• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 702
  • 126
  • 102
  • 88
  • 26
  • 17
  • 12
  • 12
  • 8
  • 7
  • 6
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 1531
  • 482
  • 232
  • 209
  • 192
  • 172
  • 154
  • 125
  • 118
  • 113
  • 88
  • 87
  • 84
  • 79
  • 77
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Stable carbon isotope ratio of polycyclic aromatic hydrocarbons (PAHs) in the environment: validation of isolation and stable carbon isotope analysis methods

Kim, Moon Koo 15 November 2004 (has links)
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous, toxic contaminants that are released to the environment from various petrogenic and pyrogenic sources. In an effort to more clearly identify and trace sources of PAHs in the environment, purification and compound specific isotope analysis methods were developed to accurately measure the stable carbon isotope ratio of individual PAHs. Development of the method included improving accuracy and precision of the isotopic measurement by producing highly pure extracts using various chromatographic techniques. The method was refined by improving compound separations using purification techniques and high resolution chromatographic columns. The purification method consists of alumina/silica gel column chromatography, gel permeation chromatography and thin layer chromatography. The mean recovery of PAHs after the purification procedure was approximately 80 %. Sample purities after purification were verified by GC/FID and full scan mass spectrometry. To better resolve peaks and provide more accurate stable carbon isotope measurements, various gas chromatographic conditions were evaluated. The precision of the method ranged between 0.08 and 0.43 . The analytical protocols were evaluated to confirm compositional and stable isotopic integrity during purification and stable isotopic analysis. To confirm the utility of the purification and isotope analysis methods, various environmental samples from marine, land and lacustrine environments were analyzed. The isolates were analyzed for the composition and the stable carbon isotope ratios of PAHs. The stable carbon isotope ratio was measured by GC/IRMS and the results, along with quantitative compound compositions, were used to characterize and identify the contaminant sources. The sources of the PAHs in the study areas were differentiated by PAH molecular ratios and confirmed by stable carbon isotope ratios. This study confirms that compound specific isotope analysis of pollutants by GC/IRMS can be used to identify PAH sources in environmental samples. The study also confirms that the purification and stable carbon isotope analysis methods that were developed can be used to accurately measure the stable carbon isotope ratios of PAHs in environmental samples for the purpose of source identification. GC/IRMS measurement of stable isotopic compositions can be an effective fingerprinting method when used in conjunction with traditional molecular composition methods.
242

Evaluating the Influence of Flooding on Aquatic Food-webs in Basins of the Peace-Athabasca Delta Using Isotopic Tracers

Lyons, Stephanie 04 June 2010 (has links)
Periodic flooding has been widely believed to serve an important role in maintaining water levels and productivity of aquatic basins in floodplain landscapes. Here, I analyze four basins of contrasting flood frequencies (one through-flow, one pulse-flooded, two non-flooded) and two adjacent river sites in the PAD were sampled during the open-water season of 2007 and spring of 2008 to characterize linkages between hydrological processes (using O and H stable isotopes) and limnological conditions, and to assess how these linkages affect trophic interactions involving the aquatic flora and fauna (using C and N stable isotopes). The water balance and water chemistry of the through-flow basin was dominated at all times by the input of river water which reduced concentrations of nutrients and ions. In contrast, evaporation played an important role in the water balance and concentrated nutrients and ions in the non-flooded basins. Surprisingly, pulse-flood events had short-lived effects on the water balance and carbon stable isotopic signatures of biota. Hydrological and limnological conditions in the pulse-flooded basin were similar to those of the river water shortly after spring flooding. After flooding, evaporation caused rapid increase of δ18O of the water comparable to patterns observed in the non-flooded basins, but recovery of water chemistry variables was delayed. In the non-flooded and pulse-flooded basins, δ13CDIC declined due to atmospheric CO2 invasion under conditions of high primary productivity and pH that generated strong kinetic fractionation. This decline in δ13CDIC values produced the opposite effect compared to when photosynthesis occurs under non-limiting carbon conditions, as occurred in the through-flow basin. This feature provides important new knowledge to improve paleolimnological interpretation of δ13C values of organic matter in sediment cores to track past changes in flooding regimes. Importantly, this study shows that pulse floods exert short-lived transient (~1-2 months) effects of the water balance and carbon dynamics of aquatic food-webs and do not elevate aquatic production, but exert longer lasting (at least an entire open-water season) on water chemistry conditions. This contrasts with previous beliefs that the effects of pulse flooding are more profound and longer lasting.
243

High-Resolution Carbon Isotope Stratigraphy, Pennsylvanian Snaky Canyon Formation, East-Central Idaho: Implications for Regional and Global Correlations

Jolley, Casey 2012 May 1900 (has links)
Nearly 550 samples of fine grained carbonates, collected every 0.5 to 1.0 m from the Bloom Member of the Snaky Canyon Formation at Gallagher Peak, Idaho, were analyzed to determine the high-resolution carbon isotope stratigraphy. To constrain for diagenesis, thin sections were petrographically analyzed and viewed using cathodoluminescence microscopy. Chemical analyses were performed using an electron microprobe. Average delta18O and delta13C values from the Bloom Member are -4.5% +/- 1.6% (1 sigma) and 2.1% +/- 1.1%, respectively. Maximum delta13C values are about 1% higher for the Desmoinesian and Missourian than the Morrowan and Atokan, similar to results from the Yukon Territory. delta18O and delta13C values are lowest for crystalline mosaic limestones and siltstones, moderate for packstones, wackestones, and mudstones, and highest for boundstones and grainstones. The delta13C profile from Gallagher Peak consists of high frequency 1% oscillations with several larger excursions. No large delta13C increase at the base of the section suggests the Mid-Carboniferous boundary is in the underlying Bluebird Mountain formation. delta13C of Gallagher Peak and Arrow Canyon, NV, correlate well from 318 to 310 Ma, but correlation becomes more difficult around 310 Ma. This may result from increased restriction of the Snaky Canyon platform beginning in the Desmoinesian. Most of the short term (<1 Ma) isotopic excursions are the result of diagenesis. Two of the largest negative excursions at Gallagher Peak correlate with two large negative excursions at Big Hatchet Peak, NM, possibly due to sea level lowstands of the Desmoinesian. Phylloid algal mounds at Gallagher Peak are associated with positive excursions because of original aragonite composition and increased open marine influence. Positive excursions related to other facies characteristics also result from increased marine influence. The delta13C curve for the upper half of Gallagher Peak contains three repeated cycles of increasing delta13C over 1-1.5 Ma, which are possibly related to long-term sea level fluctuations. Given the complexity of each local environment, without detailed biostratigraphy, detailed rock descriptions, and analysis of the various rock components, delta13C stratigraphy of whole rocks can be misinterpreted.
244

Stable carbon isotope ratio of polycyclic aromatic hydrocarbons (PAHs) in the environment: validation of isolation and stable carbon isotope analysis methods

Kim, Moon Koo 15 November 2004 (has links)
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous, toxic contaminants that are released to the environment from various petrogenic and pyrogenic sources. In an effort to more clearly identify and trace sources of PAHs in the environment, purification and compound specific isotope analysis methods were developed to accurately measure the stable carbon isotope ratio of individual PAHs. Development of the method included improving accuracy and precision of the isotopic measurement by producing highly pure extracts using various chromatographic techniques. The method was refined by improving compound separations using purification techniques and high resolution chromatographic columns. The purification method consists of alumina/silica gel column chromatography, gel permeation chromatography and thin layer chromatography. The mean recovery of PAHs after the purification procedure was approximately 80 %. Sample purities after purification were verified by GC/FID and full scan mass spectrometry. To better resolve peaks and provide more accurate stable carbon isotope measurements, various gas chromatographic conditions were evaluated. The precision of the method ranged between 0.08 and 0.43 . The analytical protocols were evaluated to confirm compositional and stable isotopic integrity during purification and stable isotopic analysis. To confirm the utility of the purification and isotope analysis methods, various environmental samples from marine, land and lacustrine environments were analyzed. The isolates were analyzed for the composition and the stable carbon isotope ratios of PAHs. The stable carbon isotope ratio was measured by GC/IRMS and the results, along with quantitative compound compositions, were used to characterize and identify the contaminant sources. The sources of the PAHs in the study areas were differentiated by PAH molecular ratios and confirmed by stable carbon isotope ratios. This study confirms that compound specific isotope analysis of pollutants by GC/IRMS can be used to identify PAH sources in environmental samples. The study also confirms that the purification and stable carbon isotope analysis methods that were developed can be used to accurately measure the stable carbon isotope ratios of PAHs in environmental samples for the purpose of source identification. GC/IRMS measurement of stable isotopic compositions can be an effective fingerprinting method when used in conjunction with traditional molecular composition methods.
245

Stable Isotope Studies of Paleoenvironment and Paleoclimate from Afar, Ethiopia

Bedaso, Zelalem K. 01 January 2011 (has links)
ABSTRACT The sedimentary deposits of the Hadar Formation at Dikika and the Mount Galili Formation at Galili preserve a wealth of paleoenvironmental and paleoclimatic records spanning the last 5.29 Ma. Stable carbon and oxygen isotopic compositions of herbivore tooth enamel were analyzed for more than 600 specimens of 15 different taxa from 10 stratigraphic intervals. The application of carbon and oxygen isotopes here aims principally at reconstructing shifts in the relative abundance of C4 grasses, and its implications for climate indicators including temperature, aridity, and seasonality. The full range of δ13Cenamel values throughout the Plio-Pleistocene signifies a wide range of foraging strategies by the fauna, which in turn reflects the mosaic of vegetation at Dikika and Galili. Estimates of ecosystem carbon isotope composition (δ13Cecosystem , which is given by average δ13Cenamel of each large vertebrate taxon weighted by the respective faunal abundance and the estimated daily biomass consumption) is used to asses shifts in the ecosystem-scale proportion of C3 and C4 vegetation. In the Plio-Pleistocene, the general paleoenvironmental conditions varied from wooded grassland to grasslands with the total amount of C4 grass cover on the landscape varying between 35% and 91%. Likewise, the paleohabitat reconstructions indicate the presence of grassland, wooded grassland, woodland habitats throughout the Pliocene and in Middle Pleistocene but the relative proportion of the habitats has changed substantially with time. Although this result agrees with the general trend towards more open grassland since the Late Miocene, a rebound of closed habitats and C3 resources from closed canopy woodlands or forests is evident in the middle Pliocene between 3.42 Ma and 3.24 Ma. These changes in the proportion of habitats could have affected the distribution and availability of preferred food resources and has an implication on the interaction of the animals on the paleolandscape and competition for resources. 18Oenamel values also show a wide range of variation within each stratigraphic member and through time. Temporal variation of δ13Cenamel values within a given taxon, as well as differences among sympatric taxa, document different aspects of the environment and climate, including changes in drinking water source, seasonality, and periods of strong evaporation. Estimated δ13Cmeteoric water based on the most 18O-depleted hippo tooth enamel, displays values of -1.94 / (VSMOW) and -5.24 / (VSMOW) in the Middle Pleistocene of Asbole and middle Pliocene of Galili, respectively. A major shift in the isotopic composition of water at ~ 3.0 Ma was accompanied by a 6.0 / increase from middle Pliocene to the present. While a +3.8 / shift from early to middle Pliocene was documented. The isotopic composition of meteoric water between 4.6 Ma and 4.38 Ma was most 18O-enriched compared to the rest of the Pliocene estimates. Likewise, an increase in the estimated δ13Cmeteoric water values was documented in the Awash Valley and elsewhere in East Africa, which indicate a regional climate change since the early Pliocene. An increase in the aridity, which is expressed as mean annual water deficit (i.e., the difference between potential evapotranspiration and mean annual precipitation) is also evident since the early Pliocene. These changes during the Pliocene in the region may in part be attributed to a regional decrease in the amount of precipitation and changes in the moisture source superimposed on global climate changes.
246

Evaluating the Influence of Flooding on Aquatic Food-webs in Basins of the Peace-Athabasca Delta Using Isotopic Tracers

Lyons, Stephanie 04 June 2010 (has links)
Periodic flooding has been widely believed to serve an important role in maintaining water levels and productivity of aquatic basins in floodplain landscapes. Here, I analyze four basins of contrasting flood frequencies (one through-flow, one pulse-flooded, two non-flooded) and two adjacent river sites in the PAD were sampled during the open-water season of 2007 and spring of 2008 to characterize linkages between hydrological processes (using O and H stable isotopes) and limnological conditions, and to assess how these linkages affect trophic interactions involving the aquatic flora and fauna (using C and N stable isotopes). The water balance and water chemistry of the through-flow basin was dominated at all times by the input of river water which reduced concentrations of nutrients and ions. In contrast, evaporation played an important role in the water balance and concentrated nutrients and ions in the non-flooded basins. Surprisingly, pulse-flood events had short-lived effects on the water balance and carbon stable isotopic signatures of biota. Hydrological and limnological conditions in the pulse-flooded basin were similar to those of the river water shortly after spring flooding. After flooding, evaporation caused rapid increase of δ18O of the water comparable to patterns observed in the non-flooded basins, but recovery of water chemistry variables was delayed. In the non-flooded and pulse-flooded basins, δ13CDIC declined due to atmospheric CO2 invasion under conditions of high primary productivity and pH that generated strong kinetic fractionation. This decline in δ13CDIC values produced the opposite effect compared to when photosynthesis occurs under non-limiting carbon conditions, as occurred in the through-flow basin. This feature provides important new knowledge to improve paleolimnological interpretation of δ13C values of organic matter in sediment cores to track past changes in flooding regimes. Importantly, this study shows that pulse floods exert short-lived transient (~1-2 months) effects of the water balance and carbon dynamics of aquatic food-webs and do not elevate aquatic production, but exert longer lasting (at least an entire open-water season) on water chemistry conditions. This contrasts with previous beliefs that the effects of pulse flooding are more profound and longer lasting.
247

Utilisation des isotopes stables (HOCN) et radiogéniques (SR) comme indicateurs pour déterminer la provenance des fromages fins du Québec, Canada

L. Desrochers, Stéphanie 11 1900 (has links) (PDF)
La mondialisation des marchés alimentaires ainsi que la facilité avec laquelle les produits sont transportés à travers et entre les pays, a pour impact que les consommateurs sont de plus en plus préoccupés par l'origine des aliments qu'ils consomment. Ainsi, un nombre croissant d'articles scientifiques ont été publiés au cours de cinq dernières années concernant l'utilisation de l'abondance naturellement variable des isotopes comme traceurs pour déterminer la provenance géographique des aliments. Le fromage fait partie des aliments qu'il est possible de retracer grâce à ces méthodes. Le concept de terroir est la combinaison des influences climatiques (isotopes stables), géologique (isotope Sr) et anthropogéniques (producteur de fromage) qui donnent un caractère (goût) particulier à un produit tel que le fromage. L'objectif premier de cette recherche est de vérifier la faisabilité d'une méthode permettant de déterminer la provenance géographique des fromages fins du Québec en utilisant les isotopes stables (H, O, C, N) et le strontium comme indicateur du climat et de provenance géologique afin de renforcer l'utilisation du concept de terroir pour les producteurs locaux. Six fromageries artisanales provenant de différentes régions du Québec ont été échantillonnées pour des fromages de vache et de chèvre. Grâce aux résultats obtenus, nous sommes en mesure de démontrer qu'il est possible de retracer les fromages québécois à l'aide d'isotopes stables et radiogéniques. L'oxygène et l'hydrogène nous permettent de différencier les différents milieux climatiques, mais dû aux variabilités saisonnières, il nous est impossible de distinguer les fromageries sur une plus petite échelle. Par contre, lorsque nous utilisons les compositions isotopiques du strontium combiné avec celles de l'oxygène, nous sommes en mesure de distinguer les fromageries appartenant au même milieu climatique jusqu'à l'échelle locale. D'autre part, le carbone et l'azote nous permettent de différencier si une fromagerie utilise des techniques de fertilisation différentes des autres ou si une fromagerie donne une alimentation particulière à ses animaux. Nous nous sommes finalement servis de ces conclusions afin de faire la distinction entre les fromages commerciaux et internationaux fournissant ainsi aux producteurs locaux du Québec des outils leur permettant de certifier la provenance de leurs fromages et de renforcer l'appellation du terroir québécois. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Fromage, Fromagerie, Isotopes stables, Isotopes radiogéniques, Hydrogène, Oxygène, Carbone, Azote, Strontium, Retraçage géographique, Terroir québécois.
248

Fractionation of carbon isotopes during fatty acid metabolism in Atlantic pollock (Pollachius virens)

AuCoin, Lacey R 02 September 2011 (has links)
Feeding experiments were conducted on Atlantic pollock (Pollachius virens) to examine the variability in tissue fatty acid (FA) composition and stable carbon isotope fractionation of FA during digestion, assimilation and mobilization of lipids. The FA profiles and compound-specific carbon isotopes of chylomicrons, liver, muscle and fasted serum were compared to diet. FA analysis demonstrated similarity among tissue groups despite differences in feeding states. The FA results indicate the blood of post-prandial fish may serve as an alternative to tissue biopsies for the estimation of marine fish diets with compound-specific isotope analysis (CSIA). Despite similarity among FA profiles, the carbon isotope discrimination factors of FA varied independently, which suggests that fractionation is influenced by the degree to which individual FA are oxidized. These results provide preliminary information that is necessary in order to use CSIA to estimate the effects of fish diets.
249

Uso da monitoracao ambiental como tecnica de identificacao de atividades de enriquecimento isotopico

BUCHMANN, JOSE H. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:44:34Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:57:11Z (GMT). No. of bitstreams: 1 06861.pdf: 8656275 bytes, checksum: 33d75be9bc7f27a315785b762567f56c (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
250

Empreinte isotopique et histoire du volcanisme stratosphérique des 2600 dernières années enregistrées à Dôme C, Antarctique / Isotopic imprint and history of stratospheric volcanism recorded in Dome C, Antarctica, over the last 2600 years

Gautier, Elsa 06 November 2015 (has links)
La glace polaire est sans nul doute la meilleure archive dont nous disposons en terme de paléo volcanisme. Les reconstructions du volcanisme passé se basant sur l'analyse des carottes de glace sont nombreuses. Elles alimentent notamment les modèles de forçage climatique, dans le but d'estimer l'effet refroidissant du volcanisme, dû aux interactions entre aérosols d'acide sulfuriques d'origine volcanique, et le rayonnement solaire incident. Dans ce type de reconstruction, l'un des paramètres-clés pour déterminer l'impact potentiel d'une éruption, est l'identification de son signal sur les deux calottes polaires (signal bipolaire). Cette large répartition spatiale traduit en effet un temps de résidence significatif dans la stratosphère, et donc, un impact climatique important. Les carottes de glace offrent pourtant une alternative intéressante à cette méthode : l'analyse du soufre des sulfates volcaniques révèle la présence d'anomalies isotopiques (Δ33S ≠0) dans les aérosols d'origine stratosphérique, permettant la discrimination entre éruptions de faible impact (troposphériques) et éruptions de fort impact (stratosphériques). L'étude de la signature isotopique atypique des aérosols stratosphériques permet en parallèle de contraindre les mécanismes photochimiques à l'origine de cette anomalie, qui ne sont que partiellement identifiés à ce jour. En 2010-2011, 5 carottes de névé de 100m de long ont été collectées à Dôme C, Antarctique, dans le but de reconstruire une histoire du volcanisme stratosphérique des 2500 dernières années, par la méthode isotopique. Le forage de 5 carottes identiques, à 1 m les unes des autres, nous a permis d'étudier différents aspects de la reconstruction.Premièrement, nous avons pu évaluer la variabilité du dépôt de sulfate à l'échelle locale, et donc, la représentativité statistique d'une seule carotte vis à vis d'une reconstruction volcanique. L'analyse des concentrations de sulfate révèle qu'une importante variabilité locale, associée principalement au déplacement de la neige par le vent, pouvait entraîner un enregistrement non exhaustif des évènements volcaniques (en moyenne 30% d'évènements manquants, par carotte) et une variabilité conséquente du flux archivé (jusqu'à 60%).En second lieu, le niveau de détail de nos analyses (résolution temporelle de chaque éruption) nous a permis de décrire plus précisément la signature des processus indépendants de la masse à l'œuvre dans la stratosphère. Les résultats obtenus ne permettent pas de clore le débat concernant le mécanisme photochimique à l'origine de l'anomalie, mais ils contraignent la signature stratosphérique de façon robuste, notamment en définissant les tendances isotopiques (Δ36S vs. Δ33S et Δ33S vs. δ34S). Les implications de ces contraintes sur la chimie atmosphérique actuelle sont discutées à travers l'utilisation d'un modèle simple ; nous évaluons les paramètres requis, en particulier les proportions des différentes voies d'oxydation stratosphériques (dépendantes et indépendantes de la masse), pour reproduire nos résultats.Enfin, l'analyse systématique de la composition isotopique (Δ33S) des évènements volcaniques nous a permis d'établir un historique du volcanisme stratosphérique enregistré à Dôme C au cours des 2600 dernières années. Nos résultats confirment majoritairement l'origine tropicale (stratosphérique) des évènements identifiés comme tels dans la littérature, et suggèrent le caractère stratosphérique (unipolaire) de quelques éruptions de haute latitude. Les résultats ne remettent pas en question la synchronisation des enregistrements bipolaires récemment établis, et valident l'utilisation de la méthode isotopique pour l'identification des éruptions stratosphériques dans un enregistrement glaciaire. / Polar ice has proved to be a very valuable way to access Earth's volcanism history, and a large number of volcanic reconstructions are based on ice-core analysis. Reconstructions are fed into climate forcing models in order to estimate volcanic cooling effect, resulting from the interactions between volcanic sulfuric acid aerosols and incident solar radiations. In this type of reconstruction, determining the potential impact of an eruption is a key step. It usually relies on the identification of its signal in both polar caps (bipolar signal). This wide spatial distribution indeed reflects a significant residence time in the stratosphere, and thus a sizable impact on climate. However, ice cores offer an interesting alternative to this method: the analysis of volcanic sulfates reveals a mass independent fractionation of sulfur (S-MIF) in the aerosols formed in the stratosphere, allowing us to discriminate between low climatic impact (tropospheric) and high climatic impact eruptions (stratospheric). Studying the unusual isotopic signature of stratospheric aerosols simultaneously allows for constraining photochemical mechanisms responsible for this anomaly (Δ33S≠ 0), which are currently only partially identified. In 2010-2011, 5 100m-cores were drilled at Dome C, Antarctica in order to reconstruct a history of stratospheric volcanic over the past 2500 years, by the isotopic method. Drilling 5 replicate cores, 1 m apart, allowed us to study various aspects of the reconstruction.Firstly, we were able to assess the sulfate deposition variability on a local scale, and therefore the statistical representativeness of a single core in a volcanic reconstruction. Sulfate concentration analysis of the 5 cores reveals that local scale variability, essentially attributed to snow drift and surface roughness at Dome C, can lead to a non-exhaustive record of volcanic events if a single core is used; on average 30% of the volcanic events are missing per core, and the uncertainty on the volcanic flux (up to 60%) is substantial.Secondly, our detailed analysis (temporal resolution of each eruption) has allowed us to more accurately describe the stratospheric S-MIF signature. Implications on current atmospheric chemistry are evaluated through the set of trends obtained in our samples. We used a simple model implemented with fractionation factors available in the literature to account for the isotopic pattern observed on volcanic sulfate deposition. Through this tool, we evaluated the respective proportions of the different mechanisms assumed to take part in the oxidation process (mass dependent vs. mass independent processes, self-shielding vs. spectral isotopic effect) needed to reproduce natural data, in the current state of experimental knowledge.Finally, the systematic analysis of the isotopic composition (Δ33S) in volcanic events has allowed us to establish a history of the stratospheric volcanism recorded in Dome C in the last 2600 years. Through the isotopic method, in most cases we confirmed the tropical origin of volcanic events as reported in the literature. Discrepancies hinted at high latitude stratospheric events, but the synchronization between North and South Pole records recently established is not questioned. The results also validate the use of the isotopic method to identify stratospheric eruptions in a glacial record.

Page generated in 0.0461 seconds