• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 12
  • 10
  • 5
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 70
  • 40
  • 29
  • 29
  • 24
  • 22
  • 21
  • 20
  • 19
  • 19
  • 18
  • 17
  • 16
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

RBF-sítě s dynamickou architekturou / RBF-networks with a dynamic architecture

Jakubík, Miroslav January 2012 (has links)
In this master thesis I recapitulated several methods for data clustering. Two well known clustering algorithms, concretely K-means algorithm and Fuzzy C-means (FCM) algorithm, were described in the submitted work. I presented several methods, which could help estimate the optimal number of clusters. Further, I described Kohonen maps and two models of Kohonen's maps with dynamically changing structure, namely Kohonen map with growing grid and the model of growing neural gas. At last I described quite new model of radial basis function neural networks. I presented several learning algorithms for this model of neural networks, RAN, RANKEF, MRAN, EMRAN and GAP. In the end of this work I made some clustering experiments with real data. This data describes the international trade among states of the whole world.
42

ProposiÃÃo e avaliaÃÃo de algoritmos de filtragem adaptativa baseados na rede de kohonen / Proposition and evaluation of the adaptive filtering algorithms basad on the kohonen

Luis Gustavo Mota Souza 02 June 2007 (has links)
nÃo hà / A Rede Auto-OrganizÃvel de Kohonen (Self-Organizing Map - SOM), por empregar um algoritmo de aprendizado nÃo supervisionado, vem sendo tradicionalmente aplicada na Ãrea de processamento de sinais em tarefas de quantizaÃÃo vetorial, enquanto que redes MLP (Multi-layer Perceptron) e RBF (Radial Basis Function) dominam as aplicaÃÃes que exigem a aproximaÃÃo de mapeamentos entrada-saÃda. Este tipo de aplicaÃÃo à comumente encontrada em tarefas de filtragem adaptativa que podem ser formatadas segundo a Ãtica da modelagem direta e inversa de sistemas, tais como identificaÃÃo equalizaÃÃo de canais de comunicaÃÃo. Nesta dissertaÃÃo, a gama de aplicaÃÃes da rede SOM à estendida atravÃs da proposiÃÃo de filtros adaptativos neurais baseados nesta rede, mostrando que os mesmos sÃo alternativas viÃveis aos filtros nÃo-lineares baseados nas redes MLP e RBF. Isto torna-se possÃvel graÃas ao uso de uma tÃcnica recentemente proposta, Quantized Temporal Associative Memory - VQTAM), que basicamente usa a filosofia de chamada MemÃria Associativa Temporal por QuantizaÃÃo Vetorial (Vector )treinamento da rede SOM para realizar a quantizaÃÃo vetorial simultÃnea dos espaÃos de entrada e de saÃda relativos ao problema de filtragem analisado. A partir da tÃcnica VQTAM, sÃo propostos trÃs arquiteturas de filtros adaptativos baseadas na rede SOM, cujos desempenhos foram avaliados em tarefas de identificaÃÃo e equalizaÃÃo de canais nÃolineares. O canal usado nas simulaÃÃes foi modelado como um processo auto-regressivo de Gauss-Markov de primeira ordem, contaminado com ruÃdo branco gaussiano e dotado de nÃo-linearidade do tipo saturaÃÃo (sigmoidal). Os resultados obtidos mostram que filtros adaptativos baseados na rede SOM tÃm desempenho equivalente ou superior aos tradicionais filtros transversais lineares e aos filtros nÃo-lineares baseados na rede MLP.
43

OPTIMISATION MULTICRITERES DE L'EFFICACITE PROPULSIVE DE MINI-DRONES BIOMIMETIQUES A AILES BATTANTES PAR ALGORITHMES EVOLUTIONNAIRES

Hamdaoui, Mohamed 16 December 2010 (has links) (PDF)
L'optimisation multicritère de la cinématique de battement d'aile d'un mini-drône à ailes battantes est réalisée en vol de croisière. L'objectif est, pour différentes familles de cinématiques et pour différentes vitesses d'avancement, de trouver des solutions maximisant l'efficacité propulsive, minimisant l'écart à la portance cible et minimisant le moment aérodynamique. Nous avons choisi les algorithmes évolutionnaires pour résoudre ce problème multicritère pour leur simplicité d'implantation, leur flexibilité et leur bon rapport qualité des résultats/coût de calcul. En raison de la nature multicritère du problème, il existe un ensemble de solutions optimales et non pas une unique solution au problème, ce qui pose la question de la maniere de visualiser, d'analyser et d'extraire une solution satisfaisante parmi le groupe de solutions Pareto optimales. Nous avons identifié des methodes simples susceptibles d'aider a accomplir cette tâche, la "Scatter-Plot Matrix Method" pour visualiser les surfaces et ensembles de Pareto, l'utilisation d'une régression multivariée pour établir le lien entre paramètres cinématiques et critères optimisés, la méthode des normes Lp pour identifier une solution compromis au sein de la surface de Pareto, les arbres de décision pour trouver les paramètres de la cinématique auxquels le voisinage de la solution compromis est sensible et les cartes de Kohonen pour étudier la structure de ce voisinage. Ces différents outils nous ont permis, pour chaque famille de cinématiques (dièdre, dièdre et tangage, dièdre et tangage à deux panneaux), d'identifier une solution compromis et les paramètres cinématiques qui impactent le plus le voisinage du point compromis. Les caractéristiques de chaque solution compromis ont ete comparées à des mesures de puissance et de coefficients de traînée faites sur des oiseaux en vol de croisiere, et la légitimité d'appliquer un modèle linéarisé dans le cas de cette solution compromis est mise à l'épreuve en calculant des nombres adimensionés caractéristiques comme le nombre de Strouhal ou la fréquence réduite dont les petites valeurs attestent d'un cas favorable à une approche linéarisée. Puis, la comparaison de la fréquence de battement d'aile obtenue à celle d'un oiseau géométriquement similaire est faite, et elle montre que plus la cinématique est riche plus cette fréquence de battement se rapproche de celle de l'oiseau en question, ce qui constitue un résultat encourageant pour notre approche.
44

Extraction de données symboliques et cartes topologiques: application aux données ayant une structure complexe

El Golli, Aïcha 01 June 2004 (has links) (PDF)
Un des objectifs de lanalyse de données symboliques est de permettre une meilleure modélisation des variations et des imprécisions des données réelles. Ces données expriment en effet, un niveau de connaissance plus élevé, la modélisation doit donc offrir un formalisme plus riche que dans le cadre de lanalyse de données classiques. Un ensemble dopérateurs de généralisation symbolique existent et permettent une synthèse et représentation des données par le formalisme des assertions, formalisme défini en analyse de données symboliques. Cette généralisation étant supervisée, est souvent sensible aux observations aberrantes. Lorsque les données que lon souhaite généraliser sont hétérogènes, certaines assertions incluent des observations virtuelles. Face à ce nouveau formalisme et donc cette extension dordre sémantique que lanalyse de données symbolique a apporté, une nouvelle approche de traitement et dinterprétation simpose. Notre objectif au cours de ce travail est daméliorer tout dabord cette généralisation et de proposer ensuite une méthode de traitement de ces données. Les contributions originales de cette thèse portent sur de nouvelles approches de représentation et de classification des données à structure complexe. Nous proposons donc une décomposition permettant daméliorer la généralisation tout en offrant le formalisme symbolique. Cette décomposition est basée sur un algorithme divisif de classification. Nous avons aussi proposé une méthode de généralisation symbolique non supervisée basée sur l'algorithme des cartes topologiques de Kohonen. L'avantage de cette méthode est de réduire les données d'une manière non supervisée et de modéliser les groupes homogènes obtenus par des données symboliques. Notre seconde contribution porte sur lélaboration dune méthode de classification traitant les données à structure complexe. Cette méthode est une adaptation de la version batch de lalgorithme des cartes topologiques de Kohonen aux tableaux de dissimilarités. En effet, seule la définition dune mesure de dissimilarité adéquate, est nécessaire pour le bon déroulement de la méthode.
45

Obtenção das funções de pertinência de um sistema neurofuzzy modificado pela rede de Kohonen

Pagliosa, Angelo Luís 18 December 2003 (has links)
Made available in DSpace on 2016-12-12T17:29:55Z (GMT). No. of bitstreams: 1 Angelo Luis Pagliosa.pdf: 1725265 bytes, checksum: d01cb2eed64463999696ddaef3a82724 (MD5) Previous issue date: 2003-12-18 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This dissertation presents an hybrid computational model that combines fuzzy system techniques and artificial neural networks. Its objective is the automatic generation of membership functions, in particular, triangle forms, aiming at a dynamic modelling of a system. The model is named Neo-Fuzzy-Neuron Modify by Kohonen (NFN-MK), since it starts using Kohonen network to obtain the central vertices in triangular curves. A set of these curves are used to model a variable of the real system. NFN-MK is based on the Neo-Fuzzy- Neuron (NFN) model originally proposed by Yamakawa, where a network is adapted in order to associate fuzzy, "if-then"rules allowing elicitation and extraction of knowledge in linguistic form. The NFN-MK model is tested by simulation of real systems. They are here represented by classical mathematical functions, chosen due their importance in the system identification field. Finally, a comparison of the results obtained by NFN-MK is carried out against other models such as analytical results, traditional neural networks, and correlated studies of neurofuzzy systems applied to system identification. This work ends with a comparison of the results obtained by NFN-MK with analytical results, and those obtained by using traditional neural networks and other system identification neurofuzzy methods. / Esta dissertação propõe um modelo computacional que combina técnica de Sistemas Fuzzy (SF) e Redes Neurais Artificiais (RNA´s), com o objetivo de realizar a identificação desistemas, os quais são modelados pela descoberta de curvas de pertinência e pesos de conexões no modelo proposto. O modelo proposto chamado de Neo Fuzzy Neuron Modificadopela rede de Kohonen (NFN-MK) foi reestruturado a partir do modelo do Neo Fuzzy Neuron (NFN), proposto originalmente por Yamakawa. O modelo NFN é construído sob uma topologia neural que associa as regras do tipo Se Então , sendo estas do tipo fuzzy. A virtude do modelo de Yamakawa é combinar o conhecimento apresentado nos SF´s com a habilidade de aprendizagem e generalização das RNA´s. A partir deste modelo, o NFN-MK introduz a rede de Kohonen em um estágio inicial da aprendizagem, a fim de encontrar os vértices iniciais das curvas triangulares de pertinência do modelo proposto. A partir da definição inicial dos vértices dos triângulos nas curvas de pertinência, inicia-se um processo de aprendizagem, análogo ao backpropagation clássico, a fim de ajustar os pesos de cada conexão da topologia neural proposta. Ao final da aprendizagem, o NFN-MK é submetido a experimentos na identificação de três sistemas. Estes sistemas são representados com curvas matemáticas clássicas, a fim de comparar a eficiência do modelo proposto a outros resultados como: o próprio valor analítico das funções, RNA´s clássicas e outros modelos neurofuzzy de trabalhos correlatos.
46

Classifica??o automatizada de falhas tribol?gicas de sistemas alternativos com o uso de redes neurais artificiais n?o supervisionadas

Cabral, Marco Antonio Leandro 17 January 2017 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2017-03-28T19:32:54Z No. of bitstreams: 1 MarcoAntonioLeandroCabral_TESE.pdf: 13589109 bytes, checksum: dcecde654045d4bb434b8363031ec773 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-03-29T19:12:55Z (GMT) No. of bitstreams: 1 MarcoAntonioLeandroCabral_TESE.pdf: 13589109 bytes, checksum: dcecde654045d4bb434b8363031ec773 (MD5) / Made available in DSpace on 2017-03-29T19:12:55Z (GMT). No. of bitstreams: 1 MarcoAntonioLeandroCabral_TESE.pdf: 13589109 bytes, checksum: dcecde654045d4bb434b8363031ec773 (MD5) Previous issue date: 2017-01-17 / Prevenir, antever, evitar falhas em sistemas eletromec?nicos s?o demandas que desafiam pesquisadores e profissionais de engenharia a d?cadas. Sistemas eletromec?nicos apresentam processos tribol?gicos que resultam em fadiga de materiais e consequente perda de efici?ncia ou mesmo de utilidade de m?quinas e equipamentos. Diversas t?cnicas s?o utilizadas na tentativa de, atrav?s da an?lise de sinais oriundos dos equipamentos estudados, que seja poss?vel a minimiza??o das perdas inerentes ?queles sistemas e as consequ?ncias desses desgastes em momentos n?o esperados, como uma aeronave em voo ou uma perfuratriz em um po?o de petr?leo. Dentre elas podemos citar a an?lise de vibra??o, medi??o da press?o ac?stica, monitoramento de temperatura, an?lise de part?culas de ?leo lubrificante etc. Entretanto sistemas eletromec?nicos s?o complexos e podem apresentar comportamentos inesperados. A manuten??o centrada na confiabilidade necessita de recursos tecnol?gicos cada vez mais r?pidos, eficientes e robustos para garantir sua efici?ncia e efic?cia. T?cnicas de an?lise de efeitos e modos de falha (FMEA ? Failure Mode Effect Analysis) em equipamentos s?o utilizadas para aumentar a confiabilidade dos sistemas de manuten??o preventiva e preditiva. As redes neurais artificiais (RNA) s?o ferramentas computacionais que encontram aplicabilidade em diversos segmentos da pesquisa e an?lise de sinais, onde h? necessidade do manuseio de grandes quantidades de dados, associando estat?stica e computa??o na otimiza??o de processos din?micos e um alto grau de confiabilidade. S?o sistemas de intelig?ncia artificial que t?m capacidade de aprender, s?o robustas a falhas e podem apresentar resultados em tempo real. Este trabalho tem como objetivo a utiliza??o de redes neurais artificiais para tratar sinais provenientes da monitora??o de par?metros tribol?gicos atrav?s do uso de uma bancada de testes para simular falhas de contato em um compressor de ar, a fim de criar um sistema de detec??o e classifica??o de falhas automatizado, n?o supervisionado, com o uso de mapas auto-organiz?veis, ou redes SOM (self organizaed maps), aplicado ? manuten??o preventiva e preditiva de processos eletromec?nicos. / Preventing, anticipating, avoiding failures in electromechanical systems are demands that have challenged researchers and engineering professionals for decades. Electromechanical systems present tribological processes that result in fatigue of materials and consequent loss of efficiency or even usefulness of machines and equipment. Several techniques are used in an attempt to minimize the inherent losses of these systems through the analysis of signals from the equipment studied and the consequences of these wastes at unexpected moments, such as an aircraft in flight or a drilling rig in an oil well. Among them we can mention vibration analysis, acoustic pressure measurement, temperature monitoring, particle analysis of lubricating oil etc. However, electromechanical systems are complex and may exhibit unexpected behavior. Reliability-centric maintenance requires ever faster, more efficient and robust technological resources to ensure its efficiency and effectiveness. Failure Mode Effect Analysis (FMEA) techniques in equipment are used to increase the reliability of preventive and predictive maintenance system. Artificial neural networks (ANNs) are computational tools that find applicability in several segments of the research and signal analysis, where it is necessary to handle large amounts of data, associating statistics and computation in the optimization of dynamic processes and a high degree of reliability. They are artificial intelligence systems that have the ability to learn, are robust to failures, and can deliver realtime results. This work aims at the use of artificial neural networks to treat signals from the monitoring of tribological parameters through the use of a test bench to simulate contact failures in an air compressor in order to create an automated fault detection and classification system, unsupervised, with the use of self-organized maps, or SOM, applied to the preventive and predictive maintenance of electromechanical processes.
47

Metodos de classificação não-supervisionada de imagens de sensoriamento remoto usando mapas auto-organizaveis de Kohonen / Unsupervised methods of classifying remotely sensed imges using Kohonen self-organizing maps

Gonçalves, Marcio Leandro 03 November 2009 (has links)
Orientadores: Marcio Luiz de Andrade Netto, Jose Alfredo Ferreira Costa / Acompanha Anexo A: Midia com informações adicionais em CD-R / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-13T08:13:27Z (GMT). No. of bitstreams: 1 Goncalves_MarcioLeandro_D.pdf: 17165173 bytes, checksum: 5d69834b0b51b236f01317b4de54a2b3 (MD5) Previous issue date: 2009 / Resumo: Esta tese propõe novas metodologias de classificação não-supervisionada de imagens de sensoriamento remoto que particularmente exploram as características e propriedades do Mapa Auto-organizável de Kohonen (SOM - Self-Organizing Map). O ponto chave dos métodos de classificação propostos é realizar a análise de agrupamentos das imagens através do mapeamento produzido pelo SOM, ao invés de trabalhar diretamente com os padrões originais das cenas. Tal estratégia reduz significativamente a complexidade da análise dos dados, tornando possível a utilização de técnicas normalmente consideradas computacionalmente inviáveis para o processamento de imagens de sensoriamento remoto, como métodos de agrupamentos hierárquicos e índices de validação de agrupamentos. Diferentemente de outras abordagens, nas quais o SOM é utilizado como ferramenta de auxílio visual para a detecção de agrupamentos, nos métodos de classificação propostos, mecanismos para analisar de maneira automática o arranjo de neurônios de um SOM treinado são aplicados e aprimorados com o objetivo de encontrar as melhores partições para os conjuntos de dados das imagens. Baseando-se nas propriedades estatísticas do SOM, modificações nos cálculos de índices de validação agrupamentos são propostas com o objetivo de reduzir o custo computacional do processo de classificação das imagens. Técnicas de análise de textura em imagens são aplicadas para avaliar e filtrar amostras de treinamento e/ou protótipos do SOM que correspondem a regiões de transição entre classes de cobertura terrestre. Informações espaciais a respeito dos protótipos do SOM, além das informações de distância multiespectral, também são aplicadas em critérios de fusão de agrupamentos procurando facilitar a discriminação de classes de cobertura terrestre que apresentam alto grau de similaridade espectral. Resultados experimentais mostram que os métodos de classificação propostos apresentam vantagens significativas em relação às técnicas de classificação não-supervisionada mais freqüentemente utilizadas na área de sensoriamento remoto. / Abstract: This thesis proposes new methods of unsupervised classification for remotely sensed images which particularly exploit the characteristics and properties of the Kohonen Self-Organizing Map (SOM). The key point is to execute the clustering process through a set of prototypes of SOM instead of analyzing directly the original patterns of the image. This strategy significantly reduces the complexity of data analysis, making it possible to use techniques that have not usually been considered computationally viable for processing remotely sensed images, such as hierarchical clustering methods and cluster validation indices. Unlike other approaches in which SOM is used as a visual tool for detection of clusters, the proposed classification methods automatically analyze the neurons grid of a trained SOM in order to find better partitions for data sets of images. Based on the statistical properties of the SOM, clustering validation indices calculated in a modified manner are proposed with the aim of reducing the computational cost of the classification process of images. Image texture analysis techniques are applied to evaluate and filter training samples and/or prototypes of the SOM that correspond to transition regions between land cover classes. Spatial information about the prototypes of the SOM, in addition to multiespectral distance information, are also incorporated in criteria for merging clusters with aim to facilitate the discrimination of land cover classes which have high spectral similarity. Experimental results show that the proposed classification methods present significant advantages when compared to unsupervised classification techniques frequently used in remote sensing. / Doutorado / Engenharia de Computação / Doutor em Engenharia Elétrica
48

Structure des assemblages de diatomées benthiques en rivière : l'environnement explique-t-il tout ? : processus écologiques et développement méthodologiques / Structure of benthic diatom assemblages in rivers : is environment the only explanation ?

Bottin, Marius 28 June 2012 (has links)
Les diatomées sont des algues microscopiques qui sont largement utilisées pour évaluer la qualité écologique des cours d'eau.Les méthodes utilisées se basent sur des modèles simplifiés de biologie des communautés, dans lesquels seules les réponses individuelles des espèces à l'environnement sont prises en compte.Le test de l'importance de processus complémentaires a montré un impact fort des dynamiques de colonisation des espèces, mais un impact négligeable des phénomènes de compétition ou de facilitation.Ces processus impliquent une structure des assemblages bien plus complexe que celle habituellement assumée par les méthodologies de bioindication.L'adaptation et la mise en oeuvre de méthodes de réseaux de neurones et de logique floue nous ont permis de redéfinir des éco-régions françaises et de décrire des relations générales entre les traits biologiques des espèces et l'environnement, tout en prenant mieux en compte cette complexité. / Diatoms are microscopic algae which are widely used to monitor the ecological quality of strems and rivers. The regular methodologies are based on simpllified community models. In these models, only the invidual species responses to environment are accounted for.Testing the importance of complementary processes showed a significant effect of colonization dynamics, but only a slight effect of biotic relationships. These processes led us to considerate a more complex assemblage structure than the one usually assumed by the biomonitoring methodologies.Therefore we implemented both neural networks models and fuzzy logic methodologies, in order to refine French ecoregions and to describe relationships between species traits and environment.
49

Segmentace obrazu pomocí neuronové sítě / Neural Network Based Image Segmentation

Vrábelová, Pavla January 2010 (has links)
This paper deals with application of neural networks in image segmentation. First part is an introduction to image processing and neural networks, second part describes an implementation of segmentation system and presents results of experiments. The segmentation system enables to use different types of classifiers, various image features extraction and also to evaluate the success of segmentation. Two classifiers were created - a neural network (self-organizing map) and an algorithm K-means. Colour (RGB and HSV) and texture features and their combinations were used for classification. Texture features were extracted using a set of Gabor filters. Experiments with designed classifiers and feature extractors were carried out and results were compared.
50

Exploration des liens formels entre les méthodes statistiques et neuronales en classification

Gueye, Ndiouga January 2019 (has links) (PDF)
No description available.

Page generated in 0.0485 seconds