• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 8
  • 3
  • 2
  • 1
  • Tagged with
  • 57
  • 27
  • 26
  • 26
  • 18
  • 12
  • 9
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Structure-property-processing relationships between polymeric solutions and additive manufacturing for biomedical applications

Wilts, Emily Marie 01 October 2020 (has links)
Additive manufacturing (AM) creates 3D objects out of polymers, ceramics, and metals to enable cost-efficient and rapid production of products from aerospace to biomedical applications. Personalized products manufactured using AM, such as personalized dosage pharmaceuticals, tissue scaffolds, and medical devices, require specific material properties such as biocompatibility and biodegradability, etc. Polymers possess many of these qualities and tuning molecular structure enables a functional material to successfully deliver the intended application. For example, water-soluble polymers such as poly(vinyl pyrrolidone) and poly(ethylene glycol) both function as drug delivery materials because of their inherit water-solubility and biocompatibility. Other polymers such as polylactide and polyglycolide possess hydrolytically cleavable functionalities, which enables degradation in the body. Non-covalent bonds, such as hydrogen bonding and electrostatic interactions, enable strong connections capable of holding materials together, but disconnect with heat or solvation. Taking into consideration some of these polymer functionalities, this dissertation investigates how to utilize them to create functional biomedical products using AM. The investigation of structure-property-processing relationships of polymer molecular structures, physical properties, and processing behaviors is transforming the field of new materials for AM. Even though novel, functional materials for AM continue to be developed, requirements that render a polymeric material printable remain unknown or vague for most AM processes. Materials and printers are usually developed separately, which creates a disconnect between the material printing requirements and fundamental physical properties that enable successful printing. Through the interface of chemistry, biology, chemical engineering, and mechanical engineering, this dissertation aims to relate printability of polymeric materials with three types of AM processes, namely vat photopolymerization, binder jetting, and powder bed fusion. Binder jetting, vat photopolymerization, and powder bed fusion require different viscosity and powder requirements depending on the printer capabilities, and if the material is neat or in solution. Developing scaling relationships between solution viscosity and concentration determined critical overlap (C*) and entanglement (Ce) concentrations, which are related to the printability of the materials. For example, this dissertation discusses and investigates the maximum printable concentration in binder jetting of multiple polymer architectures in solution as a function of C* values of the polymer. For thermal-type printheads, C* appeared to be the highest jettable concentration, which asserted an additional method of material screening for binder jetting. Another investigation of the photokinetics as a function of concentration of photo-active polymers in solution revealed increased viscosity leads to decreased acrylate/acrylamide conversion. Lastly, investigating particle size and shape of poly(stearyl acrylate) particles synthesized through suspension polymerization revealed a combination of crosslinked and linear polymers produced high resolution parts for phase change materials. These analytical screening methods will help the progression of AM and provide future scientists and engineers a better guideline for material screenings. / Doctor of Philosophy / Additive manufacturing (AM), also known as 3D printing, enables the creation of 3D objects in a rapid and cost-efficient manner for applications from aerospace to biomedical sectors. AM particularly benefits the field of personalized biomedical products, such as personalized dosage pharmaceuticals, hearing aids, and prosthetic limbs. In the future, advanced detection and prevention medical screenings will provide doctors, pharmacists, and engineers very precise data to enable personalized healthcare. For example, a patient can take three different medications in one pill with the exact dosage to prevent side-effects and drug-drug interactions. AM enables the delivery and manufacturing of these personalized systems and will improve healthcare in every sector. Investigations of the most effective materials is needed for personalized medicine to become a reality. Polymers, or macromolecules, provide a highly tunable material to become printable with slight chemical modifications. Investigation of how chemical structure affects properties, such as strength, stretchability, or viscosity, will dictate how they perform in a manufacturing setting. This process of investigation is called "structure-property-processing" relationships, which connects scientists and engineers through all disciplines. This method is used to discover which polymers will not only 3D print, but also carry medication to a patient or deliver therapeutics within the body.
42

Process-Property Characterization for Multi-Material Jetting Applications

Bezek, Lindsey Bernadette 23 June 2022 (has links)
Material jetting (MJ) is an additive manufacturing (AM) process that involves the selective jetting of a liquid material into the shape of a layer and subsequent solidification, often via ultraviolet (UV) irradiation, in a layer-wise fashion. The MJ process has the potential to emerge as a robust fabrication method: the inherent, facile, multi-material capability in a high-resolution process should distinguish the technology as a competitive, multi-functional, manufacturing process. However, it is mainly constrained to prototyping use, limited by both material and process constraints. This research expands material and process knowledge by characterizing the multi-material process-structure-property relationships in photopolymer-based MJ, which provides a basis for advancing the capability of MJ to fabricate accurate and consistent multi-material parts for functional applications. One of the challenges for advancing MJ is the general lack of processable materials. For example, MJ is increasingly being used for fabricating anatomic models for use as pre-procedural planning or medical student trainee tools, but commercial MJ elastomers are unable to mimic human tissues' mechanical properties, which limits the instructional value of printed anatomic models. By combining photo-curing and non-curing materials, a cardiac tissue-mimicking material was achieved and integrated into a fully-printed heart model used to practice the transseptal puncture procedure. Several mechanical properties of this multi-material combination were evaluated to facilitate quicker screening of future tissues that would be desired to be mimicked. Also impeding technological advancement of MJ systems is a lack of understanding the effects of indiscriminate UV exposure on material properties. Depending on factors such as part design and build layout, an indiscriminate UV toolpathing strategy poses the risk for providing inconsistent UV dosing to parts and causing unintended variations in mechanical performance. Experiments were conducted to quantify these effects, and an empirical model was developed to predict the accumulated exposure parts receive. A connection was then made between accumulated exposure received by material voxels and final part properties, where it was observed that overexposure effects exist, and are largely dependent on material, build layout, and toolpathing. This work will lead to improved design guidelines and process modifications to ensure consistency of UV dosing and achieve desired mechanical performance. This knowledge will enable future photopolymer AM systems to account for potential overcuring effects toward fabricating repeatable and reproducible functional products. Finally, documented in this work are efforts toward expanding the knowledge about the use of AM to safely produce personal protective equipment during the COVID-19 pandemic. Amid prospects of large-scale, distributed production of respirators via AM, the lack of filtration efficiency testing generated concerns about the respirators' effectiveness. The goal of this work was to measure particle transmission through respirators fabricated with powder bed fusion and fused filament fabrication processes and compare their performance to that of cloth masks and standardized N95 respirators. Through systematic post-processing, the connection between printed respirator deficiencies and changes in filtration efficiency were discerned. Identifying the system-level quality control challenges responsible for the respirator failure modes highlights some the current limitations in AM for fabricating functional parts. The findings will assist future efforts toward both creating enhanced designs and optimizing printer parameters, ultimately working toward qualifiable, end-use parts. / Doctor of Philosophy / The material jetting (MJ) additive manufacturing (AM) process operates in a similar fashion to inkjet printing. For MJ of photopolymer materials, liquid droplets are selectively deposited onto a build plate, and an ultraviolet (UV) light bulb provides the energy to solidify the droplets into a three-dimensional layer by curing the materials. Droplets are then deposited on top of these solidified droplets to fabricate a part layer by layer. Multiple materials and colors can be jetted simultaneously within a single part layer. If these materials exhibit different mechanical behavior, such as one material being rigid and another being flexible, a printed part could have regions with different material properties, as well as intermediate gradients of these properties. The MJ process offers high resolution, smooth surface finishing, a large build volume, and the opportunity to print multiple parts in one build. However, the process is mainly limited to prototypes and non-functional applications. One of the challenges for advancing MJ is the general lack of processable materials. In the medical field, surgeons are increasingly looking to MJ to fabricate physical, patient-specific models to assist in pre-surgical planning and to serve as practice models for medical student trainees. In particular, a printed cardiovascular model was sought to enable the practice of the transseptal puncture procedure; however, the available materials were not able to mimic the heart tissue. In this work, a non-curing liquid was patterned into an elastomer to soften the material and attain tissue-mimicking performance for a model to practice the transseptal puncture procedure. By characterizing this expanded material space, this work enables the potential for mimicking a broader spectrum of tissues in future anatomic models. Another aspect limiting widespread functional use for MJ is the lack of understanding how UV exposure affects material performance. For the MJ process, the UV light is on the same assembly as the printheads and remains on throughout the duration of a print, which means that the amount of administered energy is not consistent across the build plate. If, for example, parts have different heights, the shorter part will finish printing first and receive excess UV exposure, which has been shown to alter the mechanical performance for some materials. A model was developed to predict the accumulated exposure received by parts of different materials and build scenarios. Observed changes in mechanical properties could then be connected to specific instances of overexposure. With this knowledge, future strategies can be implemented to achieve consistency of UV exposure and thus better ensure reliable, functional parts. Additionally presented in this work is a study involving the use of AM to safely produce personal protective equipment for COVID-19 relief efforts. During the initial stages of the pandemic, AM was sought to address respirator shortages; however, there were no studies measuring printed respirators' effectiveness. By measuring particle transmission through respirators fabricated with a variety of AM processes, it was found that even when N95 filters were inserted, printed respirators were not able to consistently filter 95% of virus-sized particles, even with modifications. The quality control challenges for the AM processes identified in this study will assist future efforts in part design and printer parameter optimization to work toward accurate and qualifiable products.
43

Independent Project in Chemical Engineering and Materials Engineering : A literature study of powder-based additive manufacturing

Feldt, Daniel, Hedberg, Petra, Jarlöv, Asker, Persson, Elsa, Svensson, Mikael, Vennberg, Filippa, You, Therese January 2018 (has links)
The focus of this literary study was additive manufacturing (AM) and the purpose was to find general trends for selected materials that have been additively manufactured and compare them to results from other reviews. The raw materials studied were stainless steels 316L, 17-4 PH, 15-5 PH and 420, as well as tool steel H13 and nickel alloys 625, 718 and Hastelloy X.The AM techniques studied were selective laser melting (SLM), electron beam melting (EBM) and binder jetting (BJG).  A total of 69 articles have been studied to fulfill the purpose above. The articles were used to write a summary of the techniques, compare them to each other and to conventional methods. They were also used to create a database to compile information on mechanical properties, microstructure and process parameters. Based on the database mechanical properties for SLM tend to be higher compared to EBM. This however varied somewhat depending on the processed material. Furthermore the yield and tensile strength obtained from the database for SLM seemed to be higher compared to the values in review articles for almost all materials. Unfortunately not enough values were found for BJG to compare it to SLM and EBM.AM seems to produce weaker, equal and superior products compared to conventional methods. However due to the limited nature of the project and the research found no conclusions can be drawn about any trends, how to achieve the different results or how parameters affect the finished product. To be able to say anything with more certainty more research has to be done. Not only in general concerning the AM techniques, but more studying of existing articles is needed. Finally a standardization on how to reference properties and process parameters is necessary. Currently it is very difficult to compare results or draw conclusions due to different designations, units and a lot of missing essential information.
44

Independent Project in Chemical Engineering and Materials Engineering : A literature study of powder-based additive manufacturing

Feldt, Daniel, Hedberg, Petra, Jarlöv, Asker, Persson, Elsa, Svensson, Mikael, Vennberg, Filippa, You, Therese January 2018 (has links)
The focus of this literary study was additive manufacturing (AM) and the purpose was to find general trends for selected materials that have been additively manufactured and compare them to results from other reviews. The raw materials studied were stainless steels 316L, 17-4 PH, 15-5 PH and 420, as well as tool steel H13 and nickel alloys 625, 718 and Hastelloy X. The AM techniques studied were selective laser melting (SLM), electron beam melting (EBM) and binder jetting (BJG).  A total of 69 articles have been studied to fulfill the purpose above. The articles were used to write a summary of the techniques, compare them to each other and to conventional methods. They were also used to create a database to compile information on mechanical properties, microstructure and process parameters. Based on the database mechanical properties for SLM tend to be higher compared to EBM. This however varied somewhat depending on the processed material. Furthermore the yield and tensile strength obtained from the database for SLM seemed to be higher compared to the values in review articles for almost all materials. Unfortunately not enough values were found for BJG to compare it to SLM and EBM.AM seems to produce weaker, equal and superior products compared to conventional methods. However due to the limited nature of the project and the research found no conclusions can be drawn about any trends, how to achieve the different results or how parameters affect the finished product. To be able to say anything with more certainty more research has to be done. Not only in general concerning the AM techniques, but more studying of existing articles is needed. Finally a standardization on how to reference properties and process parameters is necessary. Currently it is very difficult to compare results or draw conclusions due to different designations, units and a lot of missing essential information.
45

Detailed analyses and numerical modeling of a new multi-staged fluidized-bed gasifier

Laugwitz, Alexander 10 January 2018 (has links) (PDF)
In der vorliegenden Arbeit werden verschiedene Simulationsansätze angewandt um die Hydrodynamik in einem neu entwickelten Wirbelschichtvergaser zu untersuchen. Die Ansätze umfassen a) entdimensionalisierter Ähnlichkeitskennzahlen und empirischer Gleichungen, b) 1D Simulationen mittels ASPEN Plus®, c) 3D CFD Simulationen mittels Ansys Fluent® zur detaillierten Abbildung der zu erwartenden Hydrodynamik. Vor- und Nachteile der jeweiligen Ansätze sowie Klassen von ermittelbaren Simulationsdaten werden diskutiert. Ein Schwerpunkt der Arbeit liegt in der Identifizierung geeigneter Experimente aus der Literatur, auf Basis von Ähnlichkeitskennzahlen, um die Simulationen zu validieren. Die Vergasersimulationen zeigen, dass sich erwartungsgemäß ein aus hydrodynamischer Sicht gestufter Prozess ausbildet. Die entstehenden Zonen lassen sich als Festbett, blasenbildende Wirbelschicht, Jet-Wirbelschicht mit Rezirkulationszelle und strähnenbildende, zirkulierende Wirbelschicht identifizieren und entsprechen demnach dem Verfahrensanspruch.
46

Assessment of the ballistic performance of compositional and mesostructural functionally graded materials produced by additive manufacturing

Daugherty, Timothy J. 06 August 2020 (has links)
No description available.
47

Influence of Nozzle Pressure, Standoff Distance, and Reinforcing Steel Cage on Water Jetting of CIDH Pile Anomalies

Schaffer, Matthew Jason 01 March 2011 (has links)
The effectiveness of removing anomalous material from cast-in-drilled-hole (CIDH) piles by water jetting was examined. The primary objectives of this research were to examine how reinforcing steel influences water jetting and to evaluate how jetting pressures and standoff distance from the material surface affect water jetting of concrete type materials and PVC tubing. The experimental work consisted of water blasting submerged test specimens using rotary jets, nozzles, pumping equipment, and testing procedures currently used in construction practice. The concrete test specimens were comprised of ring- and cylinder-shaped samples, containing materials with compressive strengths of approximately 160 and 3,600 psi. Typical PVC tubing used as inspection access holes for non-destructive testing in CIDH piles was utilized for tubing specimens. During testing, erosion depths were measured as a function of standoff distance and jetting pressure. Water jetted specimens containing reinforcing steel were cut apart after testing to permit inspection of the erosion cavity and eroded material surfaces behind the steel reinforcement. Reinforcing steel bars in CIDH piles do interfere with the jet path and will locally influence material erosion and water-jetting effectiveness. For a relatively weak material, water-jetting pressures between 10,000 and 11,000 psi produced erosion up to a radial distance of approximately 12 inches from the water jet. This erosion distance is less than half the typical maximum design spacing of PVC inspection access tubing installed in CIDH piles.
48

Binder-Powder Interaction: Investigating the Process-Property Relations in Metal Binder Jetting

Rahman, Kazi Moshiur 27 January 2023 (has links)
Binder jetting (BJT) is a powder bed based additive manufacturing (AM) process where the interaction of inkjetted droplets of a binder and particles in the powder bed create 3D geometries in a layerwise fashion. The fabricated green parts are usually thermally post-processed for densification and strengthening. BJT holds distinct advantages over other AM processes as it can fabricate parts with virtually any materials (metals, ceramics, and polymers) in a fast and cost-effective way, while achieving isotropic material properties in the parts. However, broad adoption of this process for production is still lagging, partially due to the lack of repeatable part quality, which largely stems from the limited understanding of the process physics, namely binder-powder (B/P) interaction. To bridge this knowledge gap, it is necessary to understand the implications of B/P interaction on process-structure-property relationships and discover ways to achieve new functionalities for enhanced properties. Thus, this research is broadly focused in establishing understanding in (i) binder-powder interaction and (ii) the impact of binder on part densification. Prior studies have focused on the effects of powder interaction with micro/meso-scale binder droplets, despite commercial BJT systems featuring picoliter-scale droplets. These studies have explored the effects of B/P interaction on printed primitive formation, but it's implication on final part properties have not been studied. In this work, the effects of particle size distribution and droplet size variation on final part properties are explored. Additionally, the effects of B/P interaction on accuracy and the resolution of the printed parts are investigated. Densification of parts is a primary focus of many BJT studies as it dictates the final part properties and is influenced by factors from both the printing process and post-processing treatments. Binder plays an integral role in the shaping of parts and maintaining part integrity until densification through sintering. Prior studies on the effects of binder content on densification are inclusive. In this work, a new approach termed as "shell printing" is introduced to vary the binder content in the parts. The process-structure-properties influenced by this approach are investigated. It was found that binder hinders densification, and through the selective variation of binder content throughout the part volume, this new approach is introduced as a means for enhancing part properties. Finally, the insights from the impact of binder on densification are leveraged to create an anti-counterfeiting tagging strategy by controlling the pores and grain microstructures inside a part. In this novel approach, binder concentration is controlled in a manner that the stochastically formed pores are clustered to create a designed domain that represents a secret 'tag' within the part volume. The created tagging domains, and the feature resolvability of this approach are investigated through metallographic characterization and non-destructively evaluated through micro-computed tomography. / Doctor of Philosophy / Binder jetting (BJT) is an additive manufacturing (AM) process to create 3D geometries from powder particles. Liquid droplets of binder from an inkjet printhead are jetted on a bed of packed powders, binding the particles. The as-printed parts, known as green parts, are generally fragile and require thermal post-processing (through sintering) for densification and strengthening. BJT holds distinct advantages over other AM processes as it can fabricate parts with virtually any powdered materials (metals, ceramics, and polymers) in a fast and cost-effective way. However, broad adoption of this process for production is still lagging, partially due to the lack of repeatable part quality, which largely stems from the limited understanding of the process physics, namely binder-powder (B/P) interaction. In this study the implications of B/P interaction on part quality (e.g., density, strength) and dimensional accuracy are studied. Additionally, the impact of binder on sintering densification is studied. Specifically, the effects of varying amount of binder on sintered part density, strength and internal pore and grain microstructures are empirically investigated. Finally, a novel anti-counterfeiting method for BJT printed parts is introduced based on the insights gained from the study of the impact of binder on densification. Through control over binder placement throughout the part, porous regions can be generated selectively throughout the part volume, which can be detected through x-ray computed tomography. Overall, an improved understanding of BJT processing conditions is achieved through this research, which can guide future designers to fabricate BJT parts with enhanced part properties and functionality.
49

Interaction lumière-nuage de particules micrométriques hautes vitesses : application à la Vélocimétrie Hétérodyne / Insight into the Photon Doppler Velocimetry response of high-speed micron-sized metallic ejecta cloud

Franzkowiak, Jean-Eloi 29 November 2018 (has links)
Au passage d’un choc sur la surface rugueuse d’un métal, un nuage de débris micrométriques est éjecté. Sa signature spectrale temps-vitesse est mesurée au moyen d’un système optique interférométrique : la Vélocimétrie Hétérodyne (VH).Dans un régime de diffusion simple de la lumière, une étude paramétrique a mis en évidence l’influence des paramètres clés du nuage sur sa réponse Doppler. Nous avons estimé, par Maximum de Vraisemblance, la courbe masse-vitesse d’un nuage d’étain et l’incertitude associée. L’allure de la mesure a également été étudiée en incorporant aux calculs le rendement optique de la sonde.Nous présentons une méthode de calcul Monte Carlo, rendant compte des effets de diffusion multiple. Appliquée à trois expériences d’éjection d’or et d’étain, la présence de vitesses non physiques sur la mesure VH, liée aux diffusions multiples nuage-surface-nuage, a été soulignée, et les décroissances progressives de la visibilité en vitesse et de la puissance rétrodiffusée justifiées. Quelle que soit la masse éjectée, la diffusion multiple doit être intégrée aux calculs, un régime de diffusion simple n’étant valable qu’asymptotiquement, dans les limites d’un temps infini et/ou d’un faisceau sonde de dimension réduite par rapport aux libres parcours moyen de diffusion. / As a shockwave reaches a roughened metal’s surface, high-speed micron-sized particles are ejected. The spectral signature of the cloud can be measured using a fiber-based interferometric setup, so-called Photon Doppler velocimetry (PDV).In the single scattering regime, we study how the parametric dependencies of the cloud influence its Doppler response. Using a Maximum Likelihood technique, we estimate the mass-velocity function of ejected material, and its uncertainty. The time-dependent statistical properties of the spectrum, coming from the complex optical collection efficiency of the probe, are also explained.We present a Monte Carlo method to incorporate multiple scattering. Three different ejecta experiments are studied and the presence of non-physical velocities attributed to multiple scattering between surface and ejecta. Cloud’s visibility and backscattered power decrease with time due to the existence of different scattering regimes. Whatever the ejected mass, multiple scattering effects have to be integrated in PDV calculations. A single scattering will only be asymptotically valid, when time reaches infinity and/or the beam diameter is negligible with respect to the scattering mean free paths.
50

Detailed analyses and numerical modeling of a new multi-staged fluidized-bed gasifier

Laugwitz, Alexander 19 October 2017 (has links)
In der vorliegenden Arbeit werden verschiedene Simulationsansätze angewandt um die Hydrodynamik in einem neu entwickelten Wirbelschichtvergaser zu untersuchen. Die Ansätze umfassen a) entdimensionalisierter Ähnlichkeitskennzahlen und empirischer Gleichungen, b) 1D Simulationen mittels ASPEN Plus®, c) 3D CFD Simulationen mittels Ansys Fluent® zur detaillierten Abbildung der zu erwartenden Hydrodynamik. Vor- und Nachteile der jeweiligen Ansätze sowie Klassen von ermittelbaren Simulationsdaten werden diskutiert. Ein Schwerpunkt der Arbeit liegt in der Identifizierung geeigneter Experimente aus der Literatur, auf Basis von Ähnlichkeitskennzahlen, um die Simulationen zu validieren. Die Vergasersimulationen zeigen, dass sich erwartungsgemäß ein aus hydrodynamischer Sicht gestufter Prozess ausbildet. Die entstehenden Zonen lassen sich als Festbett, blasenbildende Wirbelschicht, Jet-Wirbelschicht mit Rezirkulationszelle und strähnenbildende, zirkulierende Wirbelschicht identifizieren und entsprechen demnach dem Verfahrensanspruch.:1 INTRODUCTION 1 1.1 Market Situation 1 1.2 Objective Work 3 1.3 Structure of this Work 4 2 FUNDAMENTAL CONSIDERATIONS 5 2.1 Fundamentals of Gasification and Gasifiers 5 2.1.1 Counter-Current Fixed-Bed Gasifiers 7 2.1.2 Fluidized-Bed Gasifiers 9 2.1.3 Entrained-Flow Gasifiers 10 2.1.4 Technology Development Trends 11 2.1.5 Conclusion 12 2.2 Fundamentals of Fluidized-Bed Systems 13 2.2.1 Particle Characterization 13 2.2.2 Types of Fluidized Beds and Key Parameters 15 2.2.3 Fast-Fluidized Beds 18 2.2.4 Jetting-Fluidized Beds 19 2.2.5 Spouted Beds 24 2.2.6 Conclusion 27 3 APPROACHES TO ASSESS FLUIDIZED BEDS 28 3.1 Empirical Simulation 28 3.1.1 Nondimensional groups 28 3.1.2 Conclusion 36 3.2 Simulation with ASPEN Plus® 36 3.3 CFD Simulation 38 3.3.1 Modelling Approaches for Numerical Simulation of Fluidized Beds 38 3.3.2 Two Fluid Model (TFM) 40 3.3.3 Kinetic Theory of Granular Flow (KTGF) 44 3.3.4 Conclusion 46 4 COORVED GASIFICATION CONCEPT 48 4.1 Concept of Staged Conversion 48 4.1.1 Drawbacks of Conventional Fluidized-Bed Gasifiers 48 4.1.2 Basic Concept COORVED Gasifier 49 4.1.3 COORVED – Fixed-Bed Zone 49 4.1.4 COORVED – Bubbling-Bed Zone 50 4.1.5 COORVED – Jetting-Bed Zone 50 4.1.6 COORVED – Fast-Bed Zone 51 4.1.7 Conclusion 51 4.2 Test Facility and Reactor Design 52 4.3 Cold Flow Test Unit 53 4.4 Reference Cases 54 4.4.1 Solids Characterization 54 4.4.2 Gas Phase Properties 54 5 COORVED REACTOR IN FLOW REGIME DIAGRAMS 56 5.1 Reh Diagram for the Reference Case 56 5.2 Reh Diagram for Experimental Campaigns and CFD Case 57 5.3 Regime Diagrams for the Jetting-Bed Zone 60 5.4 Conclusion 61 6 CFD SIMULATION OF COORVED REACTOR 62 6.1 Verification of Multiphase CFD Setup 62 6.1.1 Parallelization 64 6.1.2 Pressure Drop and Minimum Fluidization Velocity 65 6.1.3 Conclusion 67 6.2 Grid Study 68 6.2.1 Pressure Drop 69 6.2.2 Voidage Profiles 69 6.2.3 Velocity Profiles 71 6.2.4 Conclusion 72 6.3 Validation Experiment Bubbling Bed and Fast Bed 72 6.3.1 Experimental Setup Holland 73 6.3.2 Simulation Setup 75 6.3.3 Results 77 6.3.4 Conclusion 84 6.4 Validation Experiment Jetting Bed 85 6.4.1 Experimental Setup 85 6.4.2 Simulation Setup 87 6.4.3 Results 88 6.4.4 Conclusion 95 6.5 CFD Simulation COORVED 96 6.5.1 Computational Grid 97 6.5.2 Cold Flow, Single Phase Jet 97 6.5.3 CFD setup 99 6.5.4 Results 99 6.5.5 Conclusion 103 7 ASPEN PLUS® SIMULATION OF THE COORVED GASIFIER 105 7.1 Validation Experiment Bubbling Bed and Fast Bed 105 7.2 COORVED Simulation 107 7.3 Conclusion 108 8 SUMMARY 109 9 OUTLOOK 114 9.1 Modeling Tools 114 9.2 COORVED Development 114 10 APPENDIX 115 11 REFERENCES 120

Page generated in 0.1063 seconds