11 |
Distribuição, complexação e mobilidade de íons arsênio em águas superficiais do Quadrilátero Ferrífero-MG/Brasil: ênfase nas interações com substâncias húmicas aquáticas / Distribution, complexation and mobility of arsenic ions in surface waters from Quadrilátero Ferrífero-MG/Brazil: emphasis on interactions with aquatic humic substancesGontijo, Erik Sartori Jeunon [UNESP] 27 March 2017 (has links)
Submitted by ERIK SARTORI JEUNON GONTIJO null (sartori_jg@hotmail.com) on 2017-04-20T15:59:08Z
No. of bitstreams: 1
Erik Sartori Jeunon Gontijo - Tese.pdf: 6303649 bytes, checksum: e2379a13e7e45d2ce94323eddce0a8bc (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-04-25T17:47:27Z (GMT) No. of bitstreams: 1
gontijo_esj_dr_soro.pdf: 6303649 bytes, checksum: e2379a13e7e45d2ce94323eddce0a8bc (MD5) / Made available in DSpace on 2017-04-25T17:47:27Z (GMT). No. of bitstreams: 1
gontijo_esj_dr_soro.pdf: 6303649 bytes, checksum: e2379a13e7e45d2ce94323eddce0a8bc (MD5)
Previous issue date: 2017-03-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Deutscher Akademischer Austauschdienst (DAAD) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / O As está distribuído em diversas formas químicas em sistemas aquáticos, o que determina o seu comportamento e destino no ambiente. Nesse contexto, as substâncias húmicas (SH) têm um importante papel por serem capazes de complexar esse metaloide e alterar sua mobilidade e biodisponibilidade. O Fe também tem grande importância por poder formar complexos ternários SH-Fe-As. Apesar da química do As já ter sido bem estudada, o seu comportamento em ambientes ricos em SH e Fe ainda não é totalmente compreendido. Os objetivos desse trabalho foram investigar a distribuição do As, Al e Fe em águas superficiais de uma região mineira no sudeste do Brasil (Quadrilátero Ferrífero, QF) e entender como características de SH extraídas de diferentes regiões (Brasil e Alemanha) afetam a complexação do As(V) na presença de Fe(III). Amostras de águas foram coletadas em 12 pontos do QF, filtradas (0,45 µm) e ultrafiltradas (1 kDa) para separar as frações particulada (>0,45 µm), coloidal (<0,45 µm e >1 kDa) e livre (<1 kDa) de As, Al e Fe. A técnica de difusão em filmes finos por gradientes de concentração (DGT) foi usada em 5 dos 12 pontos para estudar a fração lábil dos elementos estudados. Carbono orgânico total (COT) e dissolvido (COD) também foram medidos. SH foram extraídas de quatro pontos (um no Brasil nas estações seca e chuvosa e três na Alemanha) para testar a influência de diferentes tipos de SH e Fe(III) na complexação do As(V). As SH foram caracterizadas e foram feitos testes de complexação utilizando sistema de ultrafiltração com membrana de 1 kDa. Todos os dados foram analisados pela rede neural de Kohonen. Os resultados mostraram que a maior parte do Al e Fe total no QF estava presente na fração particulada e o As na fração livre. A maior parte do Al e Fe dissolvido estava na fração coloidal e inerte, diferente do As que era mais lábil e potencialmente biodisponível. A maioria das amostras apresentou comportamento similar nas estações seca e chuvosa no QF. Diferenças entre os resultados de ultrafiltração e DGT foram atribuídos a distinções metodológicas e processos químicos. Os resultados de caracterização dos extratos mostraram que a maior parte do As e Fe estavam predominantemente nas frações de maior tamanho molecular. Todos os extratos de SH complexaram quantidades similares de As(V) nos testes de complexação, exceto o extrato do rio Selke, onde foi encontrado menos As(V) livre (mais complexado). Essa diferença foi atribuída ao S e à grupos N-C aromático na estrutura de SH. Isso reforça que a qualidade das SH é um importante fator capaz de influenciar o comportamento do As em ambientes ricos em matéria orgânica e Fe, que também pareceram ser fatores limitantes nas interações com o As. A rede neural de Kohonen foi uma ferramenta importante nas investigações de distribuição do As e complexação do As(V) por Fe(III) e SH. / As is distributed in different chemical forms in aquatic systems. These different forms control its behaviour and fate in the environment. The humic substances (HS) have an important role in the As cycle since they can complex this metalloid and change its mobility and bioavailability. Fe is also important because it can form ternary complexes HS-Fe-As. Although the As chemistry is well studied, the behaviour of As in HS and Fe-rich environments is not totally known. This thesis aimed to investigate the distribution of As, Al and Fe in surface waters from a mining region in the southeast of Brazil (Quadrilátero Ferrífero, QF) and understand how characteristics of HS extracted from different regions (Brazil and Germany) affect the complexation of As(V) in the presence of Fe(III). Water samples were taken in 12 points in QF, filtered (0.45 µm) and ultrafiltered (1 kDa) to separate the fractions particulate (>0.45 µm), colloidal (<0.45 µm and >1 kDa) and free (<1 kDa) of As, Al and Fe. The technique of diffusive gradients in thin films (DGT) was used in 5 of the 12 points to study the labile fraction of the elements studied. Total organic carbon (TOC) and dissolved organic carbon (DOC) were also measured. HS were extracted from four points (one in Brazil in dry and rainy seasons and three in Germany) to analyse the influence of HS from different origins and Fe(III) on the complexation of As(V). The HS were characterised and complexation experiments were performed using an ultrafiltration system with 1 kDa membrane. All data were analysed using the Kohonen neural network. The results showed that most of total Al and Fe in QF was in the particulate fraction and As was in the free fraction. Most of the dissolved Al and Fe was in the colloidal and inert fraction, while As was more labile and potentially more bioavailable. Most samples had similar behaviour in the dry and rainy seasons in the QF. Differences between results of ultrafiltration and DGT were attributed to methodological distinctions and chemical processes. The results of characterisation of extracts showed that most of As and Fe was in the fractions of higher molecular size. All HS extracts complexed similar amounts of As(V), except Selke, where a lower amount of free As(V) was detected (more complexed). This difference was attributed to S and N-aromatic C groups in HS structure. It supports that the quality of HS is an important factor able to influence the behaviour of As in environments rich in organic matter and Fe. The Kohonen neural network was an important tool in the investigation of the distribution of As and As(V) complexation by Fe(III) and HS. / FAPESP: 2012/17727-8
|
12 |
Previsão de inadimplência e redes neurais artificiais / Forecast of insolvency and neural networksLourenço da Rocha Guimarães 02 August 2006 (has links)
O objetivo deste trabalho é a previsão de inadimplência. Foram
implementados dois modelos de previsão de inadimplência, de modo que o primeiro modelo fez uso de uma rede neural feedforward utilizando o algoritmo de retro propagação, e o segundo utilizou uma rede não supervisionada (rede Kohonen). As características relevantes de usuários de crédito foram apresentadas para as redes neurais, para o seu treinamento e teste. Os resultados obtidos demonstram que tanto as redes neurais supervisionadas quanto as redes neurais não supervisionadas mostraram-se instrumentos eficazes para o processo de previsão de inadimplência. / The objective of this work is the insolvency forecast. They were implemented two insolvency forecast models, so that the first model used a feed forward neural network utilizing the retro propagation algorithm, and the second utilized a non-supervised neural network (Kohonen networks). The prominent characteristics of credit users were presented for the neural networks, for their training and test. The results obtained showed that the supervised network as well the non-supervised neural network showed themselves efficient instruments for the insolvency forecast trial.
|
13 |
Emprego de redes neurais e de descritores moleculares em quimiotaxonomia da família Asteraceae / Use of Neural Networks and Molecular Descriptors in Chemotaxonomy of the Asteraceae FamilyMarcus Tullius Scotti 18 July 2008 (has links)
Esse trabalho descreve o desenvolvimento de uma nova ferramenta quimioinformática designada de SISTEMATX que possibilitou a análise quimiotaxonômica da família Asteraceae, empregando novos parâmetros moleculares, bem como o estudo da relação quantitativa estrutura química atividade biológica de substâncias provenientes desse grupo vegetal. A família Asteraceae, uma das maiores entre as angiospermas, caracteriza-se quimicamente pela produção de sesquiterpenos lactonizados (SLs). Um total de 1111 (SLs), extraídos de 658 espécies, 161 gêneros, 63 subtribos e 15 tribos da família Asteraceae foram representados e cadastrados em duas dimensões no SISTEMATX e associados à respectiva origem botânica. A partir dessa codificação, o grau de oxidação e as estruturas em três dimensões de cada SL foram obtidos pelo sistema. Essas informações, associadas aos dados botânicos, foram exportadas para um arquivo texto, o qual permitiu a obtenção de vários tipos de descritores moleculares. Esses parâmetros moleculares foram correlacionados com o grau de oxidação médio por tribo e tiveram sua seleção realizada por regressão linear múltipla utilizando algoritmo genético. Equações com coeficientes estatísticos variando entre 0,725 ≤ r2 ≤ 0,981 e 0,647 ≤ Qcv2 ≤ 0,725 foram obtidas com apenas um descritor, possibilitando a identificação de algumas características estruturais relacionadas ao grau de oxidação. Não foi obtida nenhuma relação entre o grau de oxidação dos SL e a evolução das tribos da família Asteraceae. Os descritores moleculares também foram usados como dados de entrada para separar as ocorrências botânicas através de mapas auto-organizáveis (rede não supervisionada Kohonen). Os mapas gerados, com cada bloco de descritor, separaram as tribos da família Asteraceae com valores de índices de acerto total entre 66,7% e 83,6%. A análise desses resultados evidencia semelhanças entre as tribos Heliantheae, Helenieae, e Eupatorieae e, também, entre as tribos Anthemideae e Inuleae. Tais observações são coincidentes com as classificações sistemáticas propostas por Bremer, que utilizam principalmente dados morfológicos e, também, moleculares. A mesma abordagem foi utilizada para separar os ramos da tribo Heliantheae, segundo a classificação proposta por Stuessy, cuja separação é baseada no número de cromossomos das subtribos. Os mapas auto-organizáveis obtidos separam em duas regiões distintas os ramos A e C, com elevados índices de acerto total que variam entre 81,79% a 92,48%. Ambos os estudos demonstram que os descritores moleculares podem ser utilizados como uma ferramenta para classificação de táxons em níveis hierárquicos baixos, tais como tribos e subtribos. Adicionalmente, foi demonstrado que os marcadores químicos corroboram parcialmente com as classificações que empregam dados morfológicos e moleculares. Os descritores obtidos por fragmentos ou pela representação da estrutura dos SLs em duas dimensões foram suficientes para obtenção de resultados significativos, não sendo obtida melhora nos resultados com os descritores que utilizam a representação em três dimensões das estruturas. Paralelamente, um estudo adicional foi realizado relacionando a estrutura química, representada pelos mesmos descritores moleculares anteriormente mencionados, com a atividade citotóxica de 37 SLs frente às células tumorais da nasofaringe KB. Uma equação com índices estatísticos significativos (r2=0,826 e Qcv2=0,743) foi obtida. Os cinco descritores, selecionados a partir de uma equação estatisticamente mais significativa, representam uma descrição global de propriedades estéricas e características eletrônicas de cada molécula que auxiliaram na determinação de fragmentos estruturais importantes para a atividade citotóxica. Tal modelo permitiu verificar que os esqueletos carbônicos dos tipos guaianolídeo e pseudoguaianolídeo são encontrados nos SLs que apresentam maior atividade citotóxica. / This work describes the development of a new chemoinformatic tool named SISTEMATX that allowed the chemotaxonomic analysis of the Asteraceae family employing new molecular parameters, as well as the quantitative structure activity relationship study of compounds produced by this botanical group. The Asteraceae, one of the largest families among of angiosperms, is chemically characterized by the production of sesquiterpene lactones (SLs). A total of 1111 (SLs), extracted from 658 species, 161 genera, 63 subtribes and 15 tribes of the Asteraceae, were represented and registered in two dimensions in the SISTEMATX and associated with their botanical source. From this codification, the degree of oxidation and the structures in three dimensions of each SL were obtained by the system. These data linked with botanical origin were exported for a text file which allow the generation of several types of molecular descriptors. These molecular parameters were correlated with the average oxidation degree by tribe and were selected by multiple linear regressions using genetic algorithms. Equations with statistical coefficients varying between 0,725 ≤ r2 0,981 and 0,647 ≤ Qcv2 ≤ 0,725 were obtained with only one descriptor, making possible the identification of some structural characteristics related to the oxidation level. Any relationship between the degree of oxidation of SL and the tribes evolution of the family Asteraceae was not obtained. The molecular descriptors were also used as input data to separate the botanical occurrences through the self organizing-maps (unsupervised net Kohonen). The generated maps with each block descriptor, divide the Asteraceae tribes with total indexes values between 66,7% and 83,6%. The analysis of these results shows evident similarities among the Heliantheae, Helenieae and Eupatorieae tribes and, also, between the Anthemideae and Inuleae tribes. Those observations are in agreement with the systematic classifications proposed by Bremer, that use mainly morphologic and, also, molecular data. The same approach was utilized to separate the branches of the Heliantheae tribe, according to the Stuessys classification, whose division is based on the chromosome numbers of the subtribes. From the obtained self-organizing maps, two different areas (branches A and C) were separated with high hit indexes varying among 81,79% to 92,48%. Both studies demonstrate that the molecular descriptors can be used as a tool for taxon classification in low hierarchical levels such as tribes and subtribes. Additionally, was demonstrated that the chemical markers partially corroborate with the classifications that use morphologic and molecular data. Descriptors obtained by fragments or by the representation of the SL structures in two dimensions were sufficient to obtain significant results, and were not obtained better results with descriptors that utilize the structure representation in three dimensions. An additional study was accomplished relating the chemical structure, represented by the same molecular descriptors previously mentioned, with the cytotoxic activity of 37 SLs against tumoral cells derived from human carcinoma of the nasopharynx (KB). An equation with significant statistical indexes was obtained. The five descriptors, selected from the more statistical significant equation, shows a global description of sterical properties and electronic characteristics of each molecule that aid in the determination of important structural fragments for the cytotoxic activity. From the model can be verified that the carbon skeletons of the guaianolide and pseudoguaianolide types are encountered in the SLs that show the higher cytotoxic activity.
|
14 |
[pt] PREVISÃO DE POTÊNCIA REATIVA / [en] REACTIVE POWER FORECASTINGELIANE DA SILVA CHRISTO 28 December 2005 (has links)
[pt] No novo modelo do Setor Elétrico é essencial desenvolver novas técnicas
que estimem valores futuros, a curto e longo-prazos, das potências ativa e reativa.
Com base nisso, este trabalho tem por objetivo apresentar uma nova técnica de
previsão horária de potência reativa a curto-prazo, por subestação, baseada na
linearidade existente entre as potências ativa e reativa. O modelo proposto,
denominado de Modelo Híbrido de Previsão de Reativo, é dividido em duas
etapas: A primeira etapa é feita uma classificação dos dados através de uma rede
neural não supervisionada Mapas Auto-Organizáveis de Kohonen (SOM); A
segunda etapa, utiliza-se um modelo de defasagem distribuída auto-regressivo
(ADL) com estimação de Mínimos Quadrados Reponderados Iterativamente
(IRLS) acoplado a uma correção para autocorrelação serial dos resíduos - Método
Iterativo de Cochrane-Orcutt. Este Modelo Híbrido tem como variável dependente
a potência reativa, e como variáveis explicativas dados horários de potência ativa
e reativa no instante atual e defasadas no tempo. A previsão de potência reativa a
curto-prazo é dividida em in sample e em out of sample. A previsão out of
sample é aplicada a períodos horários em até um mês à frente. O modelo
proposto é aplicado aos dados de uma concessionária específica de Energia
Elétrica e os resultados são comparados a um modelo de Regressão Dinâmica
convencional e a um modelo de Redes Neurais Artificiais Feedforward de
Múltiplas camadas (MLP) com um algoritmo de retropropagação do erro. / [en] The forecasting of reactive and active power is an
important tool in the
monitoring of an Electrical Energy System. The main
purpose of the present work
is the development of a new short-term reactive power
hourly forecast technique,
which can be used at utility or substations levels. The
proposed model, named A
Hybrid Model for Reactive Forecasting, is divided in two
stages. In the first
stage, the active and reactive power data are classified
by an unsupervised neural
network - the Self-Organized Maps of Kohonen (SOM). In the
second stage, a
Autoregressive Distributed Lags Model (ADL) is used with
its parameters
estimated by an Iteratively Reweighted Least Square
(IRLS). It also includes a
correction lag structure for serial autocorrelation of the
residuals as used in the
Cochrane-Orcutt formulation. The short term reactive power
forecasting is
divided in in sample and out of sample. The out of sample
forecast is
applied to hourly periods until one month ahead. The
proposed model is applied to
real data of one substation and the results are compared
with two other
approaches, a conventional Dynamic Regression and a
Feedforward Multi-layer
Perceptron (MLP) Artificial Neural Network model.
|
15 |
Classification automatique de données IRMf : application à l'étude des réseaux de l'émotion / Automatic classification of fMRI data : application to the study of emotion networksFournel, Arnaud 11 September 2013 (has links)
Depuis une quinzaine d'années, l'Imagerie par Résonance Magnétique fonctionnelle (IRMf) permet d'extraire de l'information sur le fonctionnement cérébral et particulièrement sur la localisation des processus cognitifs. L'information contenue par les acquisitions en IRMf est extraite à l'aide du modèle linéaire général et du processus d'inférence statistique. Bien que cette méthode dite « classique » ait permis de valider la plupart des modèles lésionnels de manière non invasive, elle souffre de certaines limites. Pour résoudre ce problème, différentes techniques d'analyse ont émergé et proposent une nouvelle façon d'interpréter les données de la neuroimagerie. Nous présentons deux nouvelles méthodes multivariées basées sur les cartes de Kohonen. Nos méthodes analysent les données IRMf avec le moins d'a priori possibles. En parallèle, nous tentons d'extraire de l'information sur les réseaux neuronaux impliqués dans les émotions. La première de ces méthodes s'intéresse à l'information de spécialisation fonctionnelle et la seconde à l'information de connectivité fonctionnelle. Nous présentons les résultats qui en découlent, puis chacune des méthodes est comparée à l'analyse dite classique en termes d'informations extraites. De plus, notre attention s'est focalisée sur la notion de valence émotionnelle et nous tentons d'établir l'existence d'un éventuel réseau partagé entre valence positive et valence négative. La constance de ce réseau est évaluée à la fois entre modalités perceptives et entre catégories de stimuli. Chacune des méthodes proposées permet de corroborer l'information recueillie par la méthode classique, en apportant de nouvelles informations sur les processus étudiés. Du point de vue des émotions, notre travail met en lumière un partage du réseau cérébral pour les va-lences négative et positive ainsi qu'une constance de cette information dans certaines régions cérébrales entre modalités perceptives et entre catégories. / In the last fifteen years, functional magnetic resonance imaging (fMRI) have been used to extract information about cognitive processes location. The information contained in fMRI acquisitions is usually extracted using the general linear model coupled to the statistical inference process. Although this classical method has validated noninvasively most of the lesional models, it suffers from some limitations. To solve this problem, various analysis techniques have emerged and propose a new way of interpreting neuroimaging data. In this thesis, we present two multivariate methods to analyze fMRI data with the least possible a priori. In parallel, we are trying to extract information about brain emotion processing. The first method focuses on the brain functional specialization and the second method on the brain functional connectivity. After results presentation, each method is compared to the so-called classical analysis in terms of extracted information. In addition, emphasis was put on the concept of emotional valence. We try to establish the existence of a possible split between positive and negative valence networks. The consistency of the network is evaluated across both perceptual modalities and stimuli categories. Each of the proposed methods are as accurate as the conventional method and provide new highlights on the studied processes. From the perspective of emotions, our work highlights a shared brain network for positive and negative valences and a consistency of this information in some brain regions across both perceptual modalities and stimuli categories.
|
16 |
Determinação de perfis de consumo baseada em mapas de Kohonen modificadosBidarra, Rui Manuel Proença January 2012 (has links)
Tese de mestrado integrado. Engenharia Eletrotécnica e de Computadores - Major Energia. Faculdade de Engenharia. Universidade do Porto. 2012
|
17 |
Une architecture semi-supervisée et adaptative pour le filtrage d'alarmes dans les systèmes de détection d'intrusions sur les réseauxFaour, Ahmad 19 July 2007 (has links) (PDF)
Nous étudions les limites actuelles des systèmes de traitement des alarmes générées par les systèmes de détection d'intrusion (NIDS) dans les réseaux et proposons une nouvelle approche automatique qui améliore le mécanisme de filtrage. Nos principales contributions se résument ainsi : 1. Proposition d'une architecture de filtrage : nous avons proposé une architecture de filtrage des alarmes qui analyse les journaux d'alertes d'un NIDS et essaye de filtrer les faux positifs. 2. Etude de l'évolutivité de cette architecture : dans cette phase, nous étudions l'aspect dynamique de l'architecture proposée. L'exploitation de l'architecture en temps réel pose plusieurs défis sur l'adaptation de cette architecture par rapport aux changements qui peuvent arriver au cours du temps. Nous avons distingué trois problème à résoudre : (1) adaptation de l'architecture vis à vis de l'évolution du réseau surveillé : intégration des nouvelles machines, des nouveaux routeurs, etc., (2) adaptation de l'architecture vis à vis de l'apparition de nouveaux types d'attaques et (3) adaptation de l'architecture avec l'apparition ou le glissement des comportements types. Pour résoudre ces problèmes, nous utilisons la notion de rejet en distance proposée en reconnaissance des formes et les tests d'hypothèses statistiques . Toutes nos propositions sont implémentées et ont donné lieu à des expérimentations que nous décrivons tout au long du document. Ces expériences utilisent des alarmes générées par SNORT, un système de détection des intrusions basé-réseau qui surveille le réseau du Rectorat de Rouen et qui est déployé dans un environnement opérationnel. Ce point est important pour la validation de notre architecture puisque elle utilise des alarmes issues d'un environnement réel plutôt qu'un environnement simulé ou de laboratoires qui peuvent avoir des limitations significatives.
|
18 |
Reconhecimento de padrões lexicais por meio de redes neurais /Babini, Maurizio. January 2006 (has links)
Orientador: Norian Marranghello / Banca: Aledir Silveira Pereira / Banca: Furio Damiani / Resumo: A compreensão da linguagem humana é uma das tarefas mais difíceis do Processamento da Linguagem Natural (PLN) e de modo mais geral da Automação e da Inteligência Artificial (IA). O objetivo desta pesquisa é estudar os mecanismos que permitem utilizar uma rede neural artificial para poder interpretar textos. Este trabalho deveria ser utilizado, futuramente, para criar uma interface em um ambiente de co-projeto, capaz de agrupar/classificar termos/conceitos, reconhecendo padrões textuais. Para alcançar nossos objetivos de pesquisa em nível de Mestrado, utilizamos o modelo semântico de Bernard Pottier, e uma Rede Neural Artificial de Kohonen. A escolha do modelo de Bernard Pottier deve-se ao fato de que este autor é um dos mais conceituados lingüistas da atualidade e que seu modelo é largamente utilizado por pesquisadores de vários paises, tendo sido, assim, comprovada a sua validade. No que diz respeito à rede de Kohonen, acreditamos que seja a mais indicada para este tipo de aplicação, tendo em vista o fato de que essa rede tenta imitar o funcionamento do cérebro humano, em particular, reproduzindo o mapeamento de suas áreas especializadas, e tendo como hipótese de partida que, no córtex humano, conceitos similares ou de áreas afins distribuem-se em áreas limítrofes. A escolha desse tipo de rede para o nosso trabalho deve-se, outrossim, ao fato de que ela utiliza um tipo de treinamento competitivo e não-supervisionado que permite organizar os vetores (dados) de entrada em agrupamentos (clusters). / Abstract: The understanding of human language is one of the most difficult tasks of Natural Language Processing (NLP), and, in general, of Automation and Artificial Intelligence (AI). The aim of our research is to study the mechanisms that allow using an artificial neural network for interpreting text. Later, our work should be used to create an interface, in a hardware/software co-design environment, capable of clustering/classifying terms/concepts, and recognizing text patterns. In order to achieve the objectives of our research, we used the semantic model of Bernard Pottier, and a Kohonen Artificial Neural Network. The choice of Bernard Pottier's model was motivated by the fact that the author is one of the most eminent linguists nowadays, and his model is largely used by researchers in many countries, thus proving the validity of his proposal. About the Kohonen net, we believe that it is the most appropriate net for this kind of application, due to the fact that this net tries to imitate the functioning of the human brain, particularly reproducing the map of its specialized areas, as well as due to the fact that this net has as initial hypothesis that, in the human cortex, similar concepts or concepts of similar areas are distributed in closed areas. Another reason for the choice of this kind of net in our study is that it uses a competitive and non-supervising training, that allows organizing entry vectors (data) in clusters. / Mestre
|
19 |
Reconhecimento de padrões lexicais por meio de redes neuraisBabini, Maurizio [UNESP] 21 December 2006 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:35Z (GMT). No. of bitstreams: 0
Previous issue date: 2006-12-21Bitstream added on 2014-06-13T19:48:56Z : No. of bitstreams: 1
babini_m_me_ilha_prot.pdf: 976475 bytes, checksum: 371792f3e205462129827cc925906822 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / A compreensão da linguagem humana é uma das tarefas mais difíceis do Processamento da Linguagem Natural (PLN) e de modo mais geral da Automação e da Inteligência Artificial (IA). O objetivo desta pesquisa é estudar os mecanismos que permitem utilizar uma rede neural artificial para poder interpretar textos. Este trabalho deveria ser utilizado, futuramente, para criar uma interface em um ambiente de co-projeto, capaz de agrupar/classificar termos/conceitos, reconhecendo padrões textuais. Para alcançar nossos objetivos de pesquisa em nível de Mestrado, utilizamos o modelo semântico de Bernard Pottier, e uma Rede Neural Artificial de Kohonen. A escolha do modelo de Bernard Pottier deve-se ao fato de que este autor é um dos mais conceituados lingüistas da atualidade e que seu modelo é largamente utilizado por pesquisadores de vários paises, tendo sido, assim, comprovada a sua validade. No que diz respeito à rede de Kohonen, acreditamos que seja a mais indicada para este tipo de aplicação, tendo em vista o fato de que essa rede tenta imitar o funcionamento do cérebro humano, em particular, reproduzindo o mapeamento de suas áreas especializadas, e tendo como hipótese de partida que, no córtex humano, conceitos similares ou de áreas afins distribuem-se em áreas limítrofes. A escolha desse tipo de rede para o nosso trabalho deve-se, outrossim, ao fato de que ela utiliza um tipo de treinamento competitivo e não-supervisionado que permite organizar os vetores (dados) de entrada em agrupamentos (clusters). / The understanding of human language is one of the most difficult tasks of Natural Language Processing (NLP), and, in general, of Automation and Artificial Intelligence (AI). The aim of our research is to study the mechanisms that allow using an artificial neural network for interpreting text. Later, our work should be used to create an interface, in a hardware/software co-design environment, capable of clustering/classifying terms/concepts, and recognizing text patterns. In order to achieve the objectives of our research, we used the semantic model of Bernard Pottier, and a Kohonen Artificial Neural Network. The choice of Bernard Pottier's model was motivated by the fact that the author is one of the most eminent linguists nowadays, and his model is largely used by researchers in many countries, thus proving the validity of his proposal. About the Kohonen net, we believe that it is the most appropriate net for this kind of application, due to the fact that this net tries to imitate the functioning of the human brain, particularly reproducing the map of its specialized areas, as well as due to the fact that this net has as initial hypothesis that, in the human cortex, similar concepts or concepts of similar areas are distributed in closed areas. Another reason for the choice of this kind of net in our study is that it uses a competitive and non-supervising training, that allows organizing entry vectors (data) in clusters.
|
20 |
Využití umělých neuronových sítí pro řešení úloh kombinatorické optimalizace / Using artificial neural networks to solve problems in combinatorial optimizationDvořák, Marek January 2014 (has links)
This thesis discusses combinatorial optimization problems, its characteristics and solving methods. Different types of such problems are presented here and I hint at solution using classical heuristical algorithms. In the next part, I focus on artificial neural networks, their description and classification. In the last part, I'm comparing two neural network approaches for solving a travelling salesman problem on several examples.
|
Page generated in 0.0537 seconds