• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 306
  • 70
  • 44
  • 28
  • 27
  • 18
  • 16
  • 14
  • 10
  • 6
  • 5
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 666
  • 257
  • 139
  • 117
  • 62
  • 59
  • 49
  • 45
  • 45
  • 44
  • 43
  • 43
  • 42
  • 41
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Hydrogel-based logic circuits for planar microfluidics and lab-on-a-chip automation

Beck, Anthony 25 September 2023 (has links)
The transport of vital nutrient supply in fluids as well as the exchange of specific chemical signals from cell to cell has been optimized over billion years of natural evolution. This model from nature is a driving factor in the field of microfluidics, which investigates the manipulation of the smallest amounts of fluid with the aim of applying these effects in fluidic microsystems for technical solutions. Currently, microfluidic systems are receiving attention, especially in diagnostics, \textit{e.g.} as SARS-CoV-2 antigen tests, or in the field of high-throughput analysis, \textit{e.g.} for cancer research. Either simple-to-use or large-scale integrated microfluidic systems that perform biological and chemical laboratory investigations on a so called Lab-on-a-Chip (LoC) provide fast analysis, high functionality, outstanding reproducibility at low cost per sample, and small demand of reagents due to system miniaturization. Despite the great progress of different LoC technology platforms in the last 30 years, there is still a lack of standardized microfluidic components, as well as a high-performance, fully integrated on-chip automation. Quite promising for the microfluidic system design is the similarity of the Kirchhoff's laws from electronics to predict pressure and flow rate in microchannel structures. One specific LoC platform technology approach controls fluids by active polymers which respond to specific physical and chemical signals in the fluid. Analogue to (micro-)electronics, these active polymer materials can be realized by various photolithographic and micro patterning methods to generate functional elements at high scalability. The so called chemofluidic circuits have a high-functional potential and provide “real” on-chip automation, but are complex in system design. In this work, an advanced circuit concept for the planar microfluidic chip architecture, originating from the early era of the semiconductor-based resistor-transistor-logic (RTL) will be presented. Beginning with the state of the art of microfluidic technologies, materials, and methods of this work will be further described. Then the preferred fabrication technology is evaluated and various microfluidic components are discussed in function and design. The most important component to be characterized is the hydrogel-based chemical volume phase transition transistor (CVPT) which is the key to approach microfluidic logic gate operations. This circuit concept (CVPT-RTL) is robust and simple in design, feasible with common materials and manufacturing techniques. Finally, application scenarios for the CVPT-RTL concept are presented and further development recommendations are proposed.:1 The transistor: invention of the 20th century 2 Introduction to fluidic microsystems and the theoretical basics 2.1 Fluidic systems at the microscale 2.2 Overview of microfluidic chip fabrication 2.2.1 Common substrate materials for fluidic microsystems 2.2.2 Structuring polymer substrates for microfluidics 2.2.3 Polymer chip bonding technologies 2.3 Fundamentals and microfluidic transport processes 2.3.1 Fluid dynamics in miniaturized systems 2.3.2 Hagen-Poiseuille law: the fluidic resistance 2.3.3 Electronic and microfluidic circuit model analogy 2.3.4 Limits of the electro-fluidic analogy 2.4 Active components for microfluidic control 2.4.1 Fluid transport by integrated micropumps 2.4.2 Controlling fluids by on-chip microvalves 2.4.3 Hydrogel-based microvalve archetypes 2.5 LoC technologies: lost in translation? 2.6 Microfluidic platforms providing logic operations 2.6.1 Hybrids: MEMS-based logic concepts 2.6.2 Intrinsic logic operators for microfluidic circuits 2.7 Research objective: microfluidic hydrogel-based logic circuits 3 Stimuli-responsive polymers for microfluidics 3.1 Introduction to hydrogels 3.1.1 Application variety of hydrogels 3.1.2 Hydrogel microstructuring methods 3.2 Theory: stimuli-responsive hydrogels 3.3 PNIPAAm: a multi-responsive hydrogel 4 Design, production and characterization methods of hydrogel-based microfluidic systems 4.1 The semi-automated computer aided design approach for microfluidic systems 4.2 The applied design process 4.3 Fabrication of microfluidic chips 4.3.1 Photoresist master fabrication 4.3.2 Soft lithography for PDMS chip production 4.3.3 Assembling PDMS chips by plasma bonding 4.4 Integration of functional hydrogels in microfluidic chips 4.4.1 Preparation of a monomer solution for hydrogel synthesis 4.4.2 Integration methods 4.5 Effects on hydrogel photopolymerization and the role of integration method 4.5.1 Photopolymerization from monomer solutions: managing the diffusion of free radicals 4.5.2 Hydrogel adhesion and UV light intensity distribution in the polymerization chamber 4.5.3 Hydrogel shrinkage behavior of different adhesion types 4.6 Comparison of the integration methods 4.7 Characterization setups for hydrogel actuators and microfluidic measurements . 71 4.7.1 Optical characterization method to describe swelling behavior 4.7.2 Setup of a microfluidic test stand 4.8 Conclusion: design, production and characterization methods 5 VLSI technology for hydrogel-based microfluidics 5.1 Overview of photolithography methods 5.2 Standard UV photolithography system for microfluidic structures 5.3 Self-made UV lithography system suitable for the mVLSI 5.3.1 Lithography setup for the DFR and SU-8 master exposure 5.3.2 Comparison of mask-based UV induced crosslinking for DFR and SU-8 5.4 Mask-based UV photopolymerization for mVLSI hydrogel patterning 5.4.1 Lithography setup for the photopolymerization of hydrogels 5.4.2 Hydrogel photopolymerization: experiments and results 5.4.3 Troubleshooting: photopolymerization of hydrogels 5.5 Conclusion: mVLSI technologies for hydrogel-based LoCs 6 Components for chemofluidic circuit design 6.1 Passive components in microfluidics 6.1.1 Microfluidic resistor 6.1.2 Planar-passive microfluidic signal mixer 6.1.3 Phase separation: laminar flow signal splitter 6.1.4 Hydrogel-based microfluidic one-directional valves 6.2 Hydrogel-based active components 6.2.1 Reversible hydrogel-based valves 6.2.2 Hydrogel-based variable resistors 6.2.3 CVPT: the microfluidic transistor 6.3 Conclusion: components for chemofluidic circuits 7 Hydrogel-based logic circuits in planar microfluidics 7.1 Development of a planar CVPT logic concept 7.1.1 Challenges of planar microfluidics 7.1.2 Preparatory work and conceptional basis 7.2 The microfluidic CVPT-RTL concept 7.3 The CVPT-RTL NAND gate 7.3.1 Circuit optimization stabilizing the NAND operating mode 7.3.2 Role of laminar flow for the CVPT-RTL concept 7.3.3 Hydrogel-based components for improved switching reliability 7.4 One design fits all: the NOR, AND and OR gate 7.5 Control measures for cascaded systems 7.6 Application scenarios for the CVPT-RTL concept 7.6.1 Use case: automated cell growth system 7.6.2 Use case: chemofluidic converter 7.7 Conclusion: Hydrogel-based logic circuits 8 Summary and outlook 8.1 Scientific achievements 8.2 Summarized recommendations from this work Supplementary information SI.1 Swelling degree of BIS-pNIPAAm gels SI.2 Simulated ray tracing of UV lithography setup by WinLens® SI.3 Determination of the resolution using the intercept theorem SI.4 Microfluidic master mold test structures SI.4.1 Polymer and glass mask comparison SI.4.2 Resolution Siemens star in DFR SI.4.3 Resolution Siemens star in SU-8 SI.4.4 Integration test array 300 μm for DFR and SU-8 SI.4.5 Integration test array 100 μm for SU-8 SI.4.6 Microfluidic structure for different technology parameters SI.5 Microfluidic test setups SI.6 Supplementary information: microfluidic components SI.6.1 Compensation methods for flow stabilization in microfluidic chips SI.6.2 Planar-passive microfluidic signal mixer SI.6.3 Laminar flow signal splitter SI.6.4 Variable fluidic resistors: flow rate characteristics SI.6.5 CVPT flow rate characteristics for high Rout Standard operation procedures / Der Transport von lebenswichtigen Nährstoffen in Flüssigkeiten sowie der Austausch spezifischer chemischer Signale von Zelle zu Zelle wurde in Milliarden Jahren natürlicher Evolution optimiert. Dieses Vorbild aus der Natur ist ein treibender Faktor im Fachgebiet der Mikrofluidik, welches die Manipulation kleinster Flüssigkeitsmengen erforscht um diese Effekte in fluidischen Mikrosystemen für technische Lösungen zu nutzen. Derzeit finden mikrofluidische Systeme vor allem in der Diagnostik, z.B. wie SARS-CoV-2-Antigentests, oder im Bereich der Hochdurchsatzanalyse, z.B. in der Krebsforschung, besondere Beachtung. Entweder einfach zu bedienende oder hochintegrierte mikrofluidische Systeme, die biologische und chemische Laboruntersuchungen auf einem sogenannten Lab-on-a-Chip (LoC) durchführen, bieten schnelle Analysen, hohe Funktionalität, hervorragende Reproduzierbarkeit bei niedrigen Kosten pro Probe und einen geringen Bedarf an Reagenzien durch die Miniaturisierung des Systems. Trotz des großen Fortschritts verschiedener LoC-Technologieplattformen in den letzten 30 Jahren mangelt es noch an standardisierten mikrofluidischen Komponenten sowie an einer leistungsstarken, vollintegrierten On-Chip-Automatisierung. Vielversprechend für das Design mikrofluidischer Systeme ist die Ähnlichkeit der Kirchhoff'schen Gesetze aus der Elektronik zur Vorhersage von Druck und Flussrate in Mikrokanalstrukturen. Ein spezifischer Ansatz der LoC-Plattformtechnologie steuert Flüssigkeiten durch aktive Polymere, die auf spezifische physikalische und chemische Signale in der Flüssigkeit reagieren. Analog zur (Mikro-)Elektronik können diese aktiven Polymermaterialien durch verschiedene fotolithografische und mikrostrukturelle Methoden realisiert werden, um funktionelle Elemente mit hoher Skalierbarkeit zu erzeugen.\\ Die sogenannten chemofluidischen Schaltungen haben ein hohes funktionales Potenzial und ermöglichen eine 'wirkliche' on-chip Automatisierung, sind jedoch komplex im Systemdesign. In dieser Arbeit wird ein fortgeschrittenes Schaltungskonzept für eine planare mikrofluidische Chiparchitektur vorgestellt, das aus der frühen Ära der halbleiterbasierten Resistor-Transistor-Logik (RTL) hervorgeht. Beginnend mit dem Stand der Technik der mikrofluidischen Technologien, werden Materialien und Methoden dieser Arbeit näher beschrieben. Daraufhin wird die bevorzugte Herstellungstechnologie bewertet und verschiedene mikrofluidische Komponenten werden in Funktion und Design diskutiert. Die wichtigste Komponente, die es zu charakterisieren gilt, ist der auf Hydrogel basierende chemische Volumen-Phasenübergangstransistor (CVPT), der den Schlüssel zur Realisierung mikrofluidische Logikgatteroperationen darstellt. Dieses Schaltungskonzept (CVPT-RTL) ist robust und einfach im Design und kann mit gängigen Materialien und Fertigungstechniken realisiert werden. Zuletzt werden Anwendungsszenarien für das CVPT-RTL-Konzept vorgestellt und Empfehlungen für die fortlaufende Entwicklung angestellt.:1 The transistor: invention of the 20th century 2 Introduction to fluidic microsystems and the theoretical basics 2.1 Fluidic systems at the microscale 2.2 Overview of microfluidic chip fabrication 2.2.1 Common substrate materials for fluidic microsystems 2.2.2 Structuring polymer substrates for microfluidics 2.2.3 Polymer chip bonding technologies 2.3 Fundamentals and microfluidic transport processes 2.3.1 Fluid dynamics in miniaturized systems 2.3.2 Hagen-Poiseuille law: the fluidic resistance 2.3.3 Electronic and microfluidic circuit model analogy 2.3.4 Limits of the electro-fluidic analogy 2.4 Active components for microfluidic control 2.4.1 Fluid transport by integrated micropumps 2.4.2 Controlling fluids by on-chip microvalves 2.4.3 Hydrogel-based microvalve archetypes 2.5 LoC technologies: lost in translation? 2.6 Microfluidic platforms providing logic operations 2.6.1 Hybrids: MEMS-based logic concepts 2.6.2 Intrinsic logic operators for microfluidic circuits 2.7 Research objective: microfluidic hydrogel-based logic circuits 3 Stimuli-responsive polymers for microfluidics 3.1 Introduction to hydrogels 3.1.1 Application variety of hydrogels 3.1.2 Hydrogel microstructuring methods 3.2 Theory: stimuli-responsive hydrogels 3.3 PNIPAAm: a multi-responsive hydrogel 4 Design, production and characterization methods of hydrogel-based microfluidic systems 4.1 The semi-automated computer aided design approach for microfluidic systems 4.2 The applied design process 4.3 Fabrication of microfluidic chips 4.3.1 Photoresist master fabrication 4.3.2 Soft lithography for PDMS chip production 4.3.3 Assembling PDMS chips by plasma bonding 4.4 Integration of functional hydrogels in microfluidic chips 4.4.1 Preparation of a monomer solution for hydrogel synthesis 4.4.2 Integration methods 4.5 Effects on hydrogel photopolymerization and the role of integration method 4.5.1 Photopolymerization from monomer solutions: managing the diffusion of free radicals 4.5.2 Hydrogel adhesion and UV light intensity distribution in the polymerization chamber 4.5.3 Hydrogel shrinkage behavior of different adhesion types 4.6 Comparison of the integration methods 4.7 Characterization setups for hydrogel actuators and microfluidic measurements . 71 4.7.1 Optical characterization method to describe swelling behavior 4.7.2 Setup of a microfluidic test stand 4.8 Conclusion: design, production and characterization methods 5 VLSI technology for hydrogel-based microfluidics 5.1 Overview of photolithography methods 5.2 Standard UV photolithography system for microfluidic structures 5.3 Self-made UV lithography system suitable for the mVLSI 5.3.1 Lithography setup for the DFR and SU-8 master exposure 5.3.2 Comparison of mask-based UV induced crosslinking for DFR and SU-8 5.4 Mask-based UV photopolymerization for mVLSI hydrogel patterning 5.4.1 Lithography setup for the photopolymerization of hydrogels 5.4.2 Hydrogel photopolymerization: experiments and results 5.4.3 Troubleshooting: photopolymerization of hydrogels 5.5 Conclusion: mVLSI technologies for hydrogel-based LoCs 6 Components for chemofluidic circuit design 6.1 Passive components in microfluidics 6.1.1 Microfluidic resistor 6.1.2 Planar-passive microfluidic signal mixer 6.1.3 Phase separation: laminar flow signal splitter 6.1.4 Hydrogel-based microfluidic one-directional valves 6.2 Hydrogel-based active components 6.2.1 Reversible hydrogel-based valves 6.2.2 Hydrogel-based variable resistors 6.2.3 CVPT: the microfluidic transistor 6.3 Conclusion: components for chemofluidic circuits 7 Hydrogel-based logic circuits in planar microfluidics 7.1 Development of a planar CVPT logic concept 7.1.1 Challenges of planar microfluidics 7.1.2 Preparatory work and conceptional basis 7.2 The microfluidic CVPT-RTL concept 7.3 The CVPT-RTL NAND gate 7.3.1 Circuit optimization stabilizing the NAND operating mode 7.3.2 Role of laminar flow for the CVPT-RTL concept 7.3.3 Hydrogel-based components for improved switching reliability 7.4 One design fits all: the NOR, AND and OR gate 7.5 Control measures for cascaded systems 7.6 Application scenarios for the CVPT-RTL concept 7.6.1 Use case: automated cell growth system 7.6.2 Use case: chemofluidic converter 7.7 Conclusion: Hydrogel-based logic circuits 8 Summary and outlook 8.1 Scientific achievements 8.2 Summarized recommendations from this work Supplementary information SI.1 Swelling degree of BIS-pNIPAAm gels SI.2 Simulated ray tracing of UV lithography setup by WinLens® SI.3 Determination of the resolution using the intercept theorem SI.4 Microfluidic master mold test structures SI.4.1 Polymer and glass mask comparison SI.4.2 Resolution Siemens star in DFR SI.4.3 Resolution Siemens star in SU-8 SI.4.4 Integration test array 300 μm for DFR and SU-8 SI.4.5 Integration test array 100 μm for SU-8 SI.4.6 Microfluidic structure for different technology parameters SI.5 Microfluidic test setups SI.6 Supplementary information: microfluidic components SI.6.1 Compensation methods for flow stabilization in microfluidic chips SI.6.2 Planar-passive microfluidic signal mixer SI.6.3 Laminar flow signal splitter SI.6.4 Variable fluidic resistors: flow rate characteristics SI.6.5 CVPT flow rate characteristics for high Rout Standard operation procedures
312

Seismic Imaging of the Global Asthenosphere using SS Precursors

Sun, Shuyang 21 September 2023 (has links)
The asthenosphere, a weak layer beneath the rigid lithosphere, plays a fundamental role in the operation of plate tectonics and mantle convection. While this layer is often characterized by low seismic velocity and high seismic attenuation, the global structure of the asthenosphere remains poorly understood. In this dissertation, twelve years of SS precursors reflected off the top and bottom of the asthenosphere, namely, the LAB and the 220-km discontinuity, are processed to investigate the boundaries of the asthenosphere at a global scale. Finite-frequency sensitivities are used in tomography to account for wave diffraction effects that cannot be modeled in global ray-theoretical tomography. Strong SS precursors reflected off the LAB and the 220-km discontinuity are observed across the global oceans and continents. In oceanic regions, the LAB is characterized by a large velocity drop of about 12.5%, which can be explained by 1.5%-2% partial melt in the oceanic asthenosphere. The depth of the Lithosphere Asthenosphere Boundary is about 120 km, and its average depth is independent of seafloor age. This observation supports the existence of a constant-thickness plate in the global oceans. The base of the asthenosphere is imaged at a depth of about 250 km in both oceanic and continental areas, with a velocity jump of about ∼ 7% across the interface. This finding suggests that the asthenosphere in oceanic and continental regions share the same defining mechanism. The depth perturbations of the oceanic 220-km discontinuity roughly follow the seafloor age contours. The 220-km topography is smoother beneath slower-spreading seafloors while it becomes rougher beneath faster-spreading seafloors. In addition, the roughness of the 220-km discontinuity increases rapidly with spreading rate at slow spreading seafloors, whereas the increase in roughness is much slower at fast spreading seafloors. This observation indicates that the thermal and compositional structures of seafloors formed at spreading centers may have a long-lasting impact on asthenospheric convections. In continental regions, a broad correlation is observed between the 220-km discontinuity depth structure and surface tectonics. For example, the 220-km discontinuity depth is shallower along the southern border of the Eurasian plate as well as the Pacific subduction zones. However, there is no apparent correlation between 3-D seismic wavespeed in the upper mantle and the depths of the 220-km discontinuity, indicating that secular cooling has minimum impact on the base of the asthenosphere. / Doctor of Philosophy / In classic plate tectonic theory, the outermost shell of the Earth consists of a small number of rigid plates (lithosphere) moving horizontally on the mechanically weak asthenosphere. In the classic half space cooling (HSC) model, the lithosphere is formed by gradual cooling of the hot mantle. Therefore, the thickness of the plate depends on the age of the seafloor. The problem with the HSC model is that bathymetry and heat flow measurements at old seafloors do not follow its predicted age dependence. A modified theory, called plate cooling model, can better explain those geophysical observations by assuming additional heat at the base of an oceanic plate with a constant thickness of about 125 km. However, such a constant-thickness plate has not been observed in seismology. In this thesis, the asthenosphere boundaries are imaged using a global dataset of seismic waves reflected off the Earth's internal boundaries. Strong reflections from the top of the asthenosphere are observed across all major oceans. The amplitudes of the SS precursors can be explained by 1.5%-2% of partial melt in the asthenosphere. The average boundary depths are independent of seafloor age, and this observation supports the existence of a constant-thickness plate in the global oceans with a complex origin. The 220-km discontinuity, also called the Lehmann Discontinuity, was incorporated in the Preliminary Reference Earth Model in the 1980's to represent the base of the asthenosphere. However, the presence and nature of this boundary have remained controversial, particularly in the oceanic regions. In contrast to many studies which suggest the 220-km discontinuity does not exist in the global oceans, SS precursors reflected from this interface are observed across the oceanic regions in this thesis. Furthermore, there is a positive correlation between the topography of the 220-km discontinuity and seafloor spreading rate. Specifically, the 220-km discontinuity is smoother beneath slower-spreading seafloors and much rougher beneath faster-spreading seafloors. In addition, the roughness increases faster at slowerspreading seafloors while much more gradual at faster-spreading seafloors. This indicates a close connection between seafloor spreading and mantle convections in the asthenosphere, and seafloors have permanent memories of their birth places. Different melting processes at slow and fast spreading centers produce seafloors with different physical and chemical properties, modulating convections in the asthenosphere and ultimately shaping the topography of the 220-km discontinuity. Reflections from the 220-km discontinuity are also observed across the global continental regions. In addition, the 220-km discontinuity beneath the continents is comparable to that under oceanic regions in terms of their average depth (∼ 250 km) and velocity contrast across the discontinuity (∼ 7%). In continental regions, there is a general connection between the 220-km depth structure and plate tectonics. For example, the boundary is shallower along the southern border of the Eurasian plate from the Mediterranean region to East Asia where mountain belts were formed as a result of collision between the Eurasian plate and the Nubian, Arabian and Indian plates. Depth perturbations of the 220-km discontinuity are also observed along the Pacific subduction zones including the Cascadia Subduction Zone, Peru-Chile Trench and Japan-Kuril Kamchatka Trench. In addition, depth anomalies are mapped in the interior of continents, for example, along the foothills of high topography in the interior of the Eurasian plate, which may be controlled by far-field convection associated with the convergent processes at the plate boundaries.
313

Beyond The Page: Multimodal Lab-Based Research and Development in Creative Writing

Gordon, Matthew Jacob 01 May 2023 (has links) (PDF)
This collection acts as the supporting evidence of the hypothesis that, while acting as Graduate Director of SIU’s Digital Xpressions Lab, Matthew Gordon was able to successfully provide effective support for the digital expression of collaborator’s and client's domains of knowledge while forming innovative research partnerships with academics within the SIU system and beyond. A unique form for a MFA in Creative Writing’s thesis, this collection represents the multimodal creative work a contemporary narrative designer can undertake in a single academic year when given the ability to lead a facility like Southern Illinois University’s Digital Xpressions Lab. Qualitative evidence in the form of Digital Xpressions Lab Collaborator Statements and quantitative evidence in the form of media exemplifying multimodal creative work are collected herein. Sections begin with brief descriptions of their topics as they pertain to Matthew Gordon’s thesis objectives while acting as the Graduate Director of SIU’s Digital Xpressions Lab from fall 2022 - spring 2023. A selection of supporting media from Matthew’s full portfolio has been included in sections where relevant.
314

Evaluating the Performance of Android and Web Applications for the 2048 Game : Using Firebase

Kokatam, Om Tejaswini, Pulimi, Pavithra Reddy January 2023 (has links)
Background: In the rapidly evolving field of game development, the demand for diverse platform support is increasingly significant. This thesis explores the creation of a Unity-based game compatible with both Web and Android platforms, addressing the rising need for cross-platform gaming experiences. The project aims for a comprehensive and adaptable methodology.Objectives: Our thesis aims to conduct a thorough performance comparison between an Android gaming application and a gaming web application, both featuring a similar user interface, using Firebase metrics. The evaluation will be performed on two designated devices, D1 and D2, measuring CPU load, network load, and memory usage. The research aims to provide insights into the performance variations of these applications while playing the 2048 game on specific devices. This investigation contributes to a deeper understanding of how different platforms and device specifications impact gaming experiences in terms of computational load and network responsiveness.Method: In our thesis, we optimize Unity as the main game engine, allowing for easy-platform-to-platform code exchange. To gather user information and performance metrics, it incorporates Firebase SDK(Software Development Kit), which includes Firebase Analytics and Firebase Performance SDK. Using Android Studio and VisualStudio Code as the main development tool and Firebase Hosting for web deployment, the project is exported for both Android and the Web. The test was conducted on two devices (D1 and D2) while playing the game 2048 for 30 seconds.Results: The result of our analysis shows the comparison of metrics for CPU, memory, and network load of 2048 games for web and Android applications for two devices d1 and d2. The Web D2 consumes more memory than Android D2. Web and Android D1 use similar amounts of memory. Coming to CPU load D2 consumes more than D1 for both Web and Android. The network for web D2 has more network load than web D1 and both Android D1, and D2 have similar network loadConclusions: In conclusion, the Android applications will provide a more streamlined user experience, notably in terms of CPU and network efficiency when compared to the Web app While Android D1 and Web D1 have comparable memory requirements, Web tasks, particularly on Web D2, and Android tasks, especially on AndroidD2, both need significant memory utilization.Keywords: Web application, Android application, Firebase, Unity, Test lab, Performance
315

A Quantitative Analysis of the Effectiveness of Directed-Discovery Teaching Methods and Weekly Quizzes in a Standardized Introductory Earth Science Laboratory Course

Johnston, Julia Gail 05 August 2006 (has links)
A study was conducted to determine the effects of directed discovery-based teaching methods (hands-on learning) and weekly quizzes on short-term learning and long-term retention of course material in an introductory geosciences laboratory course. Assessment of learning was accomplished using percentages of correct responses to questions on two tests, using percentages from the first semester of the study as a baseline to which data from each subsequent semester were compared to determine the effects of the study variable that was introduced. Student evaluations of value, meaning, and enjoyment of the course were also investigated through the use of an essay question at the end of the second test. The study revealed that directed discovery-based methods were successful for the teaching of some subject material, but not for all, and that the method did not necessarily enhance learning of scientific vocabulary. Weekly quizzes resulted in improved learning in all subject areas. Simultaneous use of traditional and directed-discovery teaching methods as well as weekly quizzes is recommended.
316

IMPROVING LEARNING OUTCOMES IN EE2010L USING NI MYDAQ IN AN INVERTED LAB

Hamilton, Ryan F.A. 02 September 2014 (has links)
No description available.
317

Programmable Control of Non-Droplet Electrowetting Microfluidics: Enabling Materials, Devices, and Electronics

Schultz, Alexander J. 09 June 2015 (has links)
No description available.
318

Using Higher-Level Inquiry to Improve Spatial Ability in an Introductory Geology Course

Stevens, Lacey Annette 27 July 2015 (has links)
No description available.
319

Using the R-Function to Study the High-Resolution Spectrometer (HRS) Acceptance for the 12 GeV Era Experiment E12-06-114 at JLAB

Hamad, Gulakhshan M. January 2017 (has links)
No description available.
320

Portable Motion Lab for Diagnostic and Rehabilitation Processes

Chavan, Yogesh Laxman 20 December 2017 (has links)
No description available.

Page generated in 0.0655 seconds