• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 12
  • 10
  • 5
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 70
  • 40
  • 29
  • 29
  • 24
  • 22
  • 21
  • 20
  • 19
  • 19
  • 18
  • 17
  • 16
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Contribution à l’analyse sémantique des textes arabes

Lebboss, Georges 08 July 2016 (has links)
La langue arabe est pauvre en ressources sémantiques électroniques. Il y a bien la ressource Arabic WordNet, mais il est pauvre en mots et en relations. Cette thèse porte sur l’enrichissement d’Arabic WordNet par des synsets (un synset est un ensemble de mots synonymes) à partir d’un corpus général de grande taille. Ce type de corpus n’existe pas en arabe, il a donc fallu le construire, avant de lui faire subir un certain nombre de prétraitements.Nous avons élaboré, Gilles Bernard et moi-même, une méthode de vectorisation des mots, GraPaVec, qui puisse servir ici. J’ai donc construit un système incluant un module Add2Corpus, des prétraitements, une vectorisation des mots à l’aide de patterns fréquentiels générés automatiquement, qui aboutit à une matrice de données avec en ligne les mots et en colonne les patterns, chaque composante représente la fréquence du mot dans le pattern.Les vecteurs de mots sont soumis au modèle neuronal Self Organizing Map SOM ; la classification produite par SOM construit des synsets. Pour validation, il a fallu créer un corpus de référence (il n’en existe pas en arabe pour ce domaine) à partir d’Arabic WordNet, puis comparer la méthode GraPaVec avec Word2Vec et Glove. Le résultat montre que GraPaVec donne pour ce problème les meilleurs résultats avec une F-mesure supérieure de 25 % aux deux autres. Les classes produites seront utilisées pour créer de nouveaux synsets intégrés à Arabic WordNet / The Arabic language is poor in electronic semantic resources. Among those resources there is Arabic WordNet which is also poor in words and relationships.This thesis focuses on enriching Arabic WordNet by synsets (a synset is a set of synonymous words) taken from a large general corpus. This type of corpus does not exist in Arabic, so we had to build it, before subjecting it to a number of pretreatments.We developed, Gilles Bernard and myself, a method of word vectorization called GraPaVec which can be used here. I built a system which includes a module Add2Corpus, pretreatments, word vectorization using automatically generated frequency patterns, which yields a data matrix whose rows are the words and columns the patterns, each component representing the frequency of a word in a pattern.The word vectors are fed to the neural model Self Organizing Map (SOM) ;the classification produced constructs synsets. In order to validate the method, we had to create a gold standard corpus (there are none in Arabic for this area) from Arabic WordNet, and then compare the GraPaVec method with Word2Vec and Glove ones. The result shows that GraPaVec gives for this problem the best results with a F-measure 25 % higher than the others. The generated classes will be used to create new synsets to be included in Arabic WordNet.
62

Automobilių registracijos numerių atpažinimo tyrimas / Analysis of car number plate recognition

Laptik, Raimond 17 June 2005 (has links)
In the presented master paper: Analysis of car number plate recognition, optical character recognition (OCR), OCR software, OCR devices and systems are reviewed. Image processing operators and artificial neural networks are presented. Analysis and application of image processing operators for detection of number plate is done. Experimental results of estimation of Kohonen and multilayer feedforward artificial neural network learning parameters are presented. Number plate recognition is performed by the use of multilayer feedforward artificial neural network. Model of number plate recognition system is created. Number plate recognition software works in Microsoft© Windows™ operating system. Software is written with C++ language. Experimental results of system model operation are presented.
63

Fusion d'images de télédétection hétérogènes par méthodes crédibilistes / Fusion of heterogeneous remote sensing images by credibilist methods

Hammami, Imen 08 December 2017 (has links)
Avec l’avènement de nouvelles techniques d’acquisition d’image et l’émergence des systèmes satellitaires à haute résolution, les données de télédétection à exploiter sont devenues de plus en plus riches et variées. Leur combinaison est donc devenue essentielle pour améliorer le processus d’extraction des informations utiles liées à la nature physique des surfaces observées. Cependant, ces données sont généralement hétérogènes et imparfaites ce qui pose plusieurs problèmes au niveau de leur traitement conjoint et nécessite le développement de méthodes spécifiques. C’est dans ce contexte que s’inscrit cette thèse qui vise à élaborer une nouvelle méthode de fusion évidentielle dédiée au traitement des images de télédétection hétérogènes à haute résolution. Afin d’atteindre cet objectif, nous axons notre recherche, en premier lieu, sur le développement d’une nouvelle approche pour l’estimation des fonctions de croyance basée sur la carte de Kohonen pour simplifier l’opération d’affectation des masses des gros volumes de données occupées par ces images. La méthode proposée permet de modéliser non seulement l’ignorance et l’imprécision de nos sources d’information, mais aussi leur paradoxe. Ensuite, nous exploitons cette approche d’estimation pour proposer une technique de fusion originale qui permettra de remédier aux problèmes dus à la grande variété des connaissances apportées par ces capteurs hétérogènes. Finalement, nous étudions la manière dont la dépendance entre ces sources peut être considérée dans le processus de fusion moyennant la théorie des copules. Pour cette raison, une nouvelle technique pour choisir la copule la plus appropriée est introduite. La partie expérimentale de ce travail est dédiée à la cartographie de l’occupation des sols dans les zones agricoles en utilisant des images SPOT-5 et RADARSAT-2. L’étude expérimentale réalisée démontre la robustesse et l’efficacité des approches développées dans le cadre de cette thèse. / With the advent of new image acquisition techniques and the emergence of high-resolution satellite systems, remote sensing data to be exploited have become increasingly rich and varied. Their combination has thus become essential to improve the process of extracting useful information related to the physical nature of the observed surfaces. However, these data are generally heterogeneous and imperfect, which poses several problems in their joint treatment and requires the development of specific methods. It is in this context that falls this thesis that aimed at developing a new evidential fusion method dedicated to heterogeneous remote sensing images processing at high resolution. In order to achieve this objective, we first focus our research, firstly, on the development of a new approach for the belief functions estimation based on Kohonen’s map in order to simplify the masses assignment operation of the large volumes of data occupied by these images. The proposed method allows to model not only the ignorance and the imprecision of our sources of information, but also their paradox. After that, we exploit this estimation approach to propose an original fusion technique that will solve problems due to the wide variety of knowledge provided by these heterogeneous sensors. Finally, we study the way in which the dependence between these sources can be considered in the fusion process using the copula theory. For this reason, a new technique for choosing the most appropriate copula is introduced. The experimental part of this work isdevoted to land use mapping in case of agricultural areas using SPOT-5 and RADARSAT-2 images. The experimental study carried out demonstrates the robustness and effectiveness of the approaches developed in the framework of this thesis.
64

O uso de redes neurais auto-organizáveis na análise da transferência de conhecimentos prosódico em aprendizes brasileiros de língua inglesa / The use of self-organizing artificial neural networks for the analysis of prosodic knowledge in Brazilian learner of English

Silva, Ana Cristina Cunha da January 2010 (has links)
SILVA, Ana Cristina Cunha da. O uso de redes neurais auto-organizáveis na análise da transferência de conhecimentos prosódico em aprendizes brasileiros de língua inglesa. 2010, 201f. Tese (Doutorado em Linguística) – Universidade Federal do Ceará, Departamento de Letras Vernáculas, Programa de Pós-graduação em Linguística, Fortaleza-CE, 2010. / Submitted by nazareno mesquita (nazagon36@yahoo.com.br) on 2012-06-28T13:08:58Z No. of bitstreams: 1 2010_tese_ACCSilva.pdf: 2172197 bytes, checksum: 036ba2cdc331410f0516a0ba2abe520d (MD5) / Approved for entry into archive by Maria Josineide Góis(josineide@ufc.br) on 2013-10-10T13:22:45Z (GMT) No. of bitstreams: 1 2010_tese_ACCSilva.pdf: 2172197 bytes, checksum: 036ba2cdc331410f0516a0ba2abe520d (MD5) / Made available in DSpace on 2013-10-10T13:22:45Z (GMT). No. of bitstreams: 1 2010_tese_ACCSilva.pdf: 2172197 bytes, checksum: 036ba2cdc331410f0516a0ba2abe520d (MD5) Previous issue date: 2010 / The objective of this dissertation was to investigate how the prosodic knowledge is organized in an early stage of L2 acquisition in Brazilian learners of English with the help of a connectionist neural network. The approach proposed in this research is first, to quantify the utterances of L2 learners in the form of LPC coefficients and other linguistic/phonetics features that can represent the phenomenon studied here (Transfer of the prosodic knowledge from Portuguese to English). This process is called speech feature extraction, an important step in the connectionist approach to speech processing. Second, since certain features of the lexical item or sentence produced by each learner are determined, these data are entered into the neural network to analyze the statistical properties (regularities) of the set of speakers as a whole. Third, visualization tools are used to analyze how the network organizes speakers and what information is most relevant to this process of group formation (e.g. proficiency level, a certain characteristic or property of speech, among others). The network is known as Self-Organizing Map (Self-Organizing Map, SOM). The SOM organizes speakers for similarity degree in well-defined groups (clusters). Application of SOM in this context is therefore innovative. The SOM network is implemented in Matlab environment using the SOMtoolbox package, which is a set of programming routines developed by the research group in Finland, also the inventors of the SOM. The simulation results indicate that SOM might be used more frequently to assess the degree of distance that a group of learners is to the group of native speakers. Thus, a neural network might be used as a tool in the context of determining the level of foreign language proficiency. / O objetivo desta tese foi investigar como o conhecimento prosódico está organizado em um estágio inicial de aquisição de L2 em aprendizes brasileiros de inglês com a ajuda de uma rede neural conexionista. A abordagem proposta neste trabalho consiste primeiramente em "quantificar" as elocuções dos aprendizes de L2 na forma de coeficientes LPC e outras características linguísticas/fonéticas que possam representar o fenômeno aqui estudado (Transferência do Conhecimento Prosódico do Português para o inglês). A este processo dá-se o nome de "extração de características" da fala (feature extraction), uma importante etapa na abordagem conexionista do processamento da fala. Em segundo lugar, uma vez determinadas as características do item lexical ou da frase produzida por cada aprendiz, são inseridos esses dados na rede neural a fim de analisar as propriedades (regularidades) estatísticas do conjunto de falantes como um todo. Em terceiro, utiliza-se ferramentas de visualização para analisar como a rede organiza os falantes e quais informações são mais relevantes para este processo de formação de grupos (e.g. nível de proficiência, uma certa característica ou propriedade da fala, entre outros). A rede utilizada é conhecida como Mapa Auto-Organizável (Self-Organizing Map, SOM). A rede SOM organiza os falantes por grau de similaridade em grupos bem definidos (clusters). A aplicação da rede SOM neste contexto é, portanto, inovadora. A rede SOM é implementada no ambiente Matlab usando o pacote Som toolbox, que é um conjunto de rotinas de programação desenvolvidas pelo grupo de pesquisa da Finlândia, também inventores da rede SOM. Os resultados das simulações apontam que a rede SOM pode vir a ser usada mais frequentemente para avaliar o grau de distância a que um grupo de aprendizes está do grupo de falantes nativos. Dessa forma, uma rede neural pode vir a ser aplicada como ferramenta no contexto de determinação de nível de proficiência em língua estrangeira.
65

Emprego de comitê de máquinas para segmentação da íris

Schneider, Mauro Ulisses 23 August 2010 (has links)
Made available in DSpace on 2016-03-15T19:37:30Z (GMT). No. of bitstreams: 1 Mauro Ulisses Schneider.pdf: 1455677 bytes, checksum: 6eba28391f8f6910fbf5457a57119bd3 (MD5) Previous issue date: 2010-08-23 / Fundo Mackenzie de Pesquisa / The use of biometric systems has been widely stimulated by both the government and private entities to replace or improve traditional security systems. Biometric systems are becoming increasingly indispensable to protecting life and property, mainly due to its robustness, reliability, difficult to counterfeit and fast authentication. In real world applications, the devices for image acquisition and the environment are not always controlled and may under certain circumstances produce noisy images or with large variations in tonality, texture, geometry, hindering segmentation and consequently the authentication of the an individual. To deal effectively with such problems, this dissertation investigates the possibility of using committee machines combined with digital image processing techniques for iris segmentation. The components employed in the composition of the committee machines are support vector clustering, k-means and self organizing maps. In order to evaluate the performance of the tools developed in this dissertation, the experimental results obtained are compared with related works reported in the literature. Experiments on publicity available UBIRIS database indicate that committee machine can be successfully applied to the iris segmentation. / A utilização de sistemas biométricos vem sendo amplamente; incentivados pelo governo e entidades privadas a fim de substituir ou melhorar os sistemas de segurança tradicionais. Os sistemas biométricos são cada vez mais indispensáveis para proteger vidas e bens, sendo robustos, confiáveis, de difícil falsificação e rápida autenticação. Em aplicações de mundo real, os dispositivos de aquisição de imagem e o ambiente nem sempre são controlados, podendo em certas circunstâncias produzir imagens ruidosas ou com grandes variações na tonalidade, textura, geometria, dificultando a sua segmentação e por conseqüência a autenticação do indivíduo. Para lidar eficazmente com tais problemas, nesta dissertação é estudado o emprego de comitês de máquinas em conjunto com técnicas de processamento de imagens digitais para a segmentação da íris. Os componentes estudados na composição do comitê de máquinas são agrupamento por vetores-suporte, k-means e mapas auto- organizáveis. Para a avaliação do desempenho das ferramentas desenvolvidas neste trabalho, os resultados obtidos são comparados com trabalhos relacionados na literatura. Foi utilizada a base de dados pública UBIRIS disponível na internet.
66

Síťový prvek s pokročilým řízením / Network Element with Advanced Control

Zedníček, Petr January 2010 (has links)
The diploma thesis deal with finding and testing neural networks, whose characteristics and parameters suitable for the active management of network element. Solves optimization task priority switching of data units from input to output. Work is focused largely on the use of Hopfield and Kohonen networks and their optimization. Result of this work are two models. The first theory is solved in Matlab, where each comparing the theoretical results of neural networks. The second model is a realistic model of the active element designed in Simulink
67

Optimalizace přenosu hlasu v komunikačních sítích / Optimisation of a Voice Transmission in Communication Networks

Novák, David January 2010 (has links)
This master’s thesis deals abou the transmission of voice in communications networks. The theoretical part describes criteria for optimizing voice, such as quality of service, type of service, level of service, service type, and mean opinion score. Next I describe the Internet Protocol, comparing IPv4 and IPv6, VoIP, including security, protocols and parameters necessary for transmission. Other part is about neural networks. There are basically described the neural network, Hopfield neural network and Kohenen neural network. The research is based on a comparison of the network without ensuring the quality of service and with ensuring quality of service. Then, there are compared two types of switches. Classical switch-controlled sequentially, and switch controlled by neural networks. The overall simulation program is implemented in Opnet Modeler. The conclusion deals with the creation of laboratory tasks in this program to compare the different systems of ensuring quality of service.
68

Combining Multivariate Statistical Methods and Spatial Analysis to Characterize Water Quality Conditions in the White River Basin, Indiana, U.S.A.

Gamble, Andrew Stephan 25 February 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This research performs a comparative study of techniques for combining spatial data and multivariate statistical methods for characterizing water quality conditions in a river basin. The study has been performed on the White River basin in central Indiana, and uses sixteen physical and chemical water quality parameters collected from 44 different monitoring sites, along with various spatial data related to land use – land cover, soil characteristics, terrain characteristics, eco-regions, etc. Various parameters related to the spatial data were analyzed using ArcHydro tools and were included in the multivariate analysis methods for the purpose of creating classification equations that relate spatial and spatio-temporal attributes of the watershed to water quality data at monitoring stations. The study compares the use of various statistical estimates (mean, geometric mean, trimmed mean, and median) of monitored water quality variables to represent annual and seasonal water quality conditions. The relationship between these estimates and the spatial data is then modeled via linear and non-linear multivariate methods. The linear statistical multivariate method uses a combination of principal component analysis, cluster analysis, and discriminant analysis, whereas the non-linear multivariate method uses a combination of Kohonen Self-Organizing Maps, Cluster Analysis, and Support Vector Machines. The final models were tested with recent and independent data collected from stations in the Eagle Creek watershed, within the White River basin. In 6 out of 20 models the Support Vector Machine more accurately classified the Eagle Creek stations, and in 2 out of 20 models the Linear Discriminant Analysis model achieved better results. Neither the linear or non-linear models had an apparent advantage for the remaining 12 models. This research provides an insight into the variability and uncertainty in the interpretation of the various statistical estimates and statistical models, when water quality monitoring data is combined with spatial data for characterizing general spatial and spatio-temporal trends.
69

Développement méthodologique du fractionnement par couplage flux / force (AF4) et spectroscopie optique pour l'étude de la matière organique dissoute aquatique : application aux estuaires de Seine et de Gironde / Methodological development of flow field-flow fractionation (AF4) and optical spectroscopy for the study of aquatic dissolved organic matter : application to the Seine and Gironde estuaries

Parot, Jeremie 09 December 2016 (has links)
La matière organique dissoute (MOD) est constituée d’un mélange hétérogène et complexe de molécules. Elle intervient dans de nombreux processus physiques, biologiques et chimiques dans les milieux aquatiques, et notamment dans les grands cycles biogéochimiques ou le transport et la biodisponibilité des contaminants.Ainsi un des enjeux actuels de nombreux domaines de recherche (chimie, écologie, océanographie) est de mieux comprendre et caractériser la MOD dans l’environnement. Dans ce contexte-là, l’objectif de ces travaux a été le développement d’une méthodologie analytique pour l’analyse et la séparation, en fonction de la taille, par fractionnement par couplage flux-force avec flux asymétrique (AF4) de la MOD. Le développement a principalement porté sur la phase mobile, le flux croisé, le temps de focus et l’utilisation d’étalons organiques proches de la MOD, permettant de calculer sa masse moléculaire moyenne.Cette méthode optimisée, couplée à un détecteur UV/Vis, équipée d’une membrane de 1kDa, d’un espaceur de 490μm et d’une phase mobile de 5mM en tampon phosphate a permis l’étude de la dynamique de la MOD.L’application de cette méthode couplée aux techniques de spectroscopie optique (absorbance et fluorescence) a permis l’étude de la MOD dans les estuaires de Seine et de Gironde mettant en avant les effets de la marée et des saisons sur la taille et le type de MOD.De plus, différentes approches statistiques ont été développées afin de mieux appréhender les multiples variables (analytiques ou environnementales) et notamment les modèles de régression linéaire ou les cartes auto-organisatrices de Kohonen. / Dissolved organic matter (DOM) is a heterogeneous and complex mixture of molecules. It is involved in many physical, biological and chemical processes in aquatic ecosystems, especially in the major biogeochemical cycles or transport and bioavailability of contaminants.Thus one of the current issues in many areas of research (chemistry, ecology, oceanography) is to better understand and characterize DOM in the environment. In this context, the aim of this work was the development of an analytical methodology for DOM analysis and separation, depending on its size, by asymmetrical flow field-flow fractionation (AF4). The development focused on the mobile phase, the cross-flow, the focus time and the use of organic macromolecules standards close to DOM, in order to calculate its molecular weight.This optimized method, coupled with a UV/Vis detector, equipped with a 1kDa membrane, a 490μm spacer and a mobile phase of 5 mM phosphate buffer allowed us to study the MOD dynamics in estuarine environments.The application of this method coupled to optical spectroscopy techniques (absorbance and fluorescence) permitted the study of MOD in the Seine and Gironde estuaries and to highlight the tidal and the seasonal effects on the size and type of DOM.Furthermore, different statistical approaches have been developed to better understand the multiple variables (analytical or environmental), especially linear regression models or self-organizing maps (Kohonen).
70

Segmentace obrazu pomocí neuronové sítě / Neural Network Based Image Segmentation

Jamborová, Soňa January 2011 (has links)
This work is about suggestion of the software for neural network based image segmentation. It defines basic terms for this topics. It is focusing mainly at preperation imaging information for image segmentation using neural network. It describes and compares different aproaches for image segmentation.

Page generated in 0.0563 seconds