21 |
Rozpoznání dopravních značek využitím neuronové sítě / Traffic sign recognition with using of neural networksZámečník, Dušan January 2009 (has links)
This paper deals with traffic signs recognition. Red color area is obtained by thresholding in HSV color model. Selected radiometric deskriptors, Hough transform deskriptors and neural networs are used to classification. In conclusion has been designed complex decision algorithm.
|
22 |
Neural Networks Satisfying Stone-weiestrass Theorem And ApproximatingThakkar, Pinal 01 January 2004 (has links)
Neural networks are an attempt to build computer networks called artificial neurons, which imitate the activities of the human brain. Its origin dates back to 1943 when neurophysiologist Warren Me Cello and logician Walter Pits produced the first artificial neuron. Since then there has been tremendous development of neural networks and their applications to pattern and optical character recognition, speech processing, time series prediction, image processing and scattered data approximation. Since it has been shown that neural nets can approximate all but pathological functions, Neil Cotter considered neural network architecture based on Stone-Weierstrass Theorem. Using exponential functions, polynomials, rational functions and Boolean functions one can follow the method given by Cotter to obtain neural networks, which can approximate bounded measurable functions. Another problem of current research in computer graphics is to construct curves and surfaces from scattered spatial points by using B-Splines and NURBS or Bezier surfaces. Hoffman and Varady used Kohonen neural networks to construct appropriate grids. This thesis is concerned with two types of neural networks viz. those which satisfy the conditions of the Stone-Weierstrass theorem and Kohonen neural networks. We have used self-organizing maps for scattered data approximation. Neural network Tool Box from MATLAB is used to develop the required grids for approximating scattered data in one and two dimensions.
|
23 |
Caractérisation des réservoirs basée sur des textures des images scanners de carottesJouini, Mohamed Soufiane 04 February 2009 (has links)
Les carottes, extraites lors des forages de puits de pétrole, font partie des éléments les plus importants dans la chaîne de caractérisation de réservoir. L’acquisition de celles-ci à travers un scanner médical permet d’étudier de façon plus fine les variations des types de dépôts. Le but de cette thèse est d’établir les liens entre les imageries scanners 3D de carottes, et les différentes propriétés pétrophysiques et géologiques. Pour cela la phase de modélisation des images, et plus particulièrement des textures, est très importante et doit fournir des descripteurs extraits qui présentent un assez haut degrés de confiance. Une des solutions envisagée pour la recherche de descripteurs a été l’étude des méthodes paramétriques permettant de valider l’analyse faite sur les textures par un processus de synthèse. Bien que ceci ne représente pas une preuve pour un lien bijectif entre textures et paramètres, cela garantit cependant au moins une confiance en ces éléments. Dans cette thèse nous présentons des méthodes et algorithmes développés pour atteindre les objectifs suivants : 1. Mettre en évidence les zones d’homogénéités sur les zones carottées. Cela se fait de façon automatique à travers de la classification et de l’apprentissage basés sur les paramètres texturaux extraits. 2. Établir les liens existants entre images scanners et les propriétés pétrophysiques de la roche. Ceci se fait par prédiction de propriétés pétrophysiques basées sur l’apprentissage des textures et des calibrations grâce aux données réelles. . / Cores extracted, during wells drilling, are essential data for reservoirs characterization. A medical scanner is used for their acquisition. This feature provide high resolution images improving the capacity of interpretation. The main goal of the thesis is to establish links between these images and petrophysical data. Then parametric texture modelling can be used to achieve this goal and should provide reliable set of descriptors. A possible solution is to focus on parametric methods allowing synthesis. Even though, this method is not a proven mathematically, it provides high confidence on set of descriptors and allows interpretation into synthetic textures. In this thesis methods and algorithms were developed to achieve the following goals : 1. Segment main representative texture zones on cores. This is achieved automatically through learning and classifying textures based on parametric model. 2. Find links between scanner images and petrophysical parameters. This is achieved though calibrating and predicting petrophysical data with images (Supervised Learning Process).
|
24 |
Detecção e diagnóstico de falhas em robôs manipuladores via redes neurais artificiais. / Fault detection and diagnosis in robotic manipulators via artificial neural networks.Tinós, Renato 11 February 1999 (has links)
Neste trabalho, um novo enfoque para detecção e diagnóstico de falhas (DDF) em robôs manipuladores é apresentado. Um robô com falhas pode causar sérios danos e pode colocar em risco o pessoal presente no ambiente de trabalho. Geralmente, os pesquisadores têm proposto esquemas de DDF baseados no modelo matemático do sistema. Contudo, erros de modelagem podem ocultar os efeitos das falhas e podem ser uma fonte de alarmes falsos. Aqui, duas redes neurais artificiais são utilizadas em um sistema de DDF para robôs manipuladores. Um perceptron multicamadas treinado por retropropagação do erro é usado para reproduzir o comportamento dinâmico do manipulador. As saídas do perceptron são comparadas com as variáveis medidas, gerando o vetor de resíduos. Em seguida, uma rede com função de base radial é usada para classificar os resíduos, gerando a isolação das falhas. Quatro algoritmos diferentes são empregados para treinar esta rede. O primeiro utiliza regularização para reduzir a flexibilidade do modelo. O segundo emprega regularização também, mas ao invés de um único termo de penalidade, cada unidade radial tem um regularização individual. O terceiro algoritmo emprega seleção de subconjuntos para selecionar as unidades radiais a partir dos padrões de treinamento. O quarto emprega o mapa auto-organizável de Kohonen para fixar os centros das unidades radiais próximos aos centros dos aglomerados de padrões. Simulações usando um manipulador com dois graus de liberdade e um Puma 560 são apresentadas, demostrando que o sistema consegue detectar e diagnosticar corretamente falhas que ocorrem em conjuntos de padrões não-treinados. / In this work, a new approach for fault detection and diagnosis in robotic manipulators is presented. A faulty robot could cause serious damages and put in risk the people involved. Usually, researchers have proposed fault detection and diagnosis schemes based on the mathematical model of the system. However, modeling errors could obscure the fault effects and could be a false alarm source. In this work, two artificial neural networks are employed in a fault detection and diagnosis system to robotic manipulators. A multilayer perceptron trained with backpropagation algorithm is employed to reproduce the robotic manipulator dynamical behavior. The perceptron outputs are compared with the real measurements, generating the residual vector. A radial basis function network is utilized to classify the residual vector, generating the fault isolation. Four different algorithms have been employed to train this network. The first utilizes regularization to reduce the flexibility of the model. The second employs regularization too, but instead of only one penalty term, each radial unit has a individual penalty term. The third employs subset selection to choose the radial units from the training patterns. The forth algorithm employs the Kohonens self-organizing map to fix the radial unit center near to the cluster centers. Simulations employing a two link manipulator and a Puma 560 manipulator are presented, demonstrating that the system can detect and isolate correctly faults that occur in nontrained pattern sets.
|
25 |
Aplicação de mapas auto-organizáveis na classificação de aberrações cromossômicas utilizando imagens de cromossomos humanos submetidos à radiação ionizante / Application of self-organizing maps for the classification of chromosomal aberrations using images of human chromosomes subjected to ionizing radiationCunha, Kelly de Paula 15 April 2015 (has links)
O presente trabalho é resultado da colaboração de pesquisadores do Centro de Engenharia Nuclear (CEN) e de pesquisadores do Centro de Biotecnologia (CB), ambos pertencentes ao IPEN, para o desenvolvimento de uma metodologia que visa auxiliar os profissionais citogeneticistas fornecendo uma ferramenta que automatize parte da rotina necessária para a avaliação qualitativa e quantitativa de danos biológicos em termos de aberração cromossômica. A técnica citogenética, sobre a qual esta ferramenta é desenvolvida, é a técnica de aberrações cromossômicas. Nela, são realizadas preparações citológicas de linfócitos de sangue periférico para que metáfases sejam analisadas e fotografadas ao microscópio e, com base na morfologia dos cromossomos, anomalias sejam investigadas. Quando esta tarefa é realizada manualmente, os cromossomos são analisados visualmente um a um pelo profissional citogeneticista, logo, trata-se de um processo minucioso em virtude da variação geral na aparência do cromossomo, do seu tamanho pequeno e do grande número de cromossomos por célula. Para um diagnóstico confiável, é necessário que várias células sejam analisadas, tornando-se uma tarefa repetitiva e demorada. Neste contexto, foi proposto o uso dos mapas auto-organizáveis para o reconhecimento automático de padrões morfológicos referentes às imagens de cromossomos humanos. Para isso, foi desenvolvido um método de extração de características por meio do qual é possível classificar os cromossomos em: dicêntricos, anéis, acrocêntricos, submetacêntricos e metacêntricos, com acerto de 93,4 % em relação ao diagnóstico dado por um profissional citogeneticista. / This work is a joint collaboration between Nuclear Energy Research Institute (IPEN), Nuclear Engineering Center and Biotechnology Center to develop a methodology aiming to assist cytogenetic professionals by providing a tool to automate part of the required routine to perform qualitative and quantitative evaluation of biological damage in terms of chromosomal aberration. The cytogenetic technique upon which this tool was developed, is the chromosome aberrations technique, in which cytological preparations of peripheral blood lymphocyte metaphases are performed to be analyzed and photographed under a microscope in order to investigating chromosomal aberration. Performed manually, the chromosomes are analyzed visually one by one by a cytogenetic professional, so it is a painstaking process due to the great deal of variation in the appearance of each chromosome, their small sizes and not to mention the high density of chromosomes per cell. In order to obtain a reliable diagnosis it is necessary that many cells be analyzed, which makes this a repetitive and time consuming process. In this context, the use of self-organizing maps for the automatic recognition of patterns relating to morphological pictures of human chromosomes has been proposed. For this, we developed a feature extraction method by which is possible to classify chromosomes in: dicentrics, ring-shaped, acrocentric, submetacentric and metacentric with 93.4% accuracy compared to diagnostic given by a professional cytogeneticist.
|
26 |
Ανάπτυξη τεχνικών επεξεργασίας και ευθυγράμμισης ιατρικών δεδομένων με χρήση χαρτών αυτο-οργάνωσης στην ακτινοθεραπείαΜαρκάκη, Βασιλική 06 December 2013 (has links)
Σκοπός της παρούσας διδακτορικής διατριβής είναι η ανάπτυξη αλγορίθμων επεξεργασίας ιατρικής εικόνας για την ενσωμάτωση τους σε ιατρικές εφαρμογές ακτινοθεραπευτικού ενδιαφέροντος. Οι αλγόριθμοι αυτοί στηρίζονται στην αρχή λειτουργίας των χαρτών αυτο-οργάνωσης Kohonen και αξιοποιούν την πληροφορία που περιέχεται σε περιοχές των εικόνων γύρω από σημεία ενδιαφέροντος, ώστε να εντοπίσουν αυτόματα, με ακρίβεια και αξιοπιστία, αντιστοιχίες μεταξύ των εικόνων.
Πιο συγκεκριμένα, ένας επαναληπτικός αλγόριθμος προτείνεται για την αυτόματη εύρεση αντίστοιχων σημείων σε ιατρικές εικόνες δύο διαστάσεων. Ο προτεινόμενος αλγόριθμος προϋποθέτει την εύρεση σημείων ενδιαφέροντος μόνο στη μια από τις δύο εικόνες και εντοπίζει τα αντίστοιχα σημεία στη δεύτερη εικόνα μέσα από μια επαναληπτική διαδικασία, η οποία προσομοιάζει τη φάση εκπαίδευσης του νευρωνικού δικτύου. Με βάση τα ζεύγη των αντίστοιχων σημείων, υπολογίζονται στη συνέχεια οι παράμετροι ενός μετασχηματισμού, κατάλληλου για να περιγράψει τη σχέση μεταξύ των δεδομένων εικόνων. Ο αλγόριθμος ευθυγράμμισης εφαρμόζεται σε δεδομένες εικόνες ηλεκτρονικής πυλαίας απεικόνισης (Electronic Portal Images), που λαμβάνονται πριν από κάθε συνεδρία της ακτινοθεραπείας, για τον υπολογισμό του σφάλματος τοποθέτησης του ασθενούς.
Το ζήτημα της επαλήθευσης της θέσης του ασθενούς στην ακτινοθεραπεία αντιμετωπίζεται επίσης με τη βοήθεια μιας αυτόματης μεθόδου εύρεσης αντίστοιχων σημείων σε τρισδιάστατα δεδομένα, η οποία εφαρμόζεται για την ευθυγράμμιση της αξονικής τομογραφίας του σχεδιασμού της ακτινοθεραπείας και μιας αξονικής τομογραφίας επαλήθευσης, που λαμβάνεται πριν την πρώτη συνεδρία της ακτινοθεραπείας. Ο προτεινόμενος αλγόριθμος εντοπίζει αντίστοιχα σημεία ενδιαφέροντος στις δεδομένες τομογραφικές εικόνες και υπολογίζει τις παραμέτρους ενός μη γραμμικού μετασχηματισμού ευθυγράμμισης. Μετά την ευθυγράμμιση των δύο τομογραφιών, υπολογίζεται η μετατόπιση του ισοκέντρου στην τομογραφία επαλήθευσης σε σχέση με τη θέση του ισοκέντρου που προβλέπεται στην αρχική τομογραφία του σχεδιασμού. Με την ενσωμάτωση αυτής της μεθόδου ευθυγράμμισης στη διαδικασία της ακτινοθεραπείας, ικανοποιούνται δύο ανάγκες της κλινικής πρακτικής. Αφενός, η μετατόπιση του ισοκέντρου, όπως υπολογίζεται από την προτεινόμενη μέθοδο, παρέχει μια αξιόπιστη ένδειξη για τη μετατόπιση του ασθενούς που απαιτείται πριν τη χορήγηση της ακτινοβολίας. Αφετέρου, επιχειρείται η καλύτερη αξιοποίηση των πόρων του τμήματος της ακτινοθεραπείας με τη διαδικασία της εύρεσης του ισοκέντρου της ακτινοθεραπείας να λαμβάνει χώρα στην αίθουσα του αξονικού τομογράφου και να μειώνεται συνεπώς ο χρόνος που απαιτείται για την προετοιμασία του ασθενούς στον γραμμικό επιταχυντή κατά την πρώτη συνεδρία της ακτινοθεραπείας. / Aim of the present thesis is the development of image processing algorithms for radiotherapy applications. These algorithms are based on the principles of Kohonen Self Organizing Maps and exploit the information contained in image regions around distinctive points of interest, in order to determine image correspondences in an automatic, accurate and robust way.
In particular, an iterative algorithm is proposed for automatic detection of point correspondences in two-dimensional medical images. The proposed algorithm requires the extraction of interest points only in one image and detects the homologous points in the second image through an iterative procedure, respective to the training phase of a neural network. Subsequently, the parameters of an appropriate registration transformation are computed to describe the mapping between the two images. The computation is based on the detected point correspondence. The proposed registration algorithm is applied to Electronic Portal Images, acquired prior to the radiotherapy treatment delivery, in order to estimate the setup error of the patient.
The issue of patient position verification in radiotherapy is also addressed in the present thesis by developing an algorithm for automatic detection of point correspondences in three-dimensional medical data. The algorithm is used to register the CT data of radiotherapy planning to an additional verification CT, acquired prior to the first treatment fraction. The proposed algorithm detects corresponding points in the two CT images and computes the parameters of a non-rigid registration transformation. After the registration of the two CT images, the isocenter displacement of the verification CT is calculated with respect to the ideal isocenter position, defined in the planning CT. By integrating the proposed registration procedure in the clinical practice, two needs are met. Firstly, the isocenter displacement, calculated by the proposed method, provides a reliable indication of the patient shift, needed before the treatment delivery, for optimization of the dose delivery. Secondly, an improvement of the radiotherapy department efficiency is attempted by performing the procedure of isocenter marking in the CT scanner room and, consequently, reducing the time expenditure of the patient in the LINAC during the first radiotherapy fraction.
|
27 |
Aplicação de mapas auto-organizáveis na classificação de aberrações cromossômicas utilizando imagens de cromossomos humanos submetidos à radiação ionizante / Application of self-organizing maps for the classification of chromosomal aberrations using images of human chromosomes subjected to ionizing radiationKelly de Paula Cunha 15 April 2015 (has links)
O presente trabalho é resultado da colaboração de pesquisadores do Centro de Engenharia Nuclear (CEN) e de pesquisadores do Centro de Biotecnologia (CB), ambos pertencentes ao IPEN, para o desenvolvimento de uma metodologia que visa auxiliar os profissionais citogeneticistas fornecendo uma ferramenta que automatize parte da rotina necessária para a avaliação qualitativa e quantitativa de danos biológicos em termos de aberração cromossômica. A técnica citogenética, sobre a qual esta ferramenta é desenvolvida, é a técnica de aberrações cromossômicas. Nela, são realizadas preparações citológicas de linfócitos de sangue periférico para que metáfases sejam analisadas e fotografadas ao microscópio e, com base na morfologia dos cromossomos, anomalias sejam investigadas. Quando esta tarefa é realizada manualmente, os cromossomos são analisados visualmente um a um pelo profissional citogeneticista, logo, trata-se de um processo minucioso em virtude da variação geral na aparência do cromossomo, do seu tamanho pequeno e do grande número de cromossomos por célula. Para um diagnóstico confiável, é necessário que várias células sejam analisadas, tornando-se uma tarefa repetitiva e demorada. Neste contexto, foi proposto o uso dos mapas auto-organizáveis para o reconhecimento automático de padrões morfológicos referentes às imagens de cromossomos humanos. Para isso, foi desenvolvido um método de extração de características por meio do qual é possível classificar os cromossomos em: dicêntricos, anéis, acrocêntricos, submetacêntricos e metacêntricos, com acerto de 93,4 % em relação ao diagnóstico dado por um profissional citogeneticista. / This work is a joint collaboration between Nuclear Energy Research Institute (IPEN), Nuclear Engineering Center and Biotechnology Center to develop a methodology aiming to assist cytogenetic professionals by providing a tool to automate part of the required routine to perform qualitative and quantitative evaluation of biological damage in terms of chromosomal aberration. The cytogenetic technique upon which this tool was developed, is the chromosome aberrations technique, in which cytological preparations of peripheral blood lymphocyte metaphases are performed to be analyzed and photographed under a microscope in order to investigating chromosomal aberration. Performed manually, the chromosomes are analyzed visually one by one by a cytogenetic professional, so it is a painstaking process due to the great deal of variation in the appearance of each chromosome, their small sizes and not to mention the high density of chromosomes per cell. In order to obtain a reliable diagnosis it is necessary that many cells be analyzed, which makes this a repetitive and time consuming process. In this context, the use of self-organizing maps for the automatic recognition of patterns relating to morphological pictures of human chromosomes has been proposed. For this, we developed a feature extraction method by which is possible to classify chromosomes in: dicentrics, ring-shaped, acrocentric, submetacentric and metacentric with 93.4% accuracy compared to diagnostic given by a professional cytogeneticist.
|
28 |
[en] HYBRID INTELLIGENT SYSTEM FOR CLASSIFICATION OF NON-RESIDENTIAL ELECTRICITY CUSTOMERS PAYMENT PROFILES / [pt] SISTEMA INTELIGENTE HÍBRIDO PARA CLASSIFICAÇÃO DO PERFIL DE PAGAMENTO DOS CONSUMIDORES NÃO-RESIDENCIAIS DE ENERGIA ELÉTRICANORMA ALICE DA SILVA CARVALHO 26 March 2018 (has links)
[pt] O objetivo desta pesquisa é classificar o perfil de pagamento dos consumidores não-residenciais de energia elétrica, considerando conhecimento armazenado em base de dados de distribuidoras de energia elétrica. A motivação para desenvolvê-la surgiu da necessidade das distribuidoras por um modelo de suporte a formulação de estratégias capazes de reduzir o grau inadimplência. A metodologia proposta consiste em um sistema inteligente híbrido composto por módulos intercomunicativos que usam conhecimentos armazenados em base de dados para segmentar consumidores e, então, atingir o objetivo proposto. O sistema inicia-se com o módulo neural, que aloca as unidades consumidoras em grupos conforme similaridades (valor fatura, consumo, demanda medida/demanda contratada, intensidade energética e peso da conta no orçamento), em sequência, o módulo bayesiano, estabelece um escore entre 0 e 1 que permite predizer o perfil de pagamento das unidades considerando os grupos gerados e os atributos categóricos (atividade econômica, estrutura tarifária, mesorregião, natureza jurídica e porte empresarial) que caracterizam essas unidades. Os resultados revelaram que o sistema proposto estabelece razoável taxa de acerto na classificação do perfil de consumidores e, portanto, constitui uma importante ferramenta de suporte a formulação de estratégias para combate à inadimplência. Conclui-se que, o sistema híbrido proposto apresenta caráter generalista podendo ser adaptado e implementado em outros mercados. / [en] The objective of this research is to classify the non-residential electricity customer payment profiles regarding the knowledge stored in electricity distribution utilities databases. The motivation for development of the work from the need of electricity distribution by a support model to formulate strategies for tackling non-payment and late payment. The proposed methodology consists of
a hybrid intelligent system constituted by intercommunicating modules that use knowledge stored in database to customer segmentation and then achieve the proposed objective. The system begins with the neural module, which allocates the consuming units in groups according to similarities (bill amount, consumption, measured demand/contracted demand, energy intensity and share of the electricity
bill in the customer s income), in sequence, the Bayesian module establishes a score between 0 and 1 that allows to predict what payment profile of the units considering the generated groups and categorical attributes (business activity, tariff type, business size, mesoregion and company s legal form) that characterize these units. The results showed that the proposed system provides a reasonable
success rate when classifying customer profiles and thus constitutes an important tool in the formulation of strategies for tackling non-payment and late payment. In conclusion, the hybrid system proposed here is a generalist one and could usefully be adapted and implemented in other markets.
|
29 |
Detecção e diagnóstico de falhas em robôs manipuladores via redes neurais artificiais. / Fault detection and diagnosis in robotic manipulators via artificial neural networks.Renato Tinós 11 February 1999 (has links)
Neste trabalho, um novo enfoque para detecção e diagnóstico de falhas (DDF) em robôs manipuladores é apresentado. Um robô com falhas pode causar sérios danos e pode colocar em risco o pessoal presente no ambiente de trabalho. Geralmente, os pesquisadores têm proposto esquemas de DDF baseados no modelo matemático do sistema. Contudo, erros de modelagem podem ocultar os efeitos das falhas e podem ser uma fonte de alarmes falsos. Aqui, duas redes neurais artificiais são utilizadas em um sistema de DDF para robôs manipuladores. Um perceptron multicamadas treinado por retropropagação do erro é usado para reproduzir o comportamento dinâmico do manipulador. As saídas do perceptron são comparadas com as variáveis medidas, gerando o vetor de resíduos. Em seguida, uma rede com função de base radial é usada para classificar os resíduos, gerando a isolação das falhas. Quatro algoritmos diferentes são empregados para treinar esta rede. O primeiro utiliza regularização para reduzir a flexibilidade do modelo. O segundo emprega regularização também, mas ao invés de um único termo de penalidade, cada unidade radial tem um regularização individual. O terceiro algoritmo emprega seleção de subconjuntos para selecionar as unidades radiais a partir dos padrões de treinamento. O quarto emprega o mapa auto-organizável de Kohonen para fixar os centros das unidades radiais próximos aos centros dos aglomerados de padrões. Simulações usando um manipulador com dois graus de liberdade e um Puma 560 são apresentadas, demostrando que o sistema consegue detectar e diagnosticar corretamente falhas que ocorrem em conjuntos de padrões não-treinados. / In this work, a new approach for fault detection and diagnosis in robotic manipulators is presented. A faulty robot could cause serious damages and put in risk the people involved. Usually, researchers have proposed fault detection and diagnosis schemes based on the mathematical model of the system. However, modeling errors could obscure the fault effects and could be a false alarm source. In this work, two artificial neural networks are employed in a fault detection and diagnosis system to robotic manipulators. A multilayer perceptron trained with backpropagation algorithm is employed to reproduce the robotic manipulator dynamical behavior. The perceptron outputs are compared with the real measurements, generating the residual vector. A radial basis function network is utilized to classify the residual vector, generating the fault isolation. Four different algorithms have been employed to train this network. The first utilizes regularization to reduce the flexibility of the model. The second employs regularization too, but instead of only one penalty term, each radial unit has a individual penalty term. The third employs subset selection to choose the radial units from the training patterns. The forth algorithm employs the Kohonens self-organizing map to fix the radial unit center near to the cluster centers. Simulations employing a two link manipulator and a Puma 560 manipulator are presented, demonstrating that the system can detect and isolate correctly faults that occur in nontrained pattern sets.
|
30 |
Um método de classificação em grupos de informações visando sua segurançaTorres, José Antonio Corrales 05 March 2008 (has links)
Made available in DSpace on 2016-03-15T19:38:09Z (GMT). No. of bitstreams: 1
Jose Antonio Corrales Torres.pdf: 1028407 bytes, checksum: b5574af2fd8d98d1a9fe03ff29b6aa07 (MD5)
Previous issue date: 2008-03-05 / In the contemporary society, information and knowledge grew in importance and have become the most valuable assets, space and time are less relevant and more vulnerable due to the increasing mobile technology. New procedures and processes were created towards security. The information classification is the primary requirement to adjust rules and procedures, the protection level and cost. The current process is manual, restricted by the knowledge of few people and subject to imperfections. This study suggests a method to classify the information, regarding its confidentiality, using groups generated by an Artificial Neural Network. The development of this method was supported by studies of methodologies applied to information protection, to the technology and business risk management, classification methodologies and control structures. The implementation made use of a Neural Network, based on the Self-Organization Maps (SOM) of Kohonen, due to its heavy specialization on groups handling. The study case objective was the implementation and it considered the information from universities, due to their various properties (administrative, pedagogic and scientific research). The analysis of the results indicated the similarity among the elements that composed the groups generated by the training of the Neural Network, complemented by calculations using the original weights. The viability of the application of the considered method to an organization was confirmed. / Na sociedade contemporânea, a informação e o conhecimento assumiram a importância de representar os ativos de maior valor, num cenário em que o espaço e o tempo, devido à tecnologia voltada à mobilidade, perderam a relevância e tornaram-se mais vulneráveis. Surgiram novos procedimentos e mecanismos destinados à segurança. A classificação das informações é o requisito fundamental para direcionar as medidas, o nível de proteção e o custo. Atualmente o processo é manual, restrito ao entendimento de algumas pessoas e sujeito a imperfeições. Este estudo propõe um método para classificar as informações, quanto à sua confidencialidade, em grupos gerados por uma Rede Neural Artificial. O desenvolvimento deste método foi pautado por estudos em metodologias destinadas à segurança das informações, ao gerenciamento de risco de negócio e tecnológico, metodologias para classificação e estruturas de controle. A implementação usou a Rede Neural, baseada nos Mapas Auto-Organizáveis (SOM) de Kohonen, devido à sua acentuada especialização no tratamento de grupos. O estudo de caso objetivou a implementação e contemplou as informações das universidades, em razão da diversidade de suas propriedades (administrativa, pedagógica e pesquisa científica). A análise dos resultados obtidos permitiu observar a semelhança dos elementos que compõe os grupos gerados pelo treinamento da Rede Neural, complementado por cálculos que utilizam os pesos iniciais. Mostrou-se a viabilidade da aplicação do método proposto para uma organização.
|
Page generated in 0.0533 seconds