Spelling suggestions: "subject:"fondo.""
81 |
[en] A PROJECTOR OPERATOR FORMALISM TO SOLVE THE ANDERSON HAMILTONIAN / [pt] UM FORMALISMO DE OPERADORES DE PROJEÇÃO PARA RESOLVER O HAMILTONIANO DE ANDERSONVICTOR LOPES DA SILVA 25 July 2014 (has links)
[pt] Nesta dissertação propomos um formalismo de operadores de projeção para obter a energia do estado fundamental do Hamiltoniano da Impureza de Anderson com repulsão Coulombiana U infinita. Este formalismo consiste em projetar o espaço de Hilbert em um subespaço de uma unica função correspondente ao estado fundamental do mar de Fermi, onde uma versão renormalizada do Hamiltoniano opera. A energia do estado fundamental pode ser obtida através de um processo autoconsistente. conhecendo a energia e possível calcular as propriedades fundamentais do sistema como a magnetização em função do campo magnético externo, a susceptibilidade magnética, a dependência da ocupação eletrônica como função da energia local da impureza e a temperatura Kondo, a qual caracteriza o comportamento universal do problema Kondo. / [en] In this dissertation we propose a projector operator formalism to obtain the
ground state energy of the Impurity Anderson Hamiltonian with innite
Coulomb repulsion U. This formalism consists in projecting the Hilbert
space into a sub-space of one function corresponding to the ground state of
the free Fermi sea where a renormalized version of the Hamiltonian operates.
The ground state energy can be obtained through a self-consistent process.
From the knowledge of the energy, it is possible to calculate the fundamental
properties of the system as it is the magnetization as a function of an
external magnetic field, the magnetic susceptibility, the dependence of the
electronic occupation as a function of the local energy of the impurity and
the Kondo temperature, which characterizes the universal behavior of a
Kondo problem.
|
82 |
Influência do efeito Kondo na condutância de contatos pontuais de superfícies metálicas. / The Kondo effect influence on the conductance of pontual contacts on metallic surfaces.Seridonio, Antonio Carlos Ferreira 05 April 2002 (has links)
A microscopia de varredura por tunelamento (MVT) é uma nova maneira de se observar experimentalmente o efeito Kondo. Quando uma concentração de átomos é adicionada a um meio metálico (metal hospedeiro), a corrente de tunelamento passa a depender de fatores de origem não geométrica. O rearranjo das cargas dentro do volume metálico (oscilações de Friedel) e o espalhamento de spins eletrônicos (efeito Kondo), devido a introdução de impurezas, mudam o valor da corrente e influenciam o levantamento da topografia do espécime examinado. Esses fatores devem ser considerados para que a topografia gerada seja condizente com a topografia verdadeira. Utilizamos como modelo teórico para descrição desse sistema, o modelo de Anderson de uma impureza para simular o espécime examinado e uma banda de condução livre para representar os elétrons da agulha metálica do microscópio. Nossa abordagem usa a fórmula de Kubo para o cálculo da corrente de tunelamento, supondo Hamiltoniano de tunelamento como perturbação e o potencial elétrico no regime linear. Apresentamos inicialmente um estudo para o Modelo do Nível Ressonante, isto é, o modelo de Anderson sem correlação, com o objetivo de demonstrar a precisão do método do Grupo de Renormalização Numérico. Em seguida, analisamos o Modelo de Anderson correlacionado. Os resultados tanto para a condutância em função da distância entre ponta e impureza a temperatura fixa, como para condutância em função da temperatura e distância fixa, permitem interpretação física transparente desde que levem em conta a ressonância de Kondo na densidade espectral. / The scanning tunneling microscopy (STM) is a new way to observe experimentally the Kondo effect. When a concentration of atoms id added to a sample (host metal), the tunneling current begins to depend on other non-geometric factors. The rearrangement of charges in the metallic bulk (Friedel oscillations) and the electronic spin scattering (Kondo effect), due to the presence of impurities, change the current value and affect the sample´s topography. These factors must be considered in order to make a correspondence between the generated topography with the true one. As a theoretical description of the system, we use the single impurity Anderson model to simulate the examined sample and a free conduction band to represent the electrons of the microscope metallic tip. Our treatment uses the Kubo formula to calculate the tunneling current, assuming the tunneling Hamiltonian as a perturbation and the electric potential in the linear regime. We initially present a study of the Resonant Level Model, i.e, the Anderson model without correlaction, to show the accuary of the Numerical Renormalization Group procedure. In the next step, we analyse the correlated Anderson model. The dependence of the conductance on tip-impurity distance, at constant temperature, and its dependence on temperature for constant tip-impurity distance, allow a clear physical interpretation after taking into account the Kondo resonance in the spectral density.
|
83 |
Modelo de Anderson de dois canais. / Two-channel Anderson Model.Ferreira, João Vitor Batista 18 December 2000 (has links)
Nozières e Blandin generalizaram o Modelo Kondo através da inclusão de mais graus de liberdade. Eles investigaram um sistema formado de uma impureza magnética em um metal hospedeiro, considerando a estrutura orbital da impureza, campo cristalino e interações spin-órbita. Este sistema é representado pelo Hamiltoniano de Kondo Multicanal: a interação entre a impureza local e a banda de condução é feita via canais (cada canal representa um conjunto de números quânticos bem definidos). Nozières e Blandin mostraram o aparecimento de um ponto fixo anômalo no regime de acoplamento finito. Esse ponto fixo anômalo pode explicar o comportamento não-líquido de Fermi de compostos de terras-raras e actinídeos. Cox e colaboradores usaram o Hamiltoniano Kondo Quadrupolar para representar sistemas de férmions pesados em urânio e óxidos supercondutores de alta temperatura, os quais podem ser mapeados em um Modelo Kondo de dois canais. Como o Modelo Kondo tradicional (um canal) é o limite de baixa temperatura do Modelo Anderson, é interessante também generalizar este último para incluir mais canais. Nesta tese nós mostramos que o mesmo procedimento trivial, o qual generaliza o Hamiltoniano Kondo, não funciona para o Modelo de Anderson. Nós usamos um Hamiltoniano proposto por Cox para representar o Modelo de Anderson de dois canais. Usando a transformação de Schrieffer-Wolff nós demonstramos que este Hamiltoniano é equivalente ao Hamiltoniano Kondo de dois canais em baixas temperaturas. E finalmente, nós aplicamos o Grupo de Renormalização Numérico para investigar os níveis de mais baixa energia, a suscetibilidade magnética e o calor específico. / Nozières and Blandin generalized the Kondo Model by including more degrees of freedom. They investigated a system made of magnetic impurity in a metal host, considering impurity orbital structure, crystalline field and spin-orbit interactions. This system is represented by multichannel Kondo Hamiltonian: the interaction between local impurity and conduction band is done via channels (each channel represents a set of well defined quantum numbers). They showed that anomalous fixed point appears at finite coupling. The anomalous fixed point can explain the non-Fermi Liquid behaviour of rare earths and actinides compounds. Cox et al used a quadrupolar Kondo Hamiltonian for uranium heavy-fermion materials and high-temperature superconducting oxides, which can be mapped to a two-channel Kondo Model. Since Kondo Model is a low temperature limit of Anderson Model, would be interesting to generalize this last one including many channels. In this thesis we show that the same trivial procedure, which generalizes the Kondo Hamiltonian, does not work with the Anderson Model. We use a model Hamiltonian proposed by Cox to represent the two-channel Anderson Model. Using the Schrieffer-Wolf transformation we prove this Hamiltonian is equivalent to the two-channel Kondo Hamiltonian. And finally, we have applied Numerical Renormalization Group calculations to investigate the lowest energy levels, susceptibility and specific heat.
|
84 |
Cálculo, via grupo de renormalização, da relaxação nuclear de uma impureza em meio metálico. / Renormalization group calculation of nuclear spin-lattice relaxation for one impurity in a metal.Whitaker, Marisa Andreata 28 April 1989 (has links)
A taxa de relaxação magnética nuclear de uma impureza diluída em um meio metálico foi calculada como função da temperatura. Nossos cálculos são aplicados ao modelo de Anderson com degenerescência de spin, originalmente desenvolvido para descrever ligas magnéticas diluídas. Nossos cálculos são aplicados ao modelo de Anderson com degenerescência de spin, originalmente desenvolvido para descrever ligas magnéticas diluídas. Discutimos a relevância a sistemas de férmions pesados, valência flutuante e adsorção química em superfícies metálicas. As taxas de relaxação como função da temperatura exibem picos que concordam qualitativamente com resultados experimentais. No limite de T → 0 as taxas de relaxação são proporcionais a temperatura, mesmo nos casos em que efeitos de muitos corpos invalidam clássica derivação da lei de Korringa. O coeficiente linear é proporcional ao quadrado da suscetibilidade magnética à temperatura zero; isto generaliza a relação derivada por Shiba no limite Kondo. / The nuclear magnetic relaxation rate for an impurity in a metallic environment has been calculated as a function of temperature. Our calculations are based on the spin-degenerate Anderson model originally developed to describe dilute magnetic alloys. The relevance to heavy férmions, Valence fluctuation, and chemisorption on metallic surfaces is discussed. The temperature dependent rates exhibit peaks in qualitative agreement with experimental results. As expected, in the limit T → 0 the rates are proportional to the temperature, even for cases in which many-body effects invalidate the classical derivation of the Korringa Law. The linear coefficient is shown to be proportional to the square of the zero temperature suscetibility; this generalizes a relation derived by Shiba in the Kondo limit.
|
85 |
Condução eletrônica através de um contato quântico pontual / Electronic transport through a quantum point contactCampo Júnior, Vivaldo Leiria 30 April 1999 (has links)
Neste trabalho é apresentado o cálculo, pelo grupo de renormalização numérico, da condutância AC através de uma nanoestrutura acoplada a gases eletrônicos, a baixa temperatura e no regime de resposta linear. Este sistema apresenta a competição entre dois efeitos: blo¬queio Coulombiano e efeito Kondo. Nosso modelo considera gases eletrônicos unidimensionais que são unidos pelas extremidades para formar um anel, no qual a corrente é induzida por um fluxo magnético oscilante com freqüência . Nós partimos de um modelo tight-binding de vizinhos mais próximos para os gases eletrônicos e, deste modo, o potencial vetor é facilmente incorporado ao Hamiltoniano por condições de contorno torsionais. Uma barreira de potencial entre os gases eletrônicos e a nanoestrutura é simulada em termos de uma taxa de tunelamento entre a nanoestrutura e os sítios adjacentes menor que aquela entre entre sítios vizinhos no anel. A capacitância da nanoestrutura é pequena, o que implica que nós podemos considerar mudanças no número de elétrons dentro da mesma por apenas uma unidade. Como conseqüência, o Hamiltoniano é mapeado no Hamiltoniano de Anderson com correlação U entre os elétrons. Uma voltagem de gate controla a energia da impureza (da nanoestrutura), 0. Plotada como função de , a condutância mostra dois picos característicos do bloqueio Coulombiano, em freqüências correspondentes às energias para adicionar um elétron à nanoestrutura e para remover um elétron da nanoestrutura respectivamente. No regime Kondo, 0 > 0 > -U (ou seja, para voltagens de gate tais que a nanoestrutura isolada teria estado fundamental com degenerescência de spin), um pico (Kondo) adicional aparece próximo à = 0. Plotada como função de Vg, a condutância DC mostra um largo pico no regime Kondo, caindo rapidamente a zero para voltagens resultando em um estado fundamental não degenerado para a nanoestrutura isolada. Uma relação entre a condutância e a densidade espectral do nível da impureza é obtida e utilizada para interpretar os resultados numéricos. / In this work a renormalization-group calculation of the low-temperature AC conductance in the linear response regime through a nanostructure coupled to metallic leads is presented. This system shows a competition between two effects: the Coulomb blockade and the Kon¬do effect. Our model considers one-dimensional leads which are connected to form a ring, in which a current is induced by a magnetic flux oscillating at the frequency . We start from a nearest-neighbor tight-binding model for the leads and in this way the potential vector is easily incorporated in the model Hamiltonian by twisting boundary conditions. A potential barrier between the leads and the nanostructure is simulated in terms of a tunneling rate between the nanostructure and the adjacent sites in the leads, which is smaller than the one between neighbors sites in the leads. The capacity of the nanostructure is small, which implies that substantial energy changes are associated with each electron transfered to the nanostructure. As a consequence, the model Hamiltonian maps onto the spin-degenerate Anderson Hamiltoni¬an with correlation U between the electrons. A gate voltage Vg controls the impurity (i.e., nanostructure) energy 0. Plotted as a function of , the conductivity shows two Coulomb-blockade peaks, at the energy needed to add an electron to and to remove an electron from the nanostructure, respectively. In the Kondo regime 0 > 0 > -U (i.e., for gate voltages such that the isolated nanostructure would have a spin-degeneration ground state), an addition (Kondo) peak appears near = 0. Plotted as functions of Vg, the static conductivity shows a broad peak in the Kondo regime and drops rapidly to zero for voltages resulting in a non-degenerate nanostructure ground state. A relation between the conductance and the spectral density of the impurity is obtained and used to interpret the numerical results.
|
86 |
Temperaturabhängige elektronische Struktur und Magnetismus von metallischen Systemen mit lokalisierten MomentenSantos, Carlos Augusto Machamba dos 01 June 2006 (has links)
No description available.
|
87 |
Calor específico do modelo de Anderson de uma impureza por grupo de renormalização numérico / Numerical Renormalization-group Computation of Specific Heats.Costa, Sandra Cristina 24 March 1995 (has links)
Neste trabalho, calculam-se o calor específico e a entropia do Modelo de Anderson simétrico de uma impureza usando o Grupo de Renormalização Numérico (GRN). O método é baseado na discretização logarítmica da banda de condução do metal hospedeiro a qual a impureza está acoplada. Porém, esta discretização introduz oscilações nas propriedades termodinâmicas. Esta inconveniência, inerente ao método, é contornável para a suscetibilidade magnética, mas é crítica para o calor específico, restringindo o alcance do GRN. Para sobrepor essa dificuldade, é usado o novo procedimento denominado intercalado que foi desenvolvido para o cálculo da suscetibilidade magnética de modelos de duas impurezas. Para reduzir as matrizes e o tempo computacional, é usado, também, o operador carga axial, recentemente definido no contexto do Modelo de Kondo de duas impurezas, e que é conservado pelo Hamiltoniano de Anderson simétrico. As curvas obtidas são comparadas com resultados exatos obtidos por ansatz de Bethe e pelo Modelo de Nível Ressonante. / The specific heat and the entropy of the one-impurity symmetric Anderson Model are calculated using the Numerical Renormalization Group (NRG). The heart of the method is the logarithmic discretization of the metal conduction band where the impurity is coupled. However, this discretization, inherent in the method, introduces oscillations in the thermodynamical properties. For the susceptibility it is not so critical but for the specific heat the usual calculation is prohibitive. To overcome this difficulty, we use the new procedure called interleaved that was developed to calculate the susceptibility of two-impurity models. In order to reduce the matrices and computation time, use is made of the axial charge operator recently defined in the two-impurity Kondo Model context and that is conserved by the symmetric Anderson Hamiltonian. The curves obtained are compared with exacts results of Bethe ansatz and Resonant Level Model.
|
88 |
Descrição alternativa da supercondutividade e do efeito Kondo via soluções solitônicasSilva, Júlio César Mota 29 July 2016 (has links)
Submitted by Vasti Diniz (vastijpa@hotmail.com) on 2017-09-18T13:25:12Z
No. of bitstreams: 1
arquivototal.pdf: 1173515 bytes, checksum: 6b27e3426deb9a7c32c8aa5b029cc0a7 (MD5) / Made available in DSpace on 2017-09-18T13:25:12Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1173515 bytes, checksum: 6b27e3426deb9a7c32c8aa5b029cc0a7 (MD5)
Previous issue date: 2016-07-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Here we describe the superconductivity and the Kondo effect through domain wall solutions. We introduced the temperature in the models by making an analogy between the domain walls type solutions with internal structures and Rindler obsevers. By making the introduction of temperature and a gauge field into the model we obtain the superconducting domain walls and the superconductivity they describe. When we consider a model that allows the violation of Lorentz symmetry is possible to describe the effect of impurities on the domain walls with which we describe the Kondo effect in superconductors. Our results are in agreement with the results obtained from research into holographic superconductors. / Neste trabalho descrevemos a supercondutividade e o efeito Kondo atraves de solugoes de paredes de dominio. Introduzimos a temperatura nos modelos fazendo uma analogia entre as solugoes do tipo paredes de dominio corn estruturas internas e os observadores de Rindler. Ao fazermos a introducao de temperatura e de urn campo de gauge no modelo obtemos paredes de dominios supercondutoras e corn elan descrevemos a supercondutividade. Ao considerarmos um modelo que permite a violado da simetria de Lorentz é possivel descrever o efeito de impurezas nas paredes de dominios, corn as quais descrevemos o efeito Kondo ern supercondutores. Nossos resultados estao de acordo com os resultados obtidos nas pesquisas sobre supercondutores holograficos.
|
89 |
Descrição do efeito magnetocalórico em sistemas antiferromagnéticos itinerantes a partir do modelo da rede de Kondo ferromagnética / Description of the magnetocaloric effect in antiferrromagnetic itinerant systems from the of ferromagnetic kondo latticeNascimento, Douglas do 14 March 2013 (has links)
Made available in DSpace on 2016-12-12T20:15:50Z (GMT). No. of bitstreams: 1
Douglas Nascimento.pdf: 4060178 bytes, checksum: 878a0a0c64fd603563f3de3e4f166d98 (MD5)
Previous issue date: 2013-03-14 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The Kondo lattice model,also known as the double exchange model, is used to describe materials that have magnetic moments localized and conduction electrons.We consider an antiferromagnetic material composed of two sublattices forming an interpenetrating simple cubic lattice. Assuming a ferromagnetic coupling JK > 0 between the conduction electrons and the localized magnetic moments, the magnetization of the conduction electrons is obtained through the Green functions by means of the equation of motion and the magnetization of the localized spins is determined via the Brillouin function in the approximation molecular field. In the mean field approximation, the phase diagrams JK −n e h−T, including the phases ferromagnetic (FM) and antiferromagnetic (AF), are obtained. The curves ΔS exhibit differents behavior for differents intensities of the applied magnetic field, these behaviors are analyzed using diagrams JK − n e h − T. / O modelo da rede de Kondo, também conhecido como modelo da dupla troca, é utilizado para descrever materiais que possuem momentos magnéticos localizados e elétrons de condução. É considerado um material antiferromagnético composto por duas subredes interpenetrantes formando uma rede cúbica simples. Assumindo um acoplamento ferromagnético JK > 0 entre os elétrons de condução e os momentos magnéticos localizados, a magnetização dos elétrons de condução é obtida através das funções de Green por meio da equação de movimento e a magnetização dos spins localizados é determinada via função de Brillouin na aproximação de campo molecular. Na aproximação de campo médio, os diagramas de fases JK − n e h − T, incluindo as fases ferromagnetica (FM) e antiferromagnética (AF), são obtidos. As curvas de ΔS exibem comportamentos distintos para diferentes intensidades de campo magnético aplicado, sendo estes comportamentos analisados por meio dos diagramas JK − n e h − T.
|
90 |
Cálculo, via grupo de renormalização, da relaxação nuclear de uma impureza em meio metálico. / Renormalization group calculation of nuclear spin-lattice relaxation for one impurity in a metal.Marisa Andreata Whitaker 28 April 1989 (has links)
A taxa de relaxação magnética nuclear de uma impureza diluída em um meio metálico foi calculada como função da temperatura. Nossos cálculos são aplicados ao modelo de Anderson com degenerescência de spin, originalmente desenvolvido para descrever ligas magnéticas diluídas. Nossos cálculos são aplicados ao modelo de Anderson com degenerescência de spin, originalmente desenvolvido para descrever ligas magnéticas diluídas. Discutimos a relevância a sistemas de férmions pesados, valência flutuante e adsorção química em superfícies metálicas. As taxas de relaxação como função da temperatura exibem picos que concordam qualitativamente com resultados experimentais. No limite de T → 0 as taxas de relaxação são proporcionais a temperatura, mesmo nos casos em que efeitos de muitos corpos invalidam clássica derivação da lei de Korringa. O coeficiente linear é proporcional ao quadrado da suscetibilidade magnética à temperatura zero; isto generaliza a relação derivada por Shiba no limite Kondo. / The nuclear magnetic relaxation rate for an impurity in a metallic environment has been calculated as a function of temperature. Our calculations are based on the spin-degenerate Anderson model originally developed to describe dilute magnetic alloys. The relevance to heavy férmions, Valence fluctuation, and chemisorption on metallic surfaces is discussed. The temperature dependent rates exhibit peaks in qualitative agreement with experimental results. As expected, in the limit T → 0 the rates are proportional to the temperature, even for cases in which many-body effects invalidate the classical derivation of the Korringa Law. The linear coefficient is shown to be proportional to the square of the zero temperature suscetibility; this generalizes a relation derived by Shiba in the Kondo limit.
|
Page generated in 0.0967 seconds