• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 39
  • 13
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 183
  • 98
  • 31
  • 24
  • 24
  • 23
  • 22
  • 21
  • 21
  • 20
  • 20
  • 19
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Improvements in Biobutanol Production: Separation and Recovery by Adsorption

Abdehagh, Niloofar January 2016 (has links)
Due to environmental challenges, depleting oil resources, rising cost of oil and instability in oil-producing countries, biofuel production has attracted a lot of attention in recent decades. Biobutanol is one of the biofuels showing the most potential as an alternative for partly replacing petroleum-based fuels. Both researchers and industrialists are currently working at developing an energy-effective process to produce biobutanol at a large scale. Acetone-butanol-ethanol (ABE) fermentation is the biological process of biobutanol production and Clostridia are the most common bacteria used to produce biobutanol. However, there are several challenges in the butanol bioproduction process that should be addressed to make this process economically viable. The main challenge in the biobutanol production process is the low concentration of butanol in the ABE fermentation broth. It is therefore important to develop an efficient separation method. Several separation methods such as distillation, liquid-liquid extraction (LLE), pervaporation, gas stripping and adsorption have been considered to recover butanol from dilute solutions and ABE fermentation broths. Adsorption is considered as one of the most promising methods due to its high performance and energy efficiency for butanol separation. In this study, the focus was on developing an efficient separation method for butanol recovery from dilute model solution and fermentation broth using adsorption. A comprehensive adsorbent screening was first carried out to identify the best commercially available adsorbent among a series of potentially promising adsorbents. Activated carbon (AC) F-400 was selected for further experimentation since it showed high adsorption capacity and adsorption rate in addition to high selectivity toward butanol. AC F-400 was then tested extensively in packed adsorption column experiments for binary and ABE model solutions and fermentation broths to investigate the competitive adsorption between butanol and other components present in ABE broths. The results showed that the butanol adsorption capacity was not affected by the presence of ethanol, glucose and xylose while the presence of acetone led to a slight decrease in adsorption capacity at low butanol concentrations. On the other hand, the presence of acids (acetic acid and butyric acid) in the ABE broth showed a significant effect on the butanol adsorption capacity over a wide ii range of butanol concentration and this effect was more pronounced for butyric acid. At the end, different competitive adsorption isotherm models were also studied to appropriately represent the behaviour of the competitive adsorption. Desorption of butanol was subsequently investigated to evaluate both the desorption capacity of butanol and the capability of the adsorbent particles to be used for multiple adsorption-desorption cycles. The results of this set of experiments showed that AC F-400 can retain its initial adsorption capacity after 6 adsorption/desorption cycles. The recovery of butanol from butanol-water (1.5 wt%) binary and ABE model solutions was 84 and 80% with butanol adsorption capacity of 302 and 171 mg/g, respectively. The combination of adsorption and gas stripping techniques was also studied to investigate the performance of CO2 gas stripping of solvents from the model solutions and fermentation broths followed by adsorption. The results showed that the butanol adsorption capacity of the overall system for binary solutions (260 mg/g for a binary butanol-water solution of 15 g/L with vapour phase concentration of 5.8 mg/L), ABE model solutions (192 mg/g for a corresponding vapour concentration of 5.2 mg/L) and ABE fermentation broths (247 mg/g for a corresponding vapour phase concentration of 2.5 mg/L) was higher than what has been published in the literature. Finally, a model was developed and adequately validated the experimental data to predict the behaviour of the ABE compounds in a packed bed adsorption column for butanol separation from dilute solutions.
72

Abattement des phosphates des eaux usées par adsorption sur des géomatériaux constitués de Latérite, grès et schistes ardoisiers / Phosphorus retention from wastewater by adsorption onto laterite, sandstone and shale

Coulibaly, Sandotin Lassina 09 July 2014 (has links)
Les eaux usées sont très souvent enrichies en phosphates issus des activités anthropiques, leur rejet dans le milieu naturel sans traitement adéquat entraîne une eutrophisation rapide du réseau hydrographique de surface. L’objectif de cette thèse est de caractériser et d’étudier la possibilité de rétention des phosphates des eaux sur des géomatériaux efficaces et disponibles en quantité suffisante en Côte Ivoire. A terme, ce travail permettra de valoriser des matériaux géologiques, sans intérêt minier, en produits aux applications environnementales. A cet effet la latérite le grès et le schiste ont été sélectionnés et préparés par broyage mécanique pour produire des fractions inférieures à 80 µm. Ces rétenteurs ont été analysés par diffraction des rayons-X, microscopie électronique à balayage (MEB) et à transmission (MET), spectroscopie infrarouge (IR). Les analyses texturales ont été conduites par volumétrie d’adsorption du diazote (N2) à 77K. La granularité a été déterminée par diffusion laser et par sédimentation. Les mesures de la capacité d’échange cationique (CEC), ont été effectuées par spectroscopies UV visible et par ICP-AES et ICP-MS. La synthèse de l’ensemble des données minéralogiques montre de forts pourcentages en oxydes et oxyhydroxydes de fer, d’aluminium et de calcium pour ces trois matériaux. Cette composition confère à la fraction fine des surfaces spécifiques de 34 ; 4,7 et 16,5 m2/g respectivement pour la latérite, le grès et le schiste. De plus les charpentes minérales des ces matériaux révèlent la présence de méso et microporosité. Les rétenteurs ont ensuite été évalués dans le traitement en batch d’un effluent synthétique obtenu par dissolution du dihydrogénophosphate de potassium (KH2PO4), dans l’eau distillée. Les doses optimales et les temps d’équilibres ont été déterminés. Les isothermes de rétention ont ensuite été construites à 20, 30 et 40°C. L’affinité des phosphates pour les trois adsorbants est plus importante pour la latérite, ensuite le grès et enfin le schiste. L’adsorption dépend fortement du pH. Les taux de rétention des phosphates sur le grès semblent indépendants de la température. En revanche, ceux de la latérite augmentent dans le sens contraire de la température et l’inverse pour le schiste. Plusieurs modèles cinétiques (pseudo-premier ordre, pseudo-second ordre, Elovich et de diffusion) ont été évalués, de même que les paramètres thermodynamiques. Les réactions d’adsorption sont parfaitement décrites par le modèle de pseudo-second ordre. Les données des équilibres d’adsorption permettent de définir des intervalles où l’adéquation aux modèles de Langmuir et Freundlich semble parfaite. Le mécanisme de rétention proposé suggère l’existence de deux types de sites. L’analyse par infrarouge (DRIFT) des matériaux après adsorption montre une part importante des interactions de type chimique dans la rétention des phosphates sur la latérite et le grès. L’ensemble des résultats obtenus confirme la possibilité d’utiliser la latérite, le grès et le schiste pour déphosphater les eaux. Cependant la latérite présente de plus fortes potentialités par rapport aux autres adsorbants testés / Wastewaters are often loaded in phosphate from human activities. The discharge of such wastewater without adequate treatment leads to rapid eutrophication of water bodies. The main of the present thesis was to characterize and investigate the removal efficiency of phosphate from water by natural geological material available in large amount in Ivory Coast. Ultimately, it has ambition to valorize geological material without mining interest for environmental purposes. For this research, the laterite, sandstone and shale were selected and prepared by mechanical crushing to obtain fine fractions below 80 µm. Detailed study to characterize these three rocks powder was performed, thus several mineralogical and physico-chemical properties were determinated by means of : X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), N2-adsorption/desorption techniques (BET), energy dispersive x-ray spectroscopy (EDX), particle size distribution, cation exchange capacity and chemical analyses by atomic emission spectrometry (ICP-AES) and mass spectrometry (ICP-MS). Data shows high percentages of iron, aluminum and calcium oxides and oxyhydroxides for these three materials. This composition confer to the fine fraction the specific surface of 34; 4.7 et 16.5 m2/g for laterite, sandstone and shale respectively. In addition, the mineral structures of these materials reveal the presence of meso-and microporosity. These materials were then evaluated in the batch treatment of synthetic liquid effluents containing pure KH2PO4. The optimal dosage and equilibrium times were detected. After, isotherms were built at 20, 30 and 40°C. It was shown that phosphate affinity for the three absorbents is more important for laterite, sandstone and shale. The absorption process is strongly depends on pH. Phosphate retention rate on sandstone seem not to depend on temperature, on the other hand, those of laterite increase on the contrary way of the temperature and vice versa for schist. Several kinetic models (pseudo first order, pseudo second order, Elovich and diffusion models) were evaluated as well as thermodynamic parameters. Absorption reactions are perfectly described by the pseudo second order. Absorption equilibrium data allow defining interval where Langmuir and Freundlich model seems perfect. The proposed retention mechanism suggests the existence of two kinds of sites. DRIFTS analyses of adsorbents after adsorption revealed chemical interaction on adsorption process onto laterite and sandstone. This study demonstrated that laterite, sandstone and shale are an effective adsorbent for phosphate removal from aqueous solution. However, laterite shows a strong potentiality compared to the two others adsorbents
73

Comparison of Cs Adsorption Characteristics of Soils in Japan and Indonesia / 日本とインドネシアの土壌におけるCs吸着特性の比較

Hendra, Adhi Pratama 23 May 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21964号 / 工博第4619号 / 新制||工||1720(附属図書館) / 京都大学大学院工学研究科都市環境工学専攻 / (主査)教授 米田 稔, 教授 高岡 昌輝, 准教授 福谷 哲 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
74

Adsorption Characteristics of Water and Silica Gel System for Desalination Cycle

Cevallos, Oscar R. 07 1900 (has links)
An adsorbent suitable for adsorption desalination cycles is essentially characterized by a hydrophilic and porous structure with high surface area where water molecules are adsorbed via hydrogen bonding mechanism. Silica gel type A++ possesses the highest surface area and exhibits the highest equilibrium uptake from all the silica gels available in the market, therefore being suitable for water desalination cycles; where adsorbent’s adsorption characteristics and water vapor uptake capacity are key parameters in the compactness of the system; translated as feasibility of water desalination through adsorption technologies. The adsorption characteristics of water vapor onto silica gel type A++ over a temperature range of 30 oC to 60 oC are investigated in this research. This is done using water vapor adsorption analyzer utilizing a constant volume and variable pressure method, namely the Hydrosorb-1000 instrument by Quantachrome. The experimental uptake data is studied using numerous isotherm models, i. e. the Langmuir, Tóth, generalized Dubinin-Astakhov (D-A), Dubinin-Astakhov based on pore size distribution (PSD) and Dubinin-Serpinski (D-Se) isotherm for the whole pressure range, and for a pressure range below 10 kPa, proper for desalination cycles; isotherms type V of the International Union of Pure and Applied Chemistry (IUPAC) classification were exhibited. It is observed that the D-A based on PSD and the D-Se isotherm models describe the best fitting of the experimental uptake data for desalination cycles within a regression error of 2% and 6% respectively. All isotherm models, except the D-A based on PSD, have failed to describe the obtained experimental uptake data; an empirical isotherm model is proposed by observing the behavior of Tóth and D-A isotherm models. The new empirical model describes the water adsorption onto silica gel type A++ within a regression error of 3%. This will aid to describe the advantages of silica gel type A++ for the design of adsorption desalination processes where reducing capital cost and footprint area are highly important parameters to take into account.
75

Modeling the Longevity of Infiltration System for Phosphorus Removal.

Yu, Lin January 2011 (has links)
A new modeling method for estimation of the longevity of infiltration system was suggested in this study. The model was one-dimensional, based on results from long-term infiltration sites in Sweden, taking some physical and chemical parameters as controlling factors. It defines the longevity of infiltration systems as the time during which the P solution in effulent is under national criteria (1 mg/L in this study), and it aims at providing the longevity for any given point of the infiltration system. The soil in the model was assumed to be totally homogenous and isotropic and water flow was assumed to be unsaturated flow and constant continuous inflow. The flow rate was calculated from the Swedish criteria for infiltration systems. The dominant process in the model would be the solute transport process; however, retardation controlled by sorption would play a more important role than advection and dispersion in determining the longevity in the model. By using the definition of longevity in this study, the longevity of the three soil columns at 1 m depth (Knivingaryd, Ringamåla and Luvehult) were 1703 days, 1674 days and 2575 days. The exhaustion time of the three soil columns under inflow of 5 mg/L were 2531 days, 2709 days and 3673 days. The calculated sorbed phosphorus quantity for soil from sites Kn, Lu and Ri when they reach estimated longevity were 0.177, 0.288 and 0.168 mg/g, while the maximum sorption of Kn, Lu and Ri were 0.182, 0.293 and 0.176 mg/g separately. From the result of sensitivity study of the model, the sorption capacity and flow velocity were most important to the longevity of the infiltration system. Lower flow velocity and higher P sorption capacity extend the longevity of an infiltration bed. Due to the sorption isotherm selected in this study and the assumption of instant equilibrium, the sorption rate of the soil column was quite linear, although the estimated longevity was much shorter than the real exhaustion time of the soil column. In fact the soil has almost reached its sorption maximum when the system reaches its longevity.
76

Comparative Study of Metal Carbonate Based Adsorbents Recovering Phosphate from Water

Thompson, Natalie A. January 2018 (has links)
No description available.
77

Adsorption of Metallic Ions onto Chitosan : Equilibrium and Kinetic Studies

Benavente, Martha January 2008 (has links)
Equilibrium isotherms and the adsorption kinetics of heavy metals onto chitosan were studied experimentally. Chitosan, a biopolymer produced from crustacean shells, has applications in various areas, particularly in drinking water and wastewater treatment due to its ability to remove metallic ions from solutions. The adsorption capacity of chitosan depends on a number of parameters: deacetylation degree, molecular weight, particle size and crystallinity. The purpose of this work was to study the adsorption of copper, zinc, mercury, and arsenic on chitosan produced from shrimp shells at a laboratory level. The experimental work involved the determination of the adsorption isotherms for each metallic ion in a batch system. The resulting isotherms were fitted using the Langmuir model and the parameters of the equation were determined. Kinetic studies of adsorption for different metallic ions at different concentrations and with different particle sizes were performed in batch and column systems. Simplified models such as pseudo-first-order, pseudo-second-order, and intra-particle diffusion equations were used to determine the rate-controlling step. Some preliminary studies were carried out to address the application of chitosan as an adsorbent in the removal of heavy metals or other metallic ions from natural water and wastewater. The regeneration of chitosan was also studied. The results showed that the adsorption capacity depends strongly on pH and on the species of metallic ions in the solution. The optimum pH value for the metallic cation adsorption was between 4 and 6, whereas for arsenic adsorption it was about 3. When the pH is not controlled, the adsorption capacity is independent of the initial pH with the solution reaching a final pH of about 7. It was also found that the Langmuir equation described very well the experimental adsorption data for each metallic ion. The adsorption capacity for the metals on chitosan follows the sequence Hg>Cu>Zn>As. The study of the adsorption kinetics of these metallic ions shows that the particle size has a significant influence on the metal uptake rate for copper; but that it has only a slight influence on the adsorption rate of zinc and mercury in the range studied. Arsenic adsorption exhibited an interesting behaviour which depends strongly on the pH of the solution; the uptake increased at short adsorption times and then decreased at long times. The analysis of kinetic models showed that the pseudo-second-order adsorption mechanism is predominant, and the overall rate of the metallic ion adsorption process is therefore controlled by adsorption reactions and not by mass transfer for the range of particle sizes examined in this study. With regard to the regeneration of chitosan, it was found that sodium hydroxide is a good agent for zinc and arsenic desorption, whereas ammonium sulphate and sodium chloride were the most suitable for copper and mercury desorption, respectively. The ability of chitosan to remove arsenic from natural water, and copper and zinc from mining waste water was verified. The use of these results for designing purposes is a subject for future work. / QC 20101104
78

A study of the adsorption isotherms of Ion-pair reagents / En studie av adsorptions isotermerna hos jonpar reagenser

Bilici, Mehmet January 2022 (has links)
In this project, the optimization of obtaining adsorption isotherms for the ion pair reagent, tributylamine was tested. The goal was to have a better understanding of the chromatographic process when separating biomolecules, such as oligonucleotides. To do this one ion pair reagent was tested in different buffers with different compositions of acetonitrile. These solutions adsorbed into a C18 column at different temperatures and stripped into fractions of 35 mL. To analyze the results Liquid-liquid extraction was performed on the fractions and the organic phase was then injected into a gas chromatography. The results showed that at a temperature of 24°C the ion pair reagent adsorbed more to the column than at 37°C and 50°C. For the different compositions of acetonitrile buffers which were tested the one that stood out was the 50% acetonitrile buffert. At all temperature it showed to always be able to adsorb more to the column than the other buffers. To calculate the concentrations of the analytes, standard curves for both tributylamine and dibutylamine were made. For dibutylamine, four unknown samples were provided to test out if the methods could be used to determine the concentrations of dibutylamine in the samples. The methods for acquiring adsorption isotherms and analyzing samples with the gas chromatography showed good results and could be used for more studies. However, to validate the results of the 50% acetonitrile buffer, more work in the future is required.
79

Adsorption of Organic Contaminants from Aqueous Solution using Biochar

Essandoh, Matthew 09 May 2015 (has links)
The main aim of this research is to provide a low cost and sustainable biochar for the removal of organic pollutants from aqueous solution. Wastewater pollution by organic contaminants of emerging concern has become a subject of intense discussion. Removing these contaminants from aqueous solution is paramount to improve water quality for both humans and animal consumption. Traditional adsorption techniques using activated carbon are universal and fast, however, they are very costly. This dissertation therefore seeks to find an alternative low cost adsorbent which can be used to adsorb contaminants from aqueous solution. In chapter one, an overview of some of the selected organic contaminants of emerging concern is given. Pharmaceutical and pesticide entry into the environment, their fate and ecotoxicity are highlighted. Available techniques for the removal of contaminants from aqueous solution are also given. Chapter two is a study on the adsorption of some selected pharmaceuticals using a fast pyrolysis low cost biochar produced from pinewood feedstocks. The pinewood biochar used as the adsorbent in this study was made by fast pyrolysis in an augered reactor at a temperature of 425 oC and a residence time of 20-30 s during bio-oil production. In chapter three, switchgrass biochar has been tested for its potential for remediating water that is contaminated with two phenoxy herbicides, 2,4-dichlorophenoxyacetic (2,4-D) acid and 2-methyl-4-chloro-phenoxyacetic acid (MCPA). The adsorption capacity was remarkable when compared to commercial activated carbon per unit of measured surface area. Furthermore, in chapter four, magnetic and non-magnetic low cost biochars have been tested for the removal of the herbicide metribuzin from aqueous solution under different experimental conditions. The magnetic biochar synthesized from raw switchgrass biochar does not show a detrimental effect on the adsorption capacity. Additional value of this magnetic biochar is the ease of separation from contaminated solution following adsorption.
80

Langmuir Trough and Brewster Angle Microscopy Study of Model Lung Surfactant Monolayers at the Air/Aqueous Interface

Telesford, Dana-Marie Leslie-Ann 18 December 2012 (has links)
No description available.

Page generated in 0.0592 seconds