• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Motivation i ett långt projekt / Motivation in a long project

Bjerkén, Daniel, Gundersen, Gunilla, Lövgren, Johny January 2016 (has links)
Hur påverkas projektdeltagarnas motivation i projekt som har en relativt lång tid avsatt för genomförandet och med förhållandevis stora resurser? För att få svar på frågan om motivation i långa projekt genomfördes en empirisk fallstudie via kvalitativa intervjuer av sex projektdeltagare och en projektledare, i ett företag inom tullbranschen. Dessa sju personer var allokerade till ett IT-utvecklingsprojekt. Herzbergs två-faktorteori användes för att beskriva vilka faktorer som påverkat respondenternas motivation. Av studien följer att det är främst tre slags händelser som påverkar projektdeltagarnas motivation. Det är händelser som går att koppla till projektets fasövergångar, händelser som berör projektets målsättning och händelser som handlar om projektets arbetssätt. Avslutningsvis kan konstateras att det är den kontextuella osäkerheten som främst påverkar projektdeltagarnas motivation i ett projekt som pågår under lång tid. Alltså de förändringar som sker i omvärlden mellan tidpunkten för planeringen av projektet och när projektmålet utvärderas. / What affect the project participants’ motivation in projects that have a relatively long period of time set aside for implementation and with relatively large resources? An empirical case study was conducted to answer the question about motivation in long projects by using qualitative interviews of six project participants and one project manager in a company in the customs sector. These seven people were allocated to an IT development project. Herzberg´s two-factor theory was used to describe the factors that influenced the respondents’ motivation. There are mainly three types of events that affects the project participants’ motivation. These are events that can be linked to the project phase transitions, events related to project objectives and events about the project’s methodology. Finally, it can be stated that it is the contextual uncertainty that primarily affect the project participants’ motivation in a project going on for a long time. Thus the changes in the business environment between the time of the planning of the project and when the project objectives are evaluated.
2

Supervised Algorithm for Predictive Maintenance / Övervakad algoritm för prediktivt underhåll

Lu, Haida January 2023 (has links)
Predictive maintenance plays a crucial role in preventing unexpected equipment failures and maintaining assets in good operating conditions in various systems. One such scenario where predictive maintenance has been widely used is in battery management systems for electronic vehicles based on lithium batteries, where the risk of failure can be reduced by predicting the remaining useful life of the lithium battery. This project developed a DL model based on Long Short-Term Memory networks which was able to generalize new and various kinds of battery. The model was implemented on a low-cost, low-power using embedded artifcial intelligence, which enables local model execution, reducing costs, time, and risks associated with transferring data to the cloud. To further optimize the model and reduce its memory usage, quantization was applied before porting it to an embedded system based on the STM32 MCU. The results show that the model migration was successful, with low memory cost and no signifcant degradation in accuracy. Finally, the memory usage of the prediction model was also analyzed. / Predictiv underhåll har en avgörande roll för att förebygga oväntade utrustningsfel och bibehålla tillgångar i god driftsvillkor i olika system. Ett scenario där predictivt underhåll har använts mycket är i batterihanteringssystem för elfordon baserade på litiumbatterier, där risken för fel kan reduceras genom att förutsäga den återstående användbarhetsperioden för litiumbatteriet. I det här projektet utvecklades djupinlärningsprediktiva modeller med hjälp av Keras sekventiella modell för att representera en ferlagersneural nätverk och en Lång Korttidsminne modell för tidserieprediktion. Dessa modeller implementerades på en lågkostnad, låglägesmikrokontroller med inbyggd artifcial intelligence, vilket möjliggör lokal modellkörning, vilket reducerar kostnader, tid och risker med att överföra data till molnet. För att ytterligare optimera modellen och minska dess minnesfotavtryck tillämpades kvantisering innan den portades till en inbyggd system baserat på STM32 mikrokontroller. Resultaten visar att modellmigrationen var framgångsrik, med låg minneskostnad och ingen signifkant försämring av precisionen. Slutligen analyserades även minnesanvändningen av prediktionsmodellen.
3

Lärares uppfattningar om undervisning i svenskämnet för elever som har nått långt i sin kunskapsutveckling / Teachers’ beliefs about teaching Swedish to students with developed knowledge

Viklund, Jennifer January 2024 (has links)
Studiens syfte var att undersöka vilka uppfattningar lärare i årskurs F–3 har om elever som har nått långt i sin kunskapsutveckling i svenskämnet, hur de identifierar och undervisar dessa elever, vilka möjligheter och utmaningar som finns samt på vilket sätt organisationen bidrar till arbetet med elevgruppen. För att synliggöra lärarnas uppfattningar genomfördes tre semistrukturerade gruppintervjuer med totalt sju lärare. Transkripten analyserades med tematisk innehållsanalys. Läraruppfattningar samt Svedners svenskämnesargument ligger till teoretisk grund för studien. Resultatet visade att lärare uppfattade att elever som har nått längre i sin kunskapsutveckling i svenskämnet ofta läser tidigare, skriver längre och mer utvecklade texter, bidrar till mer djuplodade diskussioner samt är mer självgående jämfört med andra elever. Lärarna såg en möjlighet i att kunna visa upp arbeten som elever som hade nått längre hade gjort, för att inspirera och motivera andra elever. Det framkom att utmaningarna lärarna uppfattade i undervisningen av dessa elever var tidsaspekten, att ha tid att utmana dem, samt att de ibland saknade motivation till skolarbetet. Vad gällde organisationens bidrag till arbetet med dessa elever, var lärarna av uppfattningen att de inte fanns utrymme för dem utan att fokus ligger på elever som riskerar att inte nå målen, ett resultat som väl speglar tidigare forskning. Dock anser lärarna i studien att de har tillräcklig kompetens att undervisa dessa elever och att eleverna kontinuerligt fortsätter att utvecklas.
4

Programmable Address Generation Unit for Deep Neural Network Accelerators

Khan, Muhammad Jazib January 2020 (has links)
The Convolutional Neural Networks are getting more and more popular due to their applications in revolutionary technologies like Autonomous Driving, Biomedical Imaging, and Natural Language Processing. With this increase in adoption, the complexity of underlying algorithms is also increasing. This trend entails implications for the computation platforms as well, i.e. GPUs, FPGA, or ASIC based accelerators, especially for the Address Generation Unit (AGU), which is responsible for the memory access. Existing accelerators typically have Parametrizable Datapath AGUs, which have minimal adaptability towards evolution in algorithms. Hence new hardware is required for new algorithms, which is a very inefficient approach in terms of time, resources, and reusability. In this research, six algorithms with different implications for hardware are evaluated for address generation, and a fully Programmable AGU (PAGU) is presented, which can adapt to these algorithms. These algorithms are Standard, Strided, Dilated, Upsampled and Padded convolution, and MaxPooling. The proposed AGU architecture is a Very Long Instruction Word based Application Specific Instruction Processor which has specialized components like hardware counters and zero-overhead loops and a powerful Instruction Set Architecture (ISA), which can model static and dynamic constraints and affine and non-affine Address Equations. The target has been to minimize the flexibility vs. area, power, and performance trade-off. For a working test network of Semantic Segmentation, results have shown that PAGU shows close to the ideal performance, one cycle per address, for all the algorithms under consideration excepts Upsampled Convolution for which it is 1.7 cycles per address. The area of PAGU is approx. 4.6 times larger than the Parametrizable Datapath approach, which is still reasonable considering the high flexibility benefits. The potential of PAGU is not just limited to neural network applications but also in more general digital signal processing areas, which can be explored in the future. / Convolutional Neural Networks blir mer och mer populära på grund av deras applikationer inom revolutionerande tekniker som autonom körning, biomedicinsk bildbehandling och naturligt språkbearbetning. Med denna ökning av antagandet ökar också komplexiteten hos underliggande algoritmer. Detta medför implikationer för beräkningsplattformarna såväl som GPU: er, FPGAeller ASIC-baserade acceleratorer, särskilt för Adressgenerationsenheten (AGU) som är ansvarig för minnesåtkomst. Befintliga acceleratorer har normalt Parametrizable Datapath AGU: er som har mycket begränsad anpassningsförmåga till utveckling i algoritmer. Därför krävs ny hårdvara för nya algoritmer, vilket är en mycket ineffektiv metod när det gäller tid, resurser och återanvändbarhet. I denna forskning utvärderas sex algoritmer med olika implikationer för hårdvara för adressgenerering och en helt programmerbar AGU (PAGU) presenteras som kan anpassa sig till dessa algoritmer. Dessa algoritmer är Standard, Strided, Dilated, Upsampled och Padded convolution och MaxPooling. Den föreslagna AGU-arkitekturen är en Very Long Instruction Word-baserad applikationsspecifik instruktionsprocessor som har specialiserade komponenter som hårdvara räknare och noll-overhead-slingor och en kraftfull Instruktionsuppsättning Arkitektur (ISA) som kan modellera statiska och dynamiska begränsningar och affinera och icke-affinerad adress ekvationer. Målet har varit att minimera flexibiliteten kontra avvägning av område, kraft och prestanda. För ett fungerande testnätverk av semantisk segmentering har resultaten visat att PAGU visar nära den perfekta prestanda, 1 cykel per adress, för alla algoritmer som beaktas undantar Upsampled Convolution för vilken det är 1,7 cykler per adress. Området för PAGU är ungefär 4,6 gånger större än Parametrizable Datapath-metoden, vilket fortfarande är rimligt med tanke på de stora flexibilitetsfördelarna. Potentialen för PAGU är inte bara begränsad till neurala nätverksapplikationer utan också i mer allmänna digitala signalbehandlingsområden som kan utforskas i framtiden.
5

Flood Prediction System Using IoT and Artificial Neural Networks with Edge Computing

Samikwa, Eric January 2020 (has links)
Flood disasters affect millions of people across the world by causing severe loss of life and colossal damage to property. Internet of things (IoT) has been applied in areas such as flood prediction, flood monitoring, flood detection, etc. Although IoT technologies cannot stop the occurrence of flood disasters, they are exceptionally valuable apparatus for conveyance of catastrophe readiness and counteractive action data. Advances have been made in flood prediction using artificial neural networks (ANN). Despite the various advancements in flood prediction systems through the use of ANN, there has been less focus on the utilisation of edge computing for improved efficiency and reliability of such systems. In this thesis, a system for short-term flood prediction that uses IoT and ANN, where the prediction computation is carried out on a low power edge device is proposed. The system monitors real-time rainfall and water level sensor data and predicts ahead of time flood water levels using long short-term memory. The system can be deployed on battery power as it uses low power IoT devices and communication technology. The results of evaluating a prototype of the system indicate a good performance in terms of flood prediction accuracy and response time. The application of ANN with edge computing will help improve the efficiency of real-time flood early warning systems by bringing the prediction computation close to where data is collected. / Översvämningar drabbar miljontals människor över hela världen genom att orsaka dödsfall och förstöra egendom. Sakernas Internet (IoT) har använts i områden som översvämnings förutsägelse, översvämnings övervakning, översvämning upptäckt, etc. Även om IoT-teknologier inte kan stoppa förekomsten av översvämningar, så är de mycket användbara när det kommer till transport av katastrofberedskap och motverkande handlingsdata. Utveckling har skett när det kommer till att förutspå översvämningar med hjälp av artificiella neuronnät (ANN). Trots de olika framstegen inom system för att förutspå översvämningar genom ANN, så har det varit mindre fokus på användningen av edge computing vilket skulle kunna förbättra effektivitet och tillförlitlighet. I detta examensarbete föreslås ett system för kortsiktig översvämningsförutsägelse genom IoT och ANN, där gissningsberäkningen utförs över en låg effekt edge enhet. Systemet övervakar sensordata från regn och vattennivå i realtid och förutspår översvämningsvattennivåer i förtid genom att använda långt korttidsminne. Systemet kan köras på batteri eftersom det använder låg effekt IoT-enheter och kommunikationsteknik. Resultaten från en utvärdering av en prototyp av systemet indikerar en bra prestanda när det kommer till noggrannhet att förutspå översvämningar och responstid. Användningen av ANN med edge computing kommer att förbättra effektiviteten av tidiga varningssystem för översvämningar i realtid genom att ta gissningsberäkningen närmare till där datan samlas.
6

Development of a Software Reliability Prediction Method for Onboard European Train Control System

Longrais, Guillaume Pierre January 2021 (has links)
Software prediction is a complex area as there are no accurate models to represent reliability throughout the use of software, unlike hardware reliability. In the context of the software reliability of on-board train systems, ensuring good software reliability over time is all the more critical given the current density of rail traffic and the risk of accidents resulting from a software malfunction. This thesis proposes to use soft computing methods and historical failure data to predict the software reliability of on-board train systems. For this purpose, four machine learning models (Multi-Layer Perceptron, Imperialist Competitive Algorithm Multi-Layer Perceptron, Long Short-Term Memory Network and Convolutional Neural Network) are compared to determine which has the best prediction performance. We also study the impact of having one or more features represented in the dataset used to train the models. The performance of the different models is evaluated using the Mean Absolute Error, Mean Squared Error, Root Mean Squared Error and the R Squared. The report shows that the Long Short-Term Memory Network is the best performing model on the data used for this project. It also shows that datasets with a single feature achieve better prediction. However, the small amount of data available to conduct the experiments in this project may have impacted the results obtained, which makes further investigations necessary. / Att förutsäga programvara är ett komplext område eftersom det inte finns några exakta modeller för att representera tillförlitligheten under hela programvaruanvändningen, till skillnad från hårdvarutillförlitlighet. När det gäller programvarans tillförlitlighet i fordonsbaserade tågsystem är det ännu viktigare att säkerställa en god tillförlitlighet över tiden med tanke på den nuvarande tätheten i järnvägstrafiken och risken för olyckor till följd av ett programvarufel. I den här avhandlingen föreslås att man använder mjuka beräkningsmetoder och historiska data om fel för att förutsäga programvarans tillförlitlighet i fordonsbaserade tågsystem. För detta ändamål jämförs fyra modeller för maskininlärning (Multi-Layer Perceptron, Imperialist Competitive Algorithm Mult-iLayer Perceptron, Long Short-Term Memory Network och Convolutional Neural Network) för att fastställa vilken som har den bästa förutsägelseprestandan. Vi undersöker också effekten av att ha en eller flera funktioner representerade i den datamängd som används för att träna modellerna. De olika modellernas prestanda utvärderas med hjälp av medelabsolut fel, medelkvadratfel, rotmedelkvadratfel och R-kvadrat. Rapporten visar att Long Short-Term Memory Network är den modell som ger bäst resultat på de data som använts för detta projekt. Den visar också att dataset med en enda funktion ger bättre förutsägelser. Den lilla mängd data som fanns tillgänglig för att genomföra experimenten i detta projekt kan dock ha påverkat de erhållna resultaten, vilket gör att ytterligare undersökningar är nödvändiga.
7

Predictive vertical CPU autoscaling in Kubernetes based on time-series forecasting with Holt-Winters exponential smoothing and long short-term memory / Prediktiv vertikal CPU-autoskalning i Kubernetes baserat på tidsserieprediktion med Holt-Winters exponentiell utjämning och långt korttidsminne

Wang, Thomas January 2021 (has links)
Private and public clouds require users to specify requests for resources such as CPU and memory (RAM) to be provisioned for their applications. The values of these requests do not necessarily relate to the application’s run-time requirements, but only help the cloud infrastructure resource manager to map requested virtual resources to physical resources. If an application exceeds these values, it might be throttled or even terminated. Consequently, requested values are often overestimated, resulting in poor resource utilization in the cloud infrastructure. Autoscaling is a technique used to overcome these problems. In this research, we formulated two new predictive CPU autoscaling strategies forKubernetes containerized applications, using time-series analysis, based on Holt-Winters exponential smoothing and long short-term memory (LSTM) artificial recurrent neural networks. The two approaches were analyzed, and their performances were compared to that of the default Kubernetes Vertical Pod Autoscaler (VPA). Efficiency was evaluated in terms of CPU resource wastage, and insufficient CPU percentage and amount for container workloads from Alibaba Cluster Trace 2018, and others. In our experiments, we observed that Kubernetes Vertical Pod Autoscaler (VPA) tended to perform poorly on workloads that periodically change. Our results showed that compared to VPA, predictive methods based on Holt- Winters exponential smoothing (HW) and Long Short-Term Memory (LSTM) can decrease CPU wastage by over 40% while avoiding CPU insufficiency for various CPU workloads. Furthermore, LSTM has been shown to generate stabler predictions compared to that of HW, which allowed for more robust scaling decisions. / Privata och offentliga moln kräver att användare begär mängden CPU och minne (RAM) som ska fördelas till sina applikationer. Mängden resurser är inte nödvändigtvis relaterat till applikationernas körtidskrav, utan är till för att molninfrastrukturresurshanteraren ska kunna kartlägga begärda virtuella resurser till fysiska resurser. Om en applikation överskrider dessa värden kan den saktas ner eller till och med krascha. För att undvika störningar överskattas begärda värden oftast, vilket kan resultera i ineffektiv resursutnyttjande i molninfrastrukturen. Autoskalning är en teknik som används för att överkomma dessa problem. I denna forskning formulerade vi två nya prediktiva CPU autoskalningsstrategier för containeriserade applikationer i Kubernetes, med hjälp av tidsserieanalys baserad på metoderna Holt-Winters exponentiell utjämning och långt korttidsminne (LSTM) återkommande neurala nätverk. De två metoderna analyserades, och deras prestationer jämfördes med Kubernetes Vertical Pod Autoscaler (VPA). Prestation utvärderades genom att observera under- och överutilisering av CPU-resurser, för diverse containerarbetsbelastningar från bl. a. Alibaba Cluster Trace 2018. Vi observerade att Kubernetes Vertical Pod Autoscaler (VPA) i våra experiment tenderade att prestera dåligt på arbetsbelastningar som förändras periodvist. Våra resultat visar att jämfört med VPA kan prediktiva metoder baserade på Holt-Winters exponentiell utjämning (HW) och långt korttidsminne (LSTM) minska överflödig CPU-användning med över 40 % samtidigt som de undviker CPU-brist för olika arbetsbelastningar. Ytterligare visade sig LSTM generera stabilare prediktioner jämfört med HW, vilket ledde till mer robusta autoskalningsbeslut.
8

A deep learning based anomaly detection pipeline for battery fleets

Khongbantabam, Nabakumar Singh January 2021 (has links)
This thesis proposes a deep learning anomaly detection pipeline to detect possible anomalies during the operation of a fleet of batteries and presents its development and evaluation. The pipeline employs sensors that connect to each battery in the fleet to remotely collect real-time measurements of their operating characteristics, such as voltage, current, and temperature. The deep learning based time-series anomaly detection model was developed using Variational Autoencoder (VAE) architecture that utilizes either Long Short-Term Memory (LSTM) or, its cousin, Gated Recurrent Unit (GRU) as the encoder and the decoder networks (LSTMVAE and GRUVAE). Both variants were evaluated against three well-known conventional anomaly detection algorithms Isolation Nearest Neighbour (iNNE), Isolation Forest (iForest), and kth Nearest Neighbour (k-NN) algorithms. All five models were trained using two variations in the training dataset (full-year dataset and partial recent dataset), producing a total of 10 different model variants. The models were trained using the unsupervised method and the results were evaluated using a test dataset consisting of a few known anomaly days in the past operation of the customer’s battery fleet. The results demonstrated that k-NN and GRUVAE performed close to each other, outperforming the rest of the models with a notable margin. LSTMVAE and iForest performed moderately, while the iNNE and iForest variant trained with the full dataset, performed the worst in the evaluation. A general observation also reveals that limiting the training dataset to only a recent period produces better results nearly consistently across all models. / Detta examensarbete föreslår en pipeline för djupinlärning av avvikelser för att upptäcka möjliga anomalier under driften av en flotta av batterier och presenterar dess utveckling och utvärdering. Rörledningen använder sensorer som ansluter till varje batteri i flottan för att på distans samla in realtidsmätningar av deras driftsegenskaper, såsom spänning, ström och temperatur. Den djupinlärningsbaserade tidsserieanomalidetekteringsmodellen utvecklades med VAE-arkitektur som använder antingen LSTM eller, dess kusin, GRU som kodare och avkodarnätverk (LSTMVAE och GRU) VAE). Båda varianterna utvärderades mot tre välkända konventionella anomalidetekteringsalgoritmer -iNNE, iForest och k-NN algoritmer. Alla fem modellerna tränades med hjälp av två varianter av träningsdatauppsättningen (helårsdatauppsättning och delvis färsk datauppsättning), vilket producerade totalt 10 olika modellvarianter. Modellerna tränades med den oövervakade metoden och resultaten utvärderades med hjälp av en testdatauppsättning bestående av några kända anomalidagar under tidigare drift av kundens batteriflotta. Resultaten visade att k-NN och GRUVAE presterade nära varandra och överträffade resten av modellerna med en anmärkningsvärd marginal. LSTMVAE och iForest presterade måttligt, medan varianten iNNE och iForest tränade med hela datasetet presterade sämst i utvärderingen. En allmän observation avslöjar också att en begränsning av träningsdatauppsättningen till endast en ny period ger bättre resultat nästan konsekvent över alla modeller.

Page generated in 0.0353 seconds