401 |
Characterisation of tight junctions in polymorphic light eruptionPond, Emma January 2016 (has links)
Polymorphic light eruption (PLE) is the most common photodermatosis, affecting ~17% of the population. PLE is a delayed-type hypersensitivity response to an antigen induced by solar ultra-violet radiation (UVR). Its effects vary between patients, but the main symptom is a non-scarring, red papular rash in areas exposed to UVR. An effective therapy is low dose ultra-violet B (NBUVB) phototherapy. It is thought that NBUVB phototherapy desensitises the skin to further UVR exposure, but the mechanism by which this happens is unknown. Current immune based studies have been unable to clarify a mechanism as to how PLE arises. However, research in other skin diseases, such as psoriasis and atopic dermatitis, has shown that the barrier function of the skin is compromised by these disorders. Furthermore, research in lesional PLE skin showed an increase in barrier permeability of the skin. Recent research has specifically linked claudin proteins of tight junctions to the barrier dysfunction. Therefore, this study used quantitative immunofluorescent staining to measure tight junction (TJ) proteins and other barrier proteins of interest. Barrier function was also measured by transepidermal water loss (TEWL); a tracer dye penetration assay was used to measure TJ barrier function specifically. All measurements were made in non-lesional PLE skin, as compared to skin from healthy human volunteers. In photoprotected PLE skin the TJ protein claudin-1 was significantly reduced compared to healthy skin. The use of a tracer dye highlighted there was a reduction in TJ barrier function in PLE skin compared to healthy individuals. PLE and healthy skin were then exposed to ultra-violet B (UVB) and 24h later TJ proteins and TJ barrier function were measured. There was no change to claudin-1 after UVB exposure in PLE skin, but claudin-7 was reduced and claudin-12 increased. In contrast, in UVB-irradiated skin in normal controls after UVB exposure claudin-7 and claudin-12 were both increased, whilst claudin-1 was reduced. In PLE patients there was no further change to TJ barrier function, however, in normal controls, skin TJ barrier function was reduced post UVB. Both in healthy and PLE skin TEWL was unchanged before and after UVB exposure. Lastly TJ proteins were investigated after NBUVB in PLE patients. There was a further reduction in claudin-1 in PLE patients as well as a reduction in the TJ protein occludin, however the stratum corneum was significantly thickened. It could be suggested that this is a compensatory measure for the reduction seen in TJ barrier proteins, however further studies are needed to understand this. These data show significant differences in the TJ skin barrier in patients with PLE as compared to healthy human volunteers before and after UVB exposure. Furthermore, in PLE skin there is a significant change to the epidermis after NBUVB phototherapy. These data demonstrate that TJ protein expression and function is altered in PLE skin and may contribute to aetiology of the disorder, however the role of TJ barrier in aetiology is yet to be firmly established.
|
402 |
A Critical Period for Functional Motor Recovery After Peripheral Nerve Injury in the MouseLee, Stella Joonmyung 01 May 2015 (has links)
Repair of peripheral nerve injury often results in poor functional motor recovery. This deficit has previously been attributed to the failure of axons to regenerate into the muscle. However, we have recently reported that following nerve injury in mice, axons have regenerated to the motor end plate in animals with poor recovery. We proposed that following axonal injury, there is a critical period during which the axon must reach the muscle in order to form a functional neuromuscular junction. We have developed a mouse model of prolonged denervation, in which the sciatic nerve is crushed repeatedly every few days, preventing regenerating axons from reaching the muscle. This multiple crush model allows us to vary the period of denervation by modifying the number of crushes. Motor recovery as assessed using the toe-spreading score occurs after 3 or 4 multiple crushes every 7 days (24 or 31 days of denervation) but not after 5 crushes (38 days). Immunostaining for alpha-bungarotoxin and neurofilament confirmed end plate reinnervation. Thus following denervation > 38 days, a motor deficit persists despite end plate reinnervation. Although the mechanism for the deficit requires investigation, these results suggest that functional neuromuscular junction reestablishment more than end plate reinnervation and that there is a time limit for functional synapse reformation.
|
403 |
Identification of echinus and characterization of its role in Drosophila eye developmentBosdet, Ian Edward 11 1900 (has links)
The precise structure of the adult Drosophila eye results from a coordinated process of cell sorting, differentiation and selective cell death in the retinal epithelium. Mutations in the gene echinus cause supernumerary pigment cells due to insufficient cell death. This study reports the identification of echinus and the characterization of its role in Drosophila retinal development. Using a combination of deletion mapping, gene expression analysis and genomic sequencing, echinus was cloned and several alleles were sequenced. echinus encodes a ~180kDa protein containing an ubiquitin hydrolase domain at its N-terminus and a polyglutamine tract at its C-terminus. echinus is expressed in the retina during pupal development and mutants of echinus have decreased levels of apoptosis during several stages of retinal development. Defects in the cell sorting process that precedes cell death are also observed in echinus loss-of-function mutants and echinus overexpression can cause defects in ommatidial rotation and the morphology of cone cells. echinus is a positive regulator of DE-cadherin and Enabled accumulation in adherens junctions of retinal epithelial cells. Genetic interactions were observed between echinus and the genes wingless, enabled and expanded. An immunofluorescence assay in Drosophila S2 cell cultured demonstrated that Echinus localizes to intracellular vesicles that do not appear to be endocytic in nature, and the C-terminal region of Echinus was shown to be necessary for this association. A protein interaction screen using an immunoprecipitation and mass spectrometry approach identified interactions between Echinus and the vesicle coat protein Clathrin, the scaffolding protein RACK1 and the casein kinase I epsilon (Dco). Co-immunoprecipitation additionally identified an interaction between Echinus and Enabled. This work has revealed echinus to be an important regulator of cell sorting and adherens junction formation in the developing retina and has identified multiple interactions between echinus and enabled, a regulator of the actin cytoskeleton. / Medicine, Faculty of / Medical Genetics, Department of / Graduate
|
404 |
Two-phase slug flow measurement using ultrasonic techniques in combination with T-Y junctionsKhalifa, K. M. January 2010 (has links)
The accurate measurement of multiphase flows of oil/water/gas is a critical element of oil exploration and production. Thus, over the last three decades; the development and deployment of in-line multiphase flow metering systems has been a major focus worldwide. Accurate measurement of multiphase flow in the oil and gas industry is difficult because there is a wide range of flow regimes and multiphase meters do not generally perform well under the intermittent slug flow conditions which commonly occur in oil production. This thesis investigates the use of Doppler and cross-correlation ultrasonic measurements made in different high gas void fraction flow, partially separated liquid and gas flows, and homogeneous flow and raw slug flow, to assess the accuracy of measurement in these regimes. This approach has been tested on water/air flows in a 50mm diameter pipe facility. The system employs a partial gas/liquid separation and homogenisation using a T-Y junction configuration. A combination of ultrasonic measurement techniques was used to measure flow velocities and conductivity rings to measure the gas fraction. In the partially separated regime, ultrasonic cross-correlation and conductivity rings are used to measure the liquid flow-rate. In the homogeneous flow, a clamp-on ultrasonic Doppler meter is used to measure the homogeneous velocity and combined with conductivity ring measurements to provide measurement of the liquid and gas flow-rates. The slug flow regime measurements employ the raw Doppler shift data from the ultrasonic Doppler flowmeter, together with the slug flow closure equation and combined with gas fraction obtained by conductivity rings, to determine the liquid and gas flow-rates. Measurements were made with liquid velocities from 1.0m/s to 2.0m/s with gas void fractions up to 60%. Using these techniques the accuracies of the liquid flow-rate measurement in the partially separated, homogeneous and slug regimes were 10%, 10% and 15% respectively. The accuracy of the gas flow-rate in both the homogeneous and raw slug regimes was 10%. The method offers the possibility of further improvement in the accuracy by combining measurement from different regimes.
|
405 |
The Role of the Claudin 6 Cytoplasmic Tail In Epidermal Differentiation and the Role of Cdx In Endodermal DevelopmentEnikanolaiye, Adebola January 2015 (has links)
The mammalian skin provides a necessary barrier between the organism and the environment, defending against loss of water and solutes, preventing the invasion of pathogens as well as protecting against chemical and physical assault. Claudin (Cldn)-based Tight Junctions (TJs) are the main functional part of the skin barrier. In particular, Cldn6 through its cytoplasmic tail has been shown to be important for barrier function. In other to further investigate the role of the Cldn6 tail in TJ-function, we developed Cldn6 mouse mutants carrying varying truncations of the Cldn6 tail. Both of these mice present with epidermal differentiation perturbations and delayed barrier function that is repaired later in life. These studies support the importance of the tail portion of the Cldn molecules in epidermal differentiation and barrier function. In addition, both of these mouse models are useful for the study of barrier function in preterm infants and in aging, with the hope of developing novel therapeutics for the alleviation of barrier dysfunction.
Cdx is a family of homeodomain (HD) transcription factors (TFs) essential for many key developmental processes. In particular, Cdx2 is important for the establishment and maintenance of posterior identity in the developing endoderm. In spite of this, only a few Cdx targets in the developing endoderm have been discovered. In addition, the interplay between Cdx and its targets within the endoderm is poorly understood. In this study, we show that the forkhead box transcription factor, Foxa2 is a Cdx2 target. We also show that Foxa2 and Cdx2 physically and genetically interact to regulate a subset of genes that are implicated in endodermal development. These studies help to further our understanding of endoderm biology with the goal of developing new strategies to diagnose and treat diseases associated with defective endoderm development.
|
406 |
Multi-Junction Solar Cells and Photovoltaic Power Converters: High-Efficiency Designs and Effects of Luminescent CouplingWilkins, Matthew January 2017 (has links)
Multi-junction photovoltaic devices based on III-V semiconductors have applications in space power systems and terrestrial concentrating photovoltaics, as well as in power-over-fibre and optical power conversion systems. These devices have between two and twenty junctions arranged in tandem, connected in series with optically transparent tunnel diodes. In some cases, they may include as many as eight different materials, including ternary and quaternary alloys, and >100 epitaxial layers in total.
A general method for simulating performance of these devices using drift-diffusion based device simulation tools is reviewed. This includes discussion of the geometry, discretization, and physical equations to be solved. A set of material parameters for some important materials is listed, and solutions are shown for an example of a lattice-matched four-junction GaInP / (In)AlGaAs / InGaAsN(Sb) / Ge solar cell including a dilute nitride based p-i-n junction with ∼ 0.9 eV band gap.
A sample of this dilute nitride junction with a 650 nm absorber layer was grown by molecular beam epitaxy and was shown to have short-circuit current density of 15.1 mA/cm2, sufficient for use in the 4-junction structure, while transmitting sufficient light through to the bottom (germanium) junction. Open-circuit voltage was up to 0.186 V at 1-sun, increasing to 0.436 V under 1500 suns concentration.
The device simulation methodology was extended to include effects of luminescent coupling and photon recycling. These effects are included by adding a term to the electron and hole continuity equations, and the resulting coupled system of equations is solved. No external iterative loop is required, as has been the case in other efforts to model these effects. A five-junction photonic power converter (PPC) is simulated and it is shown that the quantum efficiency of the device is significantly broadened through luminescent coupling. There is a 350 mV reduction in simulated open-circuit voltage (70 mV per junction) if luminescent coupling is neglected. This work was later extended to a 12-junction PPC device, where the simulation predicts a wavelength sensitivity of -1.1%/nm in the absence of luminescent coupling; this is reduced to -0.4%/nm when luminescent coupling is included in the calculation. The latter result, and the overall shape of the simulated quantum efficiency curve agree closely with experimental measurements.
Finally, two specific applications of PPCs are demonstrated. The first is in a step-up DC-to-DC converter, where a linear regulator combined with a laser/PPC pair can convert a 3.3 V input (commonly available from a single lithium polymer battery cell) into 12 V. Unlike conventional switching boost converters, this ‘photonic boost converter’ is not a source of ripple. In testing, a >80 dB reduction in ripple was measured compared with an equivalent switching boost converter, limited only by input noise of the instrument.The second application is in a 60 kW, 650 V switching circuit such as might be found in a hybrid or electric vehicle drivetrain. These circuits need several isolated power supplies to power gate drivers for the IGBT or SiC MOSFET switching components. This isolation is commonly provided by a small transformer, which inherently has a parasitic capacitance between primary and secondary windings and creates a path for EMI currents to flow from the high-power components to the power supply and control circuitry. By using a laser/PPC pair to provide the needed isolation, this parasitic capacitance can be largely eliminated; a 20 dB reduction in EMI current reaching the control FPGA is demonstrated.
|
407 |
Micromagnétismes des films minces / micromagnetics of very thin filmsSoueid, Salwa 10 March 2015 (has links)
Les matériaux ferromagnétiques possèdent la propriété de devenir magnétiques, c’est à dire de s'aimanter, lorsqu'ils sont en présence d'un champ magnétique et de conserver une partie de leur magnétisation lorsque le champ est supprimé. C’est pour cette raison, ces matériaux sont devenus d'usage dans de nombreuses applications industrielles. Le modèle mathématique du micromagnétisme a été introduit par W.F. Brown (voir [11]) pour d'écrire le comportement de l'aimantation dans les matériaux ferromagnétiques depuis les années 40.Pour étudier ce phénomène, on le transforme en un système l'étude de ces équations donnent les informations physiques attendus dans des espaces appropriés. Dans cette thèse on s’est intéressé à des structures minces de films ferromagnétiques. En pratique, une structure mince est un objet tridimensionnel ayant une ou deux directions prépondérantes comme par exemple une plaque, une barre ou un fil. Nous étudions le comportement de l'énergie quand l'épaisseur du film tend vers zéro. Dans le premier travail, nous généralisons un résultat dû à Gioia et James à des dimensions supérieures à 4. Plus précisément, on considère un domaine mince borné ferromagnétique dans R^n, le but est d'étudier les comportements asymptotiques de l'énergie libre du domaine mince ferromagnétique. Dans le deuxième travail, on s'intéresse à une approche dynamique de problème micromagnétisme . On étudie le comportement asymptotique des solutions des équations Landau Lifshitz dans un multi-structure mince ferromagnétique composée de deux films minces orthogonaux d'épaisseur respectif h^a et h^b. On distingue différents régimes: lorsque lim h^a_n/h^b_n in ]0;infty[. On identifie le problème limite et on montre que ce dernier est couplé par une condition de jonction sur l'axe vertical x2, pour tout x2 in] -1/2,1/2[.La troisième partie est liée à ce dernier travail, nous complétons l'étude précédente lorsque lim h^a_n/h^b_n = 0 et +infty (voir [2]). En suite dans la quatrième chapitre, on a étudié des phénomènes de micromagnétisme dans un multi-structure mince: il s'agit d'un ouvert connexe de R3 composé de deux parties ayant un angle etha in ]0; pi[, le but est d'étudier les comportements asymptotiques de l'énergie libre dans ce domaine lorsque l'épaisseur tend vers zéro. Il s'agit d'un problème non convexe et non local (…) / The ferromagnetic materials possess the magnetic property of future, that is to magnetize, when they are in the presence of a magnetic field and to keep a part of their magnetizing when the field is deleted. It is for that reason, these materials became of use in numerous industrial applications (...)
|
408 |
Élaboration et étude des propriétés électriques des couches minces et des nanofils de ZnO / Synthesis and study of electrical properties of ZnO thin filmsand nanowiresBrouri, Tayeb 31 May 2011 (has links)
L'oxyde de zinc (ZnO) est un semi-conducteur à large gap direct (3,37 eV) qui possède de nombreuses propriétés intéressantes (piézoélectrique, optique, catalytique, chimique…). Un large champs d'applications fait de lui l'un des matériaux les plus étudiés de la dernière décennie, notamment sous forme nanostructurée. Dans ce travail, nous nous intéressons à la synthèse par électrochimie des couches minces, des micro- & nano-plots, et des nanofils de ZnO. Deux méthodes ont été utilisées : la première dite Template consiste à la fabrication des micro- et nanopores en réseau ordonné à l'aide de la technique lithographique dans lesquels a lieu la croissance du ZnO ; la seconde consiste à la croissance libre de réseau de nanofils. Les caractérisations structurales, morphologiques et optiques du ZnO ainsi élaboré ont été réalisées par diffractométrie des rayons-X (DRX), microscopie électronique à balayage (MEB), microscopie électronique en transmission (MET), spectroscopie Raman, spectroscopie UV et photoluminescence (PL). Les propriétés électriques des couches minces et des réseaux de nanofils (sous l'effet collectif) de ZnO ont été étudiées par des mesures «courant tension» (I-V) à température ambiante dans la configuration métal/semi-conducteur/métal à l'aide d'un réseau de micro-électrodes métalliques déposé en surface du ZnO. Cette étude nous a permis de déterminer qualitativement la conductivité électrique du ZnO et les différents paramètres de la jonction Schottky entre le ZnO et le substrat doré. Celle-ci est fondamentale et indispensable pour la réalisation d'un dispositif de récupération d'énergie tel que le nanogénérateur de courant piézoélectrique à base de nanofils de ZnO / Abstract Zinc oxide (ZnO) is direct wide band gap semiconductor (3.37 eV) with many interesting properties (piezoelectric, optical, catalytic, chemical …). A wide range of applications makes it one of the most studied materials in the past decade, particularly when elaborated as nanostructures. In this work, we focus on electrochemical synthesis of ZnO thin films, micro- and nano-pillars as well as nanowires. Two methods were used: the first, called “Template”, consists of growing ZnO into organized arrays of micro- and nanopores made by lithographic methods ; the second consists of the free growth of nanowires array. The morphological and optical characterizations of the obtained ZnO were carried out using scanning and transmission electron microscopy (SEM and TEM), X-ray diffraction (XRD), Raman and UV spectroscopy, and photoluminescence (PL). Electrical properties of the electrodeposited ZnO (thin films and nanowire networks) were studied using I-V measurements at room temperature in metal/semiconductor/metal configuration, by the use of an array of metallic micro-electrodes deposited on the surface of ZnO. This allows determining qualitatively the electrical conductivity of ZnO and the different parameters of the Schottky junction between ZnO and the substrate (Au). This study is necessary for future applications based on ZnO nanowires array such as the solar cell and the piezoelectric nanogenerator
|
409 |
Rôle de la protéine TRF2 et de ses partenaires dans la recombinaison des télomères humains / Role of TRF2 and its partners in the homologous recombination of human telomeresSaint-Léger, Adélaïde 02 December 2011 (has links)
La protéine télomérique TRF2 permet de protéger les télomères notamment en régulant leur taille. Dans des cellules humaines, la surexpression de la protéine mutante TRF2ΔB, dont le domaine basique est absent, induit un raccourcissement soudain des télomères. In vitro, ce domaine basique protège des structures d’ADN particulières, appelées Jonctions de Holliday (JH), de la résolution par des endonucléases. Ces JH peuvent être présentes aux télomères d’une part au niveau de la boucle télomérique, une conformation de l’ADN qui ressemble à une structure intermédiaire de la recombinaison homologue (RH), et d’autre part au niveau des fourches de réplication bloquées, fréquentes aux télomères. Nous pensons que le raccourcissement soudain des télomères implique la résolution de JH au cours d’un événement de recombinaison homologue qui doit être étroitement régulé afin d’éviter qu’il ne se réalise de façon inappropriée. Dans le but de mieux caractériser cet événement, j’ai montré que différentes endonucléases capables de résoudre des JH (GEN1, MUS81, SLX1-SLX4) sont impliquées dans le raccourcissement des télomères induit par la surexpression de la protéine TRF2ΔB. Puis j’ai étudié le rôle de la protéine hRAP1 dans la régulation de ce mécanisme et l’implication des protéines de la RH. L’ensemble des résultats obtenus nous ont permis de proposer un nouveau rôle de la protéine TRF2 dans la régulation des événements de recombinaison homologue au cours de la réplication des télomères. / The stability of mammalian telomeres depends upon TRF2 which prevents inappropriate repair and checkpoint activation. In human cells, overexpressing a TRF2 mutant lacking the N-terminal basic domain, TRF2ΔB, induces sudden telomere shortening. In vitro, the basic domain protects particular DNA structures, called Holliday junctions (HJ), of the resolution by endonucleases. These HJ may be present at telomeres in one hand at the t-loop, a DNA conformation looking like a structural intermediate of homologous recombination (HR), and also at the level of stalled replication forks, frequent at telomeres. We believe that the sudden shortening of telomeres involves the resolution of HJ during a HR event that would be tightly regulated to prevent it occurs inappropriately. In order to better characterize this event, I have shown that different proteins harbouring resolving activities (GEN1, MUS81, SLX1-SLX4) are involved in telomere shortening induced by overexpression of TRF2ΔB. Then, I studied the role of hRAP1 in the regulation of this mechanism and involvement of HR proteins. The overall results allowed us to propose a new role of TRF2 in the regulation of HR events during the replication of telomeres.
|
410 |
Mammalian atrioventricular junction anatomy, electrophysiology and ion channel remodelling in health and diseaseNikolaidou, Theodora January 2013 (has links)
The atrioventricular junction (AVJ) is a complex anatomical structure. It has an important role in maintaining synchronised atrioventricular conduction and protects from ventricular tachycardia, as well as bradycardia. Its embryological development and function is under tight transcription factor control. Heart failure is a chronic systemic condition, affecting one million people in the UK alone. Slowing of atrioventricular conduction in heart failure is associated with increased morbidity and mortality. The molecular and anatomical basis of abnormal atrioventricular conduction was studied in a rabbit model of heart failure due to aortic insufficiency and abdominal aortic constriction. The PR interval was significantly prolonged in heart failure animals. Using laser-assisted microdissection, the tiny tissues of the AVJ were collected for RT-PCR analysis. HCN1, Cav1.3, Cx40 and Cx43 transcripts were significantly downregulated by heart failure, with a compensatory increase in CLCN2, Nav1.1, Navβ1, SUR2A and PAK1. Immunolabelling for Cx43 showed reduction in protein level and longitudinal dissociation not only in the inferior nodal extension but also in the His bundle in heart failure animals. Anatomical studies of the AVJ have previously been limited by its small size and inaccessible location. Contrast-enhanced micro-CT scanning allowed non-destructive imaging of the AVJ anatomy. AVJ length and volume were increased in the rabbit model of heart failure, which is expected to contribute to atrioventricular conduction abnormalities. Micro-CT additionally resolved the anatomy of the canine AVJ and atria, including fibre orientation in the pulmonary vein sleeves and Bachmann’s bundle. The physiological effects of loss of T-box transcription factor 5 (Tbx5) in the AVJ were studied in a transgenic inducible Tbx5 knockout mouse model using optical mapping. Tbx5-deficient mice had a prolonged PR interval in vivo and a higher incidence of atrioventricular block and ventricular conduction abnormalities in Langendorff-perfused hearts.
|
Page generated in 0.0847 seconds