Spelling suggestions: "subject:"kernporenkomplexe"" "subject:"kernkomplex""
1 |
Analyse der Kernhüllenbildung am Modellsystem Xenopus laevis / Studying nuclear envelope assembly in the cell-free system derived from Xenopus laevis eggsVollmar, Friederike Lara Veronika January 2008 (has links) (PDF)
Die Kernhülle ist eine hoch spezialisierte Membran, die den eukaryotischen Zellkern umgibt. Sie besteht aus der äußeren und der inneren Kernmembran, die über die Kernporenkomplexe miteinander verbunden werden. Die Kernhülle reguliert nicht nur den Transport von Makromolekülen zwischen dem Nukleoplasma und dem Zytoplasma, sie dient auch der Verankerung des Chromatins und des Zytoskeletts. Durch diese Interaktionen hilft die Kernhülle, den Zellkern innerhalb der Zelle und die Chromosomen innerhalb des Zellkerns zu positionieren, und reguliert dadurch die Expression bestimmter Gene. In höheren Eukaryoten durchlaufen sowohl die Kernhülle, als auch die Kernporenkomplexe während der Zellteilung strukturelle Veränderungen. Zu Beginn der Mitose werden sie abgebaut, um sich am Ende der Mitose in den Tochterzellen erneut zu bilden. Die molekularen Mechanismen, die zum Wiederaufbau der Kernhülle führen, sind kaum geklärt. Ein geeignetes System, um bestimmte Ereignisse bei der Kernhüllenbildung zu untersuchen, liefert das zellfreie System aus Xenopus Eiern und Spermienchromatin (Lohka 1998). Es konnte bereits früher gezeigt werden, dass es im Eiextrakt von Xenopus laevis mindestens zwei verschiedene Vesikelpopulationen gibt, die zur Bildung der Kernhülle beitragen. Eine der Vesikelpopulationen bindet an Chromatin, fusioniert dort und bildet eine Doppelmembran. Die andere Vesikelpopulation bindet an die bereits vorhandene Doppelmembran und sorgt für die Ausbildung der Kernporenkomplexe. Ziel dieser Arbeit war es, diese beiden Membranfraktionen zu isolieren und zu charakterisieren, wobei das Hauptinteresse in der porenbildenden Membranfraktion lag. Durch Zentrifugation über einen diskontinuierlichen Zuckergradienten konnten die Membranvesikel in zwei verschiedene Vesikelfraktionen aufgetrennt werden. Eine Membranfraktion konnte aus der 40%igen Zuckerfraktion („40% Membranfraktion“) isoliert werden, die andere aus der 30%igen Zuckerfraktion („30% Membranfraktion“). Die verschiedenen Membranfraktionen wurden zu in vitro Kernen gegeben, in denen die Kernporen durch vorausgegangene Bildung von Annulate Lamellae depletiert worden waren. Nach Zugabe der 30% Membranfraktion konnte die Bildung von funktionalen Kernporen beobachtet werden. Im Gegensatz dazu zeigte die 40% Membranfraktion keine porenbildenden Eigenschaften. Unter Verwendung eines vereinfachten Systems, bestehend aus Zytosol, Spermienchromatin und den Membranen, wurde gezeigt, dass die 40% Membranfraktion an Chromatin bindet und ausreichend ist, um eine kontinuierliche Doppelmembran ohne Kernporen zu bilden. Die 30% Membranfraktion besitzt keine Chromatinbindungseigenschaften und wird aktiv entlang von Mikrotubuli zu den porenlosen Kernen transportiert. Dort interagiert sie mit der chromatingebundenen 40% Membranfraktion und induziert die Porenbildung. Nach dem Vergleich der Proteinzusammensetzung der beiden Membranfraktionen, konnte das Major Vault Protein (MVP) nur in der porenbildenden Membranfraktion gefunden werden. MVP ist die Hauptstrukturkomponente der Vault-Komplexe, einem Ribonukleo-proteinpartikel, der in den meisten eukaryotischen Zellen vorhanden ist (Kedersha et al., 1991). Bemerkenswerterweise wird über die Funktion der Vault-Komplexe, trotz ihrer übiquitären Expression und ihrem Vorkommen in fast allen eukaryotischen Zellen, immer noch diskutiert. Um mehr über die Funktion und die Lokalisation der Vaults/MVP zu lernen, wurden die Vaults in Anlehnung an die Methode von Kedersha und Rome (1986) aus Xenopus Eiern isoliert. Zusätzlich wurde rekombinantes Xenopus MVP hergestellt, das unter anderem für die Produktion von Antikörpern in Meerschweinchen verwendet wurde. Um herauszufinden, ob die Anwesenheit von MVP in der 30% Membranfraktion in direktem Zusammenhang mit deren porenbildender Eigenschaft steht, wurden gereinigte Vault-Komplexe oder rekombinantes MVP, das alleine ausreichend ist, um in sich zu den charakteristischen Vault-Strukturen zusammenzulagern, zu porenlosen Kernen gegeben. Sowohl gereinigte Vault-Komplexe, als auch rekombinantes MVP waren in der Lage in den porenlosen Kernen die Bildung von funktionalen Kernporen zu induzieren. Untersuchungen zur Lokalisation von MVP zeigten, dass MVP teilweise an der Kernhülle und den Kernporenkomplexen lokalisiert, während der Großteil an MVP zytoplasmatisch vorliegt. Dies sind die ersten Daten, die Vaults/MVP mit der Kernporenbildung in Verbindung bringen. Deshalb bietet diese Arbeit die Grundlage, um diese unerwartete Rolle der Vaults in Zukunft genauer zu charakterisieren. / The nuclear envelope (NE) is a highly specialized membrane that delineates the eukaryotic cell nucleus. It is composed of the inner and outer nuclear membranes that are connected by the nuclear pore complexes (NPCs). The NE not only regulates the trafficking of macromolecules between nucleoplasm and cytosol but also provides anchoring sites for chromatin and cytoskeleton. Through these interactions, the NE helps position the nucleus within the cell and chromosomes within the nucleus, thereby regulating the expression of certain genes. In higher eukaryotic cells, both NE and NPCs undergo structural changes during cell division as they disassemble at the onset of mitosis and need to reform in the daughter cells at the end of mitosis. The molecular mechanisms governing the reassembly of the NE are only poorly understood. A particular suitable system to analyze specific events involved in NE assembly is provided by the cell-free system based on Xenopus egg extract and sperm chromatin (Lohka 1998). Previously it could be shown that in Xenopus egg extract there exist at least two different vesicle populations that are involved in nuclear envelope assembly. One type of vesicle binds to chromatin where it fuses and forms a bilayered nuclear envelope. The other vesicle population binds to the double nuclear membrane and is required for nuclear pore complex formation. Aim of this study was to isolate and characterize these two membrane fractions with special regard to the pore-forming membrane fraction. By centrifugation on a discontinuous sucrose gradient the membrane vesicles could be separated into two different vesicle fractions. One membrane fraction was recovered from the 40% sucrose fraction (“40% membrane fraction”) and the other one from the 30% sucrose fraction (“30% membrane fraction”). The different membrane fractions were added to in vitro nuclei, where nuclear pores were depleted by formation of annulate lamellae. After addition of the 30% membrane fraction formation of functional nuclear pores could be observed. In contrast the 40% membrane fraction had no pore-forming property. Using a simplified system consisting of cytosol, spermchromatin an membranes it was demonstrated that the 40% membrane fraction binds to chromatin and is sufficient to form a continuous double membrane without NPCs. The 30% membrane fraction lacks chromatin targeting signals and is actively transported along microtubules to the pore-free nuclei. There it interacts with the chromatin-bound 40% membranes and induces formation of NPCs. Comparing the protein composition of both membrane fractions, the major vault protein (MVP) was found to be exclusively in the pore-inducing membrane fraction. MVP is the major structural component of vaults, a ribonucleoprotein particle found in most eukaryotic cells (Kedersha et al., 1991). Remarkably, despite their ubiquitous expression and abundance in nearly all eukaryotic cells, the functional role of vaults is still being debated. To learn more about the functional role and localization of vaults/MVP, vaults were isolated from Xenopus eggs following the procedure of Kedersha and Rome (1986). In addition recombinant Xenopus MVP was prepared and used to generate antibodies in guinea pigs. To find out whether the presence of MVP in the 30% membrane fraction is related to its pore-forming capacity, purified vault complexes or recombinant MVP, which alone is sufficient to selfassemble into the characteristic vault structure, were added to poreless nuclei. Both purified vaults and recombinant MVP induce the formation of functional NPCs in the pore-free nuclei. Studying the localization of MVP it was demonstrated, that MVP localizes in part at the nuclear envelope and the nuclear pore complexes, whereas most MVP is cytoplasmically. These are the first data that link vaults/MVP to NPC assembly. Therefore this work displays fundamental features to study this unexpected role of vaults in more detail.
|
2 |
The function of Nup358 in nucleocytoplasmic transport / Die Funktion von Nup358 im nukleocytoplasmatischen TransportWälde, Sarah 23 August 2010 (has links)
No description available.
|
3 |
Analysis of CRM1- and Nup214- dependent nuclear export of proteins / Analyse des CRM1- und Nup214- abhängigen Kernexportes von ProteinenRoloff, Stephanie 21 May 2012 (has links)
No description available.
|
4 |
A genetic system to study the nuclear pore complex permeability barrier of the yeast Saccharomyces cerevisiae / Ein genetisches System zur Untersuchung der Permeabilitätsbarriere des Kernporenkomplexes der Hefe Saccharomyces cerevisiaeRidders, Michael 07 June 2012 (has links)
No description available.
|
Page generated in 0.0708 seconds