301 |
Urban Detection From Hyperspectral Images Using Dimension-Reduction Model and Fusion of Multiple Segmentations Based on Stuctural and Textural FeaturesHe, Jin 09 1900 (has links)
Ce mémoire de maîtrise présente une nouvelle approche non supervisée pour détecter et segmenter les régions urbaines dans les images hyperspectrales. La méthode proposée n ́ecessite trois étapes. Tout d’abord, afin de réduire le coût calculatoire de notre algorithme, une image couleur du contenu spectral est estimée. A cette fin, une étape de réduction de dimensionalité non-linéaire, basée sur deux critères complémentaires mais contradictoires de bonne visualisation; à savoir la précision et le contraste, est réalisée pour l’affichage couleur de chaque image hyperspectrale. Ensuite, pour discriminer les régions urbaines des régions non urbaines, la seconde étape consiste à extraire quelques caractéristiques discriminantes (et complémentaires) sur cette image hyperspectrale couleur. A cette fin, nous avons extrait une série de paramètres discriminants pour décrire les caractéristiques d’une zone urbaine, principalement composée d’objets manufacturés de formes simples g ́eométriques et régulières. Nous avons utilisé des caractéristiques texturales basées sur les niveaux de gris, la magnitude du gradient ou des paramètres issus de la matrice de co-occurrence combinés avec des caractéristiques structurelles basées sur l’orientation locale du gradient de l’image et la détection locale de segments de droites. Afin de réduire encore la complexité de calcul de notre approche et éviter le problème de la ”malédiction de la dimensionnalité” quand on décide de regrouper des données de dimensions élevées, nous avons décidé de classifier individuellement, dans la dernière étape, chaque caractéristique texturale ou structurelle avec une simple procédure de K-moyennes et ensuite de combiner ces segmentations grossières, obtenues à faible coût, avec un modèle efficace de fusion de cartes de segmentations. Les expérimentations données dans ce rapport montrent que cette stratégie est efficace visuellement et se compare favorablement aux autres méthodes de détection et segmentation de zones urbaines à partir d’images hyperspectrales. / This master’s thesis presents a new approach to urban area detection and segmentation in hyperspectral images. The proposed method relies on a three-step procedure. First, in order to decrease the computational complexity, an informative three-colour composite image, minimizing as much as possible the loss of information of the spectral content, is computed. To this end, a non-linear dimensionality reduction step, based on two complementary but contradictory criteria of good visualization, namely accuracy and contrast, is achieved for the colour display of each hyperspectral image. In order to discriminate between urban and non-urban areas, the second step consists of extracting some complementary and discriminant features on the resulting (three-band) colour hyperspectral image. To attain this goal, we have extracted a set of features relevant to the description of different aspects of urban areas, which are mainly composed of man-made objects with regular or simple geometrical shapes. We have used simple textural features based on grey-levels, gradient magnitude or grey-level co-occurence matrix statistical parameters combined with structural features based on gradient orientation, and straight segment detection. In order to also reduce the computational complexity and to avoid the so-called “curse of dimensionality” when clustering high-dimensional data, we decided, in the final third step, to classify each individual feature (by a simple K-means clustering procedure) and to combine these multiple low-cost and rough image segmentation results with an efficient fusion model of segmentation maps. The experiments reported in this report demonstrate that the proposed segmentation method is efficient in terms of visual evaluation and performs well compared to existing and automatic detection and segmentation methods of urban areas from hyperspectral images.
|
302 |
L'évaluation en laboratoire et sur le terrain vers la prévention des blessures à l’épaule chez les athlètes de sports aquatiques et d’armée du brasGaudet, Sylvain 09 1900 (has links)
No description available.
|
303 |
Urban Detection From Hyperspectral Images Using Dimension-Reduction Model and Fusion of Multiple Segmentations Based on Stuctural and Textural FeaturesHe, Jin 09 1900 (has links)
Ce mémoire de maîtrise présente une nouvelle approche non supervisée pour détecter et segmenter les régions urbaines dans les images hyperspectrales. La méthode proposée n ́ecessite trois étapes. Tout d’abord, afin de réduire le coût calculatoire de notre algorithme, une image couleur du contenu spectral est estimée. A cette fin, une étape de réduction de dimensionalité non-linéaire, basée sur deux critères complémentaires mais contradictoires de bonne visualisation; à savoir la précision et le contraste, est réalisée pour l’affichage couleur de chaque image hyperspectrale. Ensuite, pour discriminer les régions urbaines des régions non urbaines, la seconde étape consiste à extraire quelques caractéristiques discriminantes (et complémentaires) sur cette image hyperspectrale couleur. A cette fin, nous avons extrait une série de paramètres discriminants pour décrire les caractéristiques d’une zone urbaine, principalement composée d’objets manufacturés de formes simples g ́eométriques et régulières. Nous avons utilisé des caractéristiques texturales basées sur les niveaux de gris, la magnitude du gradient ou des paramètres issus de la matrice de co-occurrence combinés avec des caractéristiques structurelles basées sur l’orientation locale du gradient de l’image et la détection locale de segments de droites. Afin de réduire encore la complexité de calcul de notre approche et éviter le problème de la ”malédiction de la dimensionnalité” quand on décide de regrouper des données de dimensions élevées, nous avons décidé de classifier individuellement, dans la dernière étape, chaque caractéristique texturale ou structurelle avec une simple procédure de K-moyennes et ensuite de combiner ces segmentations grossières, obtenues à faible coût, avec un modèle efficace de fusion de cartes de segmentations. Les expérimentations données dans ce rapport montrent que cette stratégie est efficace visuellement et se compare favorablement aux autres méthodes de détection et segmentation de zones urbaines à partir d’images hyperspectrales. / This master’s thesis presents a new approach to urban area detection and segmentation in hyperspectral images. The proposed method relies on a three-step procedure. First, in order to decrease the computational complexity, an informative three-colour composite image, minimizing as much as possible the loss of information of the spectral content, is computed. To this end, a non-linear dimensionality reduction step, based on two complementary but contradictory criteria of good visualization, namely accuracy and contrast, is achieved for the colour display of each hyperspectral image. In order to discriminate between urban and non-urban areas, the second step consists of extracting some complementary and discriminant features on the resulting (three-band) colour hyperspectral image. To attain this goal, we have extracted a set of features relevant to the description of different aspects of urban areas, which are mainly composed of man-made objects with regular or simple geometrical shapes. We have used simple textural features based on grey-levels, gradient magnitude or grey-level co-occurence matrix statistical parameters combined with structural features based on gradient orientation, and straight segment detection. In order to also reduce the computational complexity and to avoid the so-called “curse of dimensionality” when clustering high-dimensional data, we decided, in the final third step, to classify each individual feature (by a simple K-means clustering procedure) and to combine these multiple low-cost and rough image segmentation results with an efficient fusion model of segmentation maps. The experiments reported in this report demonstrate that the proposed segmentation method is efficient in terms of visual evaluation and performs well compared to existing and automatic detection and segmentation methods of urban areas from hyperspectral images.
|
304 |
Utilização de técnicas de classificação automática para definir bacias hidrográficas homogêneas em termos da pluviometria e fluviometria. / Use of automatic classification techniques to define homogeneous river basins in terms of rainfall and fluviometry.AMORIM, Alcides Leite de. 12 November 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-11-12T19:08:26Z
No. of bitstreams: 1
ALCIDES LEITE DE AMORIM - DISSERTAÇÃO PPGECA 1990..pdf: 35306341 bytes, checksum: 58ca99353fdbe330c0375e0d09e45b9a (MD5) / Made available in DSpace on 2018-11-12T19:08:26Z (GMT). No. of bitstreams: 1
ALCIDES LEITE DE AMORIM - DISSERTAÇÃO PPGECA 1990..pdf: 35306341 bytes, checksum: 58ca99353fdbe330c0375e0d09e45b9a (MD5)
Previous issue date: 1990-12 / O presente trabalho constitui um estudo da região do nordeste brasileiro, objetivando a definição de regiões representadas pelos postos ou estações com características
semelhantes em função de conjuntos de variáveis pluviométricas e fluviométricas. Utilizou-se técnicas de classificação automática aplicadas ao conjunto de variáveis que foram obtidas da combinação do período de referência (ano, semestre e trimestre)
com os parâmetros (média aritmética, desvio padrão, coeficiente de variação e coeficiente de assimetria) e o valor máximo. Os dados pluviométricos são compostos por
quatrocentos postos no intervalo de tempo entre 1337 e 1973, com trinta anos de registros e uma folga de cinco anos, enquanto os fluviométricos de noventa e sete estações com pelo menos oito anos de registros e que tenham seu inicio nas décadas de sessenta ou setenta ou seu término nas décadas de setenta ou oitenta. Foram aplicados os Métodos "Quick Cluster" e "K-Means" (técnicas de . classificação não hierárquicas) nos
conjuntos de variáveis pluviométricas e os Métodos de, "Ward", Ligação Simples, Ligação Completa e Centróide (técnicas hierárquicas) nos conjuntos de variáveis fluviométricas. Foi também discutido a aplicabilidade de cada método. Os resultados decorrentes deste trabalho, ilustrados nos mapas, são úteis para o preenchimento de falhas, geração de
dados, determinação da curva regional de probabilidade, determinação de um modelo determinístico tipo Chuva-Uazão, etc. / The present thesis constitutes a study of the north-east region of Brasil, with the objective of defining the groupings of raingauge stations and flow measuring stations, that
have similar characteristics. Techniques of automatic cIassifiction as applied to a set of variables were utilised herein. These variables were obtained for a combination of
reference periods (being a year, semester or trimester) among the parameters of the station data, such as arithmatic mean, standard deviation, coefficient of variation skewness coefficient and the maximum value. The rainfall data for 400 raingauge stations
between the years 1937 to 1973 were utilized in the study. Thirty (30) years of data, with a superposition of atleast 5 years between the stations, were utilized for raingauge stations. The data for flow measuring stations, numbering 97, consisted of reliable data over an eight-year period. The Methods of "Quick Cluster" and "K-Means" (which belong to the techniques of non-hierarquic classification) were applied to the set of precipitation variables and the Methods of," U/ard", Simple Linking, Complete Linking and Centroid (which pertain to hierarquical techniques) were applied to the set of flow variables. The applicability of each of these methods is discussed here-in.
|
305 |
Využití data miningu v řízení podniku / Using data mining to manage an enterprise.Prášil, Zdeněk January 2010 (has links)
The thesis is focused on data mining and its use in management of an enterprise. The thesis is structured into theoretical and practical part. Aim of the theoretical part was to find out: 1/ the most used methods of the data mining, 2/ typical application areas, 3/ typical problems solved in the application areas. Aim of the practical part was: 1/ to demonstrate use of the data mining in small Czech e-shop for understanding of the structure of the sale data, 2/ to demonstrate, how the data mining analysis can help to increase marketing results. In my analyses of the literature data I found decision trees, linear and logistic regression, neural network, segmentation methods and association rules are the most used methods of the data mining analysis. CRM and marketing, financial institutions, insurance and telecommunication companies, retail trade and production are the application areas using the data mining the most. The specific tasks of the data mining focus on relationships between marketing sales and customers to make better business. In the analysis of the e-shop data I revealed the types of goods which are buying together. Based on this fact I proposed that the strategy supporting this type of shopping is crucial for the business success. As a conclusion I proved the data mining is methods appropriate also for the small e-shop and have capacity to improve its marketing strategy.
|
306 |
Analýza a získávání informací ze souboru dokumentů spojených do jednoho celku / Analysis and Data Extraction from a Set of Documents Merged TogetherJarolím, Jordán January 2018 (has links)
This thesis deals with mining of relevant information from documents and automatic splitting of multiple documents merged together. Moreover, it describes the design and implementation of software for data mining from documents and for automatic splitting of multiple documents. Methods for acquiring textual data from scanned documents, named entity recognition, document clustering, their supportive algorithms and metrics for automatic splitting of documents are described in this thesis. Furthermore, an algorithm of implemented software is explained and tools and techniques used by this software are described. Lastly, the success rate of the implemented software is evaluated. In conclusion, possible extensions and further development of this thesis are discussed at the end.
|
307 |
Systémy dálkového měření v energetice / Systems for remote measurement in power engineeringHudec, Lukáš January 2011 (has links)
The work deals with the measurement and management in power. Provides an introduction to the problems of remote meter reading, management, and describes the current situation in the field of modern technologies Smart metering and Smart grids. It also analyzed the issue of collection of networks and data collection from a large number of meters over a wide area. For the purpose of data transmission are described GPRS, PLC, DSL, ... Further, there are given options to streamline communication. This area is used hierarchical aggregation. Using k-means algorithm is a program designed to calculate the number of concentrators and their location in the group of meters. The finished program is written in Java. It has a graphical interface and shows how the calculation is conducted. To verify the results of the optimization program is given simulation model in OPNET Modeler tool. Audited results are described in the conclusion and can deduce that using the optimization program is to streamline communications.
|
308 |
Detekce a sledování objektů pomocí význačných bodů / Object Detection and Tracking Using Interest PointsBílý, Vojtěch January 2012 (has links)
This paper deals with object detection and tracking using iterest points. Existing approaches are described here. Inovated method based on Generalized Hough transform and iterative Hough-space searching is proposed in this paper. Generality of proposed detector is shown in various types of objects. Object tracking is designed as frame by frame detection.
|
309 |
Cluster-Based Analysis Of Retinitis Pigmentosa Candidate Modifiers Using Drosophila Eye Size And Gene Expression DataJames Michael Amstutz (10725786) 01 June 2021 (has links)
<p>The goal of this thesis is to algorithmically identify candidate modifiers for <i>retinitis pigmentosa</i> (RP) to help improve therapy and predictions for this genetic disorder that may lead to a complete loss of vision. A current research by (Chow et al., 2016) focused on the genetic contributors to RP by trying to recognize a correlation between genetic modifiers and phenotypic variation in female <i>Drosophila melanogaster</i>, or fruit flies. In comparison to the genome-wide association analysis carried out in Chow et al.’s research, this study proposes using a K-Means clustering algorithm on RNA expression data to better understand which genes best exhibit characteristics of the RP degenerative model. Validating this algorithm’s effectiveness in identifying suspected genes takes priority over their classification.</p><p>This study investigates the linear relationship between <i>Drosophila </i>eye size and genetic expression to gather statistically significant, strongly correlated genes from the clusters with abnormally high or low eye sizes. The clustering algorithm is implemented in the R scripting language, and supplemental information details the steps of this computational process. Running the mean eye size and genetic expression data of 18,140 female <i>Drosophila</i> genes and 171 strains through the proposed algorithm in its four variations helped identify 140 suspected candidate modifiers for retinal degeneration. Although none of the top candidate genes found in this study matched Chow’s candidates, they were all statistically significant and strongly correlated, with several showing links to RP. These results may continue to improve as more of the 140 suspected genes are annotated using identical or comparative approaches.</p>
|
310 |
Shlukování proteinových sekvencí na základě podobnosti primární struktury / Clustering of Protein Sequences Based on Primary Structure of ProteinsJurásek, Petr January 2009 (has links)
This master's thesis consider clustering of protein sequences based on primary structure of proteins. Studies the protein sequences from they primary structure. Describes methods for similarities in the amino acid sequences of proteins, cluster analysis and clustering algorithms. This thesis presents concept of distance function based on similarity of protein sequences and implements clustering algorithms ANGES, k-means, k-medoids in Python programming language.
|
Page generated in 0.0769 seconds