorporating both dependencies is proposed and applied to the creep data. It is shown that these equations are able to describe the experimental findings. Thus creep of NiAl based on this model is dominated by non-diffusional processes such as cross slip of <100> screw dislocations for T 1000K. For T > 1000K the stress exponent and the activation energy are in a region, which according to previous reports is rather dominated by dislocation-climb controlled creep. The Swift effect, due to which samples change their axial dimension during torsion without applied axial stress, is observed for NiAl. It is strongly related to the texture development and in the case of NiAl the C component is identified as being responsible for shortening, whereas the G component leads to lengthening as long as it is not aligned with the shear system. Both tendencies can be explained based on the active slip systems. Simulations fail to predict the experimental observation, because the C component is not present. HESR and EBSD were compared with respect to local texture measurements. It was concluded depending on the average grain size HESR has an advantage in terms of grain statistics. For DDRX samples however, both methods are limited. Local texture inhomogeneities can be better detected using EBSD, whereas for an overall local texture information HESR is better suited.
|
Page generated in 0.128 seconds