• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 256
  • 76
  • 46
  • 36
  • 20
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 495
  • 495
  • 145
  • 135
  • 80
  • 76
  • 75
  • 69
  • 69
  • 68
  • 65
  • 61
  • 57
  • 55
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Inverse Problems and Self-similarity in Imaging

Ebrahimi Kahrizsangi, Mehran 28 July 2008 (has links)
This thesis examines the concept of image self-similarity and provides solutions to various associated inverse problems such as resolution enhancement and missing fractal codes. In general, many real-world inverse problems are ill-posed, mainly because of the lack of existence of a unique solution. The procedure of providing acceptable unique solutions to such problems is known as regularization. The concept of image prior, which has been of crucial importance in image modelling and processing, has also been important in solving inverse problems since it algebraically translates to the regularization procedure. Indeed, much recent progress in imaging has been due to advances in the formulation and practice of regularization. This, coupled with progress in optimization and numerical analysis, has yielded much improvement in computational methods of solving inverse imaging problems. Historically, the idea of self-similarity was important in the development of fractal image coding. Here we show that the self-similarity properties of natural images may be used to construct image priors for the purpose of addressing certain inverse problems. Indeed, new trends in the area of non-local image processing have provided a rejuvenated appreciation of image self-similarity and opportunities to explore novel self-similarity-based priors. We first revisit the concept of fractal-based methods and address some open theoretical problems in the area. This includes formulating a necessary and sufficient condition for the contractivity of the block fractal transform operator. We shall also provide some more generalized formulations of fractal-based self-similarity constraints of an image. These formulations can be developed algebraically and also in terms of the set-based method of Projection Onto Convex Sets (POCS). We then revisit the traditional inverse problems of single frame image zooming and multi-frame resolution enhancement, also known as super-resolution. Some ideas will be borrowed from newly developed non-local denoising algorithms in order to formulate self-similarity priors. Understanding the role of scale and choice of examples/samples is also important in these proposed models. For this purpose, we perform an extensive series of numerical experiments and analyze the results. These ideas naturally lead to the method of self-examples, which relies on the regularity properties of natural images at different scales, as a means of solving the single-frame image zooming problem. Furthermore, we propose and investigate a multi-frame super-resolution counterpart which does not require explicit motion estimation among video sequences.
392

Inverse Problems and Self-similarity in Imaging

Ebrahimi Kahrizsangi, Mehran 28 July 2008 (has links)
This thesis examines the concept of image self-similarity and provides solutions to various associated inverse problems such as resolution enhancement and missing fractal codes. In general, many real-world inverse problems are ill-posed, mainly because of the lack of existence of a unique solution. The procedure of providing acceptable unique solutions to such problems is known as regularization. The concept of image prior, which has been of crucial importance in image modelling and processing, has also been important in solving inverse problems since it algebraically translates to the regularization procedure. Indeed, much recent progress in imaging has been due to advances in the formulation and practice of regularization. This, coupled with progress in optimization and numerical analysis, has yielded much improvement in computational methods of solving inverse imaging problems. Historically, the idea of self-similarity was important in the development of fractal image coding. Here we show that the self-similarity properties of natural images may be used to construct image priors for the purpose of addressing certain inverse problems. Indeed, new trends in the area of non-local image processing have provided a rejuvenated appreciation of image self-similarity and opportunities to explore novel self-similarity-based priors. We first revisit the concept of fractal-based methods and address some open theoretical problems in the area. This includes formulating a necessary and sufficient condition for the contractivity of the block fractal transform operator. We shall also provide some more generalized formulations of fractal-based self-similarity constraints of an image. These formulations can be developed algebraically and also in terms of the set-based method of Projection Onto Convex Sets (POCS). We then revisit the traditional inverse problems of single frame image zooming and multi-frame resolution enhancement, also known as super-resolution. Some ideas will be borrowed from newly developed non-local denoising algorithms in order to formulate self-similarity priors. Understanding the role of scale and choice of examples/samples is also important in these proposed models. For this purpose, we perform an extensive series of numerical experiments and analyze the results. These ideas naturally lead to the method of self-examples, which relies on the regularity properties of natural images at different scales, as a means of solving the single-frame image zooming problem. Furthermore, we propose and investigate a multi-frame super-resolution counterpart which does not require explicit motion estimation among video sequences.
393

On Ill-Posedness and Local Ill-Posedness of Operator Equations in Hilbert Spaces

Hofmann, B. 30 October 1998 (has links) (PDF)
In this paper, we study ill-posedness concepts of nonlinear and linear inverse problems in a Hilbert space setting. We define local ill-posedness of a nonlinear operator equation $F(x) = y_0$ in a solution point $x_0$ and the interplay between the nonlinear problem and its linearization using the Frechet derivative $F\acent(x_0)$ . To find an appropriate ill-posedness concept for the linarized equation we define intrinsic ill-posedness for linear operator equations $Ax = y$ and compare this approach with the ill-posedness definitions due to Hadamard and Nashed.
394

Change point estimation in noisy Hammerstein integral equations / Sprungstellen-Schätzer für verrauschte Hammerstein Integral Gleichungen

Frick, Sophie 02 December 2010 (has links)
No description available.
395

Jump estimation for noisy blurred step functions / Sprungschätzung für verrauschte Beobachtungen von verschmierten Treppenfunktionen

Boysen, Leif 09 May 2006 (has links)
No description available.
396

Analytische und numerische Untersuchung von direkten und inversen Randwertproblemen in Gebieten mit Ecken mittels Integralgleichungsmethoden / Analytical and numerical research on direct and inverse boundary value problems in domains with corners using integral equation methods

Vogt, Andreas 31 October 2001 (has links)
No description available.
397

Direktes und inverses Randwertproblem für einen Crack mit Impedanzrandbedingung / Direct and inverse boundary problem for a crack with an impedance boundary condition

Lee, Kuo-Ming 22 October 2003 (has links)
No description available.
398

About a deficit in low order convergence rates on the example of autoconvolution

Bürger, Steven, Hofmann, Bernd 18 December 2013 (has links) (PDF)
We revisit in L2-spaces the autoconvolution equation x ∗ x = y with solutions which are real-valued or complex-valued functions x(t) defined on a finite real interval, say t ∈ [0,1]. Such operator equations of quadratic type occur in physics of spectra, in optics and in stochastics, often as part of a more complex task. Because of their weak nonlinearity deautoconvolution problems are not seen as difficult and hence little attention is paid to them wrongly. In this paper, we will indicate on the example of autoconvolution a deficit in low order convergence rates for regularized solutions of nonlinear ill-posed operator equations F(x)=y with solutions x† in a Hilbert space setting. So for the real-valued version of the deautoconvolution problem, which is locally ill-posed everywhere, the classical convergence rate theory developed for the Tikhonov regularization of nonlinear ill-posed problems reaches its limits if standard source conditions using the range of F (x† )∗ fail. On the other hand, convergence rate results based on Hölder source conditions with small Hölder exponent and logarithmic source conditions or on the method of approximate source conditions are not applicable since qualified nonlinearity conditions are required which cannot be shown for the autoconvolution case according to current knowledge. We also discuss the complex-valued version of autoconvolution with full data on [0,2] and see that ill-posedness must be expected if unbounded amplitude functions are admissible. As a new detail, we present situations of local well-posedness if the domain of the autoconvolution operator is restricted to complex L2-functions with a fixed and uniformly bounded modulus function.
399

Conditional stability estimates for ill-posed PDE problems by using interpolation

Tautenhahn, Ulrich, Hämarik, Uno, Hofmann, Bernd, Shao, Yuanyuan 06 September 2011 (has links) (PDF)
The focus of this paper is on conditional stability estimates for ill-posed inverse problems in partial differential equations. Conditional stability estimates have been obtained in the literature by a couple different methods. In this paper we propose a method called interpolation method, which is based on interpolation in variable Hilbert scales. We are going to work out the theoretical background of this method and show that optimal conditional stability estimates are obtained. The capability of our method is illustrated by a comprehensive collection of different inverse and ill-posed PDE problems containing elliptic and parabolic problems, one source problem and the problem of analytic continuation.
400

Nonlinear approaches for phase retrieval in the Fresnel region for hard X-ray imaging

Ion, Valentina 26 September 2013 (has links) (PDF)
The development of highly coherent X-ray sources offers new possibilities to image biological structures at different scales exploiting the refraction of X-rays. The coherence properties of the third-generation synchrotron radiation sources enables efficient implementations of phase contrast techniques. One of the first measurements of the intensity variations due to phase contrast has been reported in 1995 at the European Synchrotron Radiation Facility (ESRF). Phase imaging coupled to tomography acquisition allows threedimensional imaging with an increased sensitivity compared to absorption CT. This technique is particularly attractive to image samples with low absorption constituents. Phase contrast has many applications, ranging from material science, paleontology, bone research to medicine and biology. Several methods to achieve X-ray phase contrast have been proposed during the last years. In propagation based phase contrast, the measurements are made at different sample-to-detector distances. While the intensity data can be acquired and recorded, the phase information of the signal has to be "retrieved" from the modulus data only. Phase retrieval is thus an illposed nonlinear problem and regularization techniques including a priori knowledge are necessary to obtain stable solutions. Several phase recovery methods have been developed in recent years. These approaches generally formulate the phase retrieval problem as a linear one. Nonlinear treatments have not been much investigated. The main purpose of this work was to propose and evaluate new algorithms, in particularly taking into account the nonlinearity of the direct problem. In the first part of this work, we present a Landweber type nonlinear iterative scheme to solve the propagation based phase retrieval problem. This approach uses the analytic expression of the Fréchet derivative of the phase-intensity relationship and of its adjoint, which are presented in detail. We also study the effect of projection operators on the convergence properties of the method. In the second part of this thesis, we investigate the resolution of the linear inverse problem with an iterative thresholding algorithm in wavelet coordinates. In the following, the two former algorithms are combined and compared with another nonlinear approach based on sparsity regularization and a fixed point algorithm. The performance of theses algorithms are evaluated on simulated data for different noise levels. Finally the algorithms were adapted to process real data sets obtained in phase CT at the ESRF at Grenoble.

Page generated in 0.0655 seconds