• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 6
  • 3
  • Tagged with
  • 15
  • 15
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Punktdefekte und elektrische Kompensation in Galliumarsenid-Einkristallen

Kretzer, Ulrich 08 January 2008 (has links) (PDF)
In der vorliegenden Arbeit wird der Punktdefekthaushalt von Galliumarsenid-Einkristallen mit unterschiedlichen Dotierungen untersucht. Es wird gezeigt, in welcher Weise die Konzentration der einzelnen Punktdefekte von der Konzentration der Dotierstoffe, der Stöchiometrieabweichung und der Lage des Ferminiveaus abhängen. Dazu dienen die Ergebnisse der meßtechnischen Charakterisierung einer großen Anzahl von Proben, bei deren Herstellung diese Parameter gezielt variiert wurden. Der Schwerpunkt der Arbeit liegt in der Entwicklung von Modellen, die eine quantitative Beschreibung der experimentell untersuchten elektrischen und optischen Eigenschaften von Galliumarsenid- Einkristallen ausgehend von den Punktdefektkonzentrationen erlauben. Da aus Punktdefekten Ladungsträger freigesetzt werden können, bestimmt ihre Konzentration maßgeblich die Ladungsträgerkonzentration in den Bändern. Im ionisierten Zustand wirken Punktdefekte als Streuzentren für freie Ladungsträger und beeinflussen damit die Driftbeweglichkeit der Ladungsträger. Eine thermodynamische Modellierung der Punktdefektbildung liefert Aussagen über die Gleichgewichtskonzentrationen der Punktdefekte in Abhängigkeit von Dotierstoffkonzentration und Stöchiometrieabweichung. Es wird gezeigt, daß die bei Raumtemperatur beobachteten elektrischen Eigenschaften der Kristalle aus der kinetischen Hemmung von Prozessen folgen, über die die Einstellung eines thermodynamischen Gleichgewichts zwischen den Punktdefekten vermittelt wird.
2

Verspannungstechniken zur Leistungssteigerung von SOI-CMOS-Transistoren

Flachowsky, Stefan 16 December 2010 (has links) (PDF)
Mit dem Erreichen der Grenzen der konventionellen MOSFET-Skalierung werden neue Techniken untersucht, um die Leistungsfähigkeit der CMOS-Technologie dem bisherigen Trend folgend weiter zu steigern. Einer dieser Ansätze ist die Verwendung mechanischer Verspannungen im Transistorkanal. Mechanische Verspannungen führen zu Kristalldeformationen und ändern die elektronische Bandstruktur von Silizium, so dass n- und p-MOSFETs mit verspannten Kanälen erhöhte Ladungsträgerbeweglichkeiten und demzufolge eine gesteigerte Leistungsfähigkeit aufweisen. Die vorliegende Arbeit beschäftigt sich mit den Auswirkungen mechanischer Verspannungen auf die elektronischen Eigenschaften planarer Silicon-On-Insulator-MOSFETs für Höchstleistungsanwendungen sowie mit deren Optimierung und technologischen Begrenzungen. Der Effekt der Verspannung auf die Bandstruktur von Silizium und die Ladungsträgerbeweglichkeit wird zunächst systematisch mit Hilfe der empirischen Pseudopotenzialmethode und der Deformationspotenzialtheorie untersucht. Verringerte Streuraten und kleinere effektive Massen als Folge der Aufspaltung der Energiebänder sowie von Bandverformungen sind der Hauptgrund für eine erhöhte Löcher- bzw. Elektronenbeweglichkeit. Die unterschiedlichen Konzepte zur Erzeugung der Verspannung werden kurz rekapituliert. Der Schwerpunkt der Untersuchungen liegt auf den verspannten Deckschichten, den Si1-xGex- bzw. Si1-yCy- Source/Drain-Gebieten, den verspannungsspeichernden Prozessen und den verspannten Substraten. Die starke Abhängigkeit dieser Verspannungstechniken von der Transistorstruktur macht die Nutzung numerischer Simulationen unabdingbar. So werden die Auswirkungen von Variationen der Transistorgeometrie sowie von Prozessparametern im Hinblick auf die Verspannung und die Drainstromänderungen der Transistoren neben den Messungen am gefertigten Transistor auch anhand numerischer Simulationen dargestellt und verglichen. Wesentliche Parameter für eine erhöhte Verspannung werden bestimmt und technologische Herausforderungen bei der Prozessintegration diskutiert. Die durchgeführten Simulationen und das erlangte Verständnis der Wirkungsweise der Verspannungstechniken ermöglichen es, das Potenzial dieser Verspannungstechniken für weitere Leistungssteigerungen in zukünftigen Technologiegenerationen abzuschätzen. Dadurch ist es möglich, die Prozessbedingungen und die Eigenschaften der fertigen Bauelemente im Hinblick auf eine gesteigerte Leistungsfähigkeit hin zu optimieren. Mit der weiteren Verkleinerung der Strukturgrößen der Bauelemente wird der zunehmende Einfluss der parasitären Source/Drain-Widerstände als Begrenzung der Effektivität der Verspannungstechniken identifiziert. Anschließend werden die Wechselwirkungen zwischen den einzelnen Verspannungstechniken hervorgehoben bzw. die gegebenenfalls auftretenden Einschränkungen angesprochen. Abschließend wird das Transportverhalten sowohl im linearen ohmschen Bereich als auch unter dem Einfluss hoher elektrischer Feldstärken analysiert und die deutlichen Unterschiede für die Leistungssteigerungen der verspannten n- und p-MOSFETs begründet. / As conventional MOSFET scaling is reaching its limits, several novel techniques are investigated to extend the CMOS roadmap. One of these techniques is the introduction of mechanical strain in the silicon transistor channel. Because strain changes the inter-atomic distances and thus the electronic band structure of silicon, ntype and p-type transistors with strained channels can show enhanced carrier mobility and performance. The purpose of this thesis is to analyze and understand the effects of strain on the electronic properties of planar silicon-on-insulator MOSFETs for high-performance applications as well as the optimization of various stress techniques and their technological limitations. First, the effect of strain on the electronic band structure of silicon and the carrier mobility is studied systematically using the empirical pseudopotential method and the deformation potential theory. Strain-induced energy band splitting and band deformations alter the electron and hole mobility through modulated effective masses and modified scattering rates. The various concepts for strain generation inside the transistor channel are reviewed. The focus of this work is on strained overlayer films, strained Si1-xGex and Si1-yCy in the source/drain regions, stress memorization techniques and strained substrates. It is shown, that strained silicon based improvements are highly sensitive to the device layout and geometry. For that reason, numerical simulations are indispensable to analyze the efficiency of the strain techniques to transfer strain into the channel. In close relation with experimental work the results from detailed simulation studies including parameter variations and material analyses are presented, as well as a thorough investigation of critical parameters to increase the strain in the transistor channel. Thus, the process conditions and the properties of the fabricated devices can be optimized with respect to higher performance. In addition, technological limitations are discussed and the potential of the different strain techniques for further performance enhancements in future technology generations is evaluated. With the continuing reduction in device dimensions the detrimental impact of the parasitic source/drain resistance on device performance is quantified and projected to be the bottleneck for strain-induced performance improvements. Next, the effects from a combination of individual strain techniques are studied and their interactions or possible restrictions are highlighted. Finally, the transport properties in the low-field transport regime as well as under high electrical fields are analyzed and the notable differences between strained n-type and p-type transistors are discussed.
3

Density of States and Charge Carrier Transport in Organic Donor-Acceptor Blend Layers / Zustandsdichte und Ladungsträgertransport in Organischen Donator-Akzeptor-Mischschichten

Fischer, Janine 23 October 2015 (has links) (PDF)
In the last 25 years, organic or "plastic" solar cells have gained commercial interest as a light-weight, flexible, colorful, and potentially low-cost technology for direct solar energy conversion into electrical power. Currently, organic solar cells with a maximum power conversion effciency (PCE) of 12% can compete with classical silicon technology under certain conditions. In particular, a variety of strongly absorbing organic molecules is available, enabling custom-built organic solar cells for versatile applications. In order to improve the PCE, the charge carrier mobility in organic thin films must be improved. The transport characterization of the relevant materials is usually done in neat layers for simplicity. However, the active layer of highly efficient organic solar cells comprises a bulk heterojunction (BHJ) of a donor and an acceptor component necessary for effective charge carrier generation from photo-generated excitons. In the literature, the transport properties of such blend layers are hardly studied. In this work, the transport properties of typical BHJ layers are investigated using space-charge limited currents (SCLC), conductivity, impedance spectroscopy (IS), and thermally stimulated currents (TSC) in order to model the transport with numerical drift-diffusion simulations. Firstly, the influence of an exponential density of trap states on the thickness dependence of SCLCs in devices with Ohmic injection contacts is investigated by simulations. Then, the results are applied to SCLC and conductivity measurements of electron- and hole-only devices of ZnPc:C60 at different mixing ratios. Particularly, the field and charge carrier density dependence of the mobility is evaluated, suggesting that the hole transport is dominated by exponential tail states acting as trapping sites. For comparison, transport in DCV5T-Me33:C60, which shows better PCEs in solar cells, is shown not to be dominated by traps. Furthermore, a temperature-dependent IS analysis of weakly p-doped ZnPc:C60 (1:1) blend reveals the energy-resolved distribution of occupied states, containing a Gaussian trap state as well as exponential tail states. The obtained results can be considered a basis for the characterization of trap states in organic solar cells. Moreover, the precise knowledge of the transport-relevant trap states is shown to facilitate modeling of complete devices, constituting a basis for predictive simulations of optimized device structures. / Organische oder "Plastik"-Solarzellen haben in den letzten 25 Jahren eine rasante Entwicklung durchlaufen. Kommerziell sind sie vor allem wegen ihres geringen Gewichts, Biegsamkeit, Farbigkeit und potentiell geringen Herstellungskosten interessant, was zukünftig auf spezielle Anwendungen zugeschnittene Solarzellen ermöglichen wird. Die Leistungseffzienz von 12% ist dabei unter günstigen Bedingungen bereits mit klassischer Siliziumtechnologie konkurrenzfähig. Um die Effzienz weiter zu steigern und damit die Wirtschaftlichkeit zu erhöhen, muss vor allem die Ladungsträgerbeweglichkeit verbessert werden. In organischen Solarzellen werden typischerweise Donator-Akzeptor-Mischschichten verwendet, die für die effziente Generation freier Ladungsträger aus photo-induzierten Exzitonen verantwortlich sind. Obwohl solche Mischschichten typisch für organische Solarzellen sind, werden Transportuntersuchungen der relevanten Materialien der Einfachheit halber meist in ungemischten Schichten durchgeführt. In der vorliegenden Arbeit wird der Ladungstransport in Donator-Akzeptor-Mischschichten mithilfe raumladungsbegrenzter Ströme (space-charge limited currents, SCLCs), Leitfähigkeit, Impedanzspektroskopie (IS) und thermisch-generierter Ströme (thermally stimulated currents, TSC) untersucht und mit numerischen Drift-Diffusions-Simulationen modelliert. Zunächst wird mittels Simulation der Einfluss exponentiell verteilter Fallenzustände auf das schichtdickenabhängige SCLC-Verhalten unipolarer Bauelemente mit Ohmschen Kontakten untersucht. Die Erkenntnisse werden dann auf Elektronen- und Lochtransport in ZnPc:C60-Mischschichten mit verschiedenen Mischverhältnissen angewendet. Dabei wird die Beweglichkeit als Funktion von elektrischem Feld und Ladungsträgerdichte dargestellt, um SCLC- und Leitfähigkeitsmessungen zu erklären, was mit einer exponentiellen Fallenverteilung gelingt. Zum Vergleich werden dieselben Untersuchungen in DCV2-5T-Me33:C60, dem effizientesten der bekannten Solarzellenmaterialien dieser Art, wiederholt, ohne Anzeichen für fallendominierten Transport. Des weiteren werden erstmals schwach p-dotierte ZnPc:C60-Mischschichten mit temperaturabhängiger IS untersucht, um direkt die Dichte besetzter Lochfallenzustände zu bestimmen. Dabei werden wiederum exponentielle Fallenzustände sowie eine Gaußförmige Falle beobachtet. Insgesamt tragen die über Fallenzustände in Mischschichten gewonnenen Erkenntnisse zum Verständnis von Transportprozessen bei und bilden damit eine Grundlage für die systematische Identifizierung von Fallenzuständen in Solarzellen. Außerdem wird gezeigt, dass die genaue Beschreibung der transportrelevanten Fallenzustände die Modellierung von Bauelementen ermöglicht, auf deren Grundlage zukünftig optimierte Probenstrukturen vorhergesagt werden können.
4

Punktdefekte und elektrische Kompensation in Galliumarsenid-Einkristallen

Kretzer, Ulrich 10 December 2007 (has links)
In der vorliegenden Arbeit wird der Punktdefekthaushalt von Galliumarsenid-Einkristallen mit unterschiedlichen Dotierungen untersucht. Es wird gezeigt, in welcher Weise die Konzentration der einzelnen Punktdefekte von der Konzentration der Dotierstoffe, der Stöchiometrieabweichung und der Lage des Ferminiveaus abhängen. Dazu dienen die Ergebnisse der meßtechnischen Charakterisierung einer großen Anzahl von Proben, bei deren Herstellung diese Parameter gezielt variiert wurden. Der Schwerpunkt der Arbeit liegt in der Entwicklung von Modellen, die eine quantitative Beschreibung der experimentell untersuchten elektrischen und optischen Eigenschaften von Galliumarsenid- Einkristallen ausgehend von den Punktdefektkonzentrationen erlauben. Da aus Punktdefekten Ladungsträger freigesetzt werden können, bestimmt ihre Konzentration maßgeblich die Ladungsträgerkonzentration in den Bändern. Im ionisierten Zustand wirken Punktdefekte als Streuzentren für freie Ladungsträger und beeinflussen damit die Driftbeweglichkeit der Ladungsträger. Eine thermodynamische Modellierung der Punktdefektbildung liefert Aussagen über die Gleichgewichtskonzentrationen der Punktdefekte in Abhängigkeit von Dotierstoffkonzentration und Stöchiometrieabweichung. Es wird gezeigt, daß die bei Raumtemperatur beobachteten elektrischen Eigenschaften der Kristalle aus der kinetischen Hemmung von Prozessen folgen, über die die Einstellung eines thermodynamischen Gleichgewichts zwischen den Punktdefekten vermittelt wird.
5

Density of States and Charge Carrier Transport in Organic Donor-Acceptor Blend Layers / Zustandsdichte und Ladungsträgertransport in Organischen Donator-Akzeptor-Mischschichten

Fischer, Janine 12 June 2015 (has links)
In the last 25 years, organic or "plastic" solar cells have gained commercial interest as a light-weight, flexible, colorful, and potentially low-cost technology for direct solar energy conversion into electrical power. Currently, organic solar cells with a maximum power conversion effciency (PCE) of 12% can compete with classical silicon technology under certain conditions. In particular, a variety of strongly absorbing organic molecules is available, enabling custom-built organic solar cells for versatile applications. In order to improve the PCE, the charge carrier mobility in organic thin films must be improved. The transport characterization of the relevant materials is usually done in neat layers for simplicity. However, the active layer of highly efficient organic solar cells comprises a bulk heterojunction (BHJ) of a donor and an acceptor component necessary for effective charge carrier generation from photo-generated excitons. In the literature, the transport properties of such blend layers are hardly studied. In this work, the transport properties of typical BHJ layers are investigated using space-charge limited currents (SCLC), conductivity, impedance spectroscopy (IS), and thermally stimulated currents (TSC) in order to model the transport with numerical drift-diffusion simulations. Firstly, the influence of an exponential density of trap states on the thickness dependence of SCLCs in devices with Ohmic injection contacts is investigated by simulations. Then, the results are applied to SCLC and conductivity measurements of electron- and hole-only devices of ZnPc:C60 at different mixing ratios. Particularly, the field and charge carrier density dependence of the mobility is evaluated, suggesting that the hole transport is dominated by exponential tail states acting as trapping sites. For comparison, transport in DCV5T-Me33:C60, which shows better PCEs in solar cells, is shown not to be dominated by traps. Furthermore, a temperature-dependent IS analysis of weakly p-doped ZnPc:C60 (1:1) blend reveals the energy-resolved distribution of occupied states, containing a Gaussian trap state as well as exponential tail states. The obtained results can be considered a basis for the characterization of trap states in organic solar cells. Moreover, the precise knowledge of the transport-relevant trap states is shown to facilitate modeling of complete devices, constituting a basis for predictive simulations of optimized device structures.:1 Introduction 2 Organic Semiconductors and Solar Cells 2.1 Structural, Optical, and Energetic Properties 2.2 Charge Carrier Transport 2.2.1 Classical Transport Models 2.2.2 Hopping and Tunneling Transport 2.2.3 Limitations of Transport Characterization 2.3 Doping 2.4 Single Carrier Devices 2.4.1 Theory of Space-Charge Limited Currents 2.4.2 Electrical Potential Mapping by Thickness Variation 2.4.3 Influence of the Contacts 2.5 Organic Solar Cells 2.5.1 Principles 2.5.2 The p-i-n Concept 2.5.3 Recombination 2.5.4 Electrical Characterization 3 Numerical Drift-Diffusion Simulations 3.1 Modeling Organic Semiconductors 3.2 System of Differential Equations 3.3 Simulation Algorithm and Modules 4 Exploiting Contact Diffusion Currents for Trap Characterization in Organic Semiconductors 4.1 Motivation 4.2 Drift-Diffusion Model 4.3 Results and Discussion 4.4 Conclusion 5 Transport Characterization of Donor-Acceptor Blend Layers 5.1 Motivation 5.2 Device Fabrication 5.3 Hole Transport in ZnPc:C60 Blends with Balanced Mixing Ratios 5.3.1 Current-Voltage Measurements 5.3.2 Drift-Diffusion Model 5.3.3 Modeling Results 5.3.4 Discussion 5.4 Hole Transport in Fullerene-Rich ZnPc:C60 Blends 5.4.1 Results and Discussion 5.5 Electron Transport in ZnPc:C60 (1:1) 5.5.1 Results and Discussion 5.6 Transport in Blend Layers with the High Efficiency Donor DCV2-5T-Me33 5.6.1 Hole Transport in DCV2-5T-Me33:C60 5.6.2 Electron Transport in DCV2-5T-Me33:C60 5.7 Conclusions for Transport in Blend Layers 6 Doping-Enabled Density of States Determination in Donor-Acceptor Blend Layers 6.1 Motivation 6.2 Theory 6.3 Methods 6.4 Results 6.4.1 Impedance Spectroscopy 6.4.2 Fermi level, Mott-Schottky Analysis, and Band Diagram 6.4.3 DOOS Determination 6.4.4 Thermally Stimulated Currents 6.4.5 Solar Cell Characteristics 6.5 Discussion 6.6 Conclusions on the DOS of ZnPc:C60 (1:1) 7 Conclusion and Outlook Materials, Symbols, Abbreviations Bibliography / Organische oder "Plastik"-Solarzellen haben in den letzten 25 Jahren eine rasante Entwicklung durchlaufen. Kommerziell sind sie vor allem wegen ihres geringen Gewichts, Biegsamkeit, Farbigkeit und potentiell geringen Herstellungskosten interessant, was zukünftig auf spezielle Anwendungen zugeschnittene Solarzellen ermöglichen wird. Die Leistungseffzienz von 12% ist dabei unter günstigen Bedingungen bereits mit klassischer Siliziumtechnologie konkurrenzfähig. Um die Effzienz weiter zu steigern und damit die Wirtschaftlichkeit zu erhöhen, muss vor allem die Ladungsträgerbeweglichkeit verbessert werden. In organischen Solarzellen werden typischerweise Donator-Akzeptor-Mischschichten verwendet, die für die effziente Generation freier Ladungsträger aus photo-induzierten Exzitonen verantwortlich sind. Obwohl solche Mischschichten typisch für organische Solarzellen sind, werden Transportuntersuchungen der relevanten Materialien der Einfachheit halber meist in ungemischten Schichten durchgeführt. In der vorliegenden Arbeit wird der Ladungstransport in Donator-Akzeptor-Mischschichten mithilfe raumladungsbegrenzter Ströme (space-charge limited currents, SCLCs), Leitfähigkeit, Impedanzspektroskopie (IS) und thermisch-generierter Ströme (thermally stimulated currents, TSC) untersucht und mit numerischen Drift-Diffusions-Simulationen modelliert. Zunächst wird mittels Simulation der Einfluss exponentiell verteilter Fallenzustände auf das schichtdickenabhängige SCLC-Verhalten unipolarer Bauelemente mit Ohmschen Kontakten untersucht. Die Erkenntnisse werden dann auf Elektronen- und Lochtransport in ZnPc:C60-Mischschichten mit verschiedenen Mischverhältnissen angewendet. Dabei wird die Beweglichkeit als Funktion von elektrischem Feld und Ladungsträgerdichte dargestellt, um SCLC- und Leitfähigkeitsmessungen zu erklären, was mit einer exponentiellen Fallenverteilung gelingt. Zum Vergleich werden dieselben Untersuchungen in DCV2-5T-Me33:C60, dem effizientesten der bekannten Solarzellenmaterialien dieser Art, wiederholt, ohne Anzeichen für fallendominierten Transport. Des weiteren werden erstmals schwach p-dotierte ZnPc:C60-Mischschichten mit temperaturabhängiger IS untersucht, um direkt die Dichte besetzter Lochfallenzustände zu bestimmen. Dabei werden wiederum exponentielle Fallenzustände sowie eine Gaußförmige Falle beobachtet. Insgesamt tragen die über Fallenzustände in Mischschichten gewonnenen Erkenntnisse zum Verständnis von Transportprozessen bei und bilden damit eine Grundlage für die systematische Identifizierung von Fallenzuständen in Solarzellen. Außerdem wird gezeigt, dass die genaue Beschreibung der transportrelevanten Fallenzustände die Modellierung von Bauelementen ermöglicht, auf deren Grundlage zukünftig optimierte Probenstrukturen vorhergesagt werden können.:1 Introduction 2 Organic Semiconductors and Solar Cells 2.1 Structural, Optical, and Energetic Properties 2.2 Charge Carrier Transport 2.2.1 Classical Transport Models 2.2.2 Hopping and Tunneling Transport 2.2.3 Limitations of Transport Characterization 2.3 Doping 2.4 Single Carrier Devices 2.4.1 Theory of Space-Charge Limited Currents 2.4.2 Electrical Potential Mapping by Thickness Variation 2.4.3 Influence of the Contacts 2.5 Organic Solar Cells 2.5.1 Principles 2.5.2 The p-i-n Concept 2.5.3 Recombination 2.5.4 Electrical Characterization 3 Numerical Drift-Diffusion Simulations 3.1 Modeling Organic Semiconductors 3.2 System of Differential Equations 3.3 Simulation Algorithm and Modules 4 Exploiting Contact Diffusion Currents for Trap Characterization in Organic Semiconductors 4.1 Motivation 4.2 Drift-Diffusion Model 4.3 Results and Discussion 4.4 Conclusion 5 Transport Characterization of Donor-Acceptor Blend Layers 5.1 Motivation 5.2 Device Fabrication 5.3 Hole Transport in ZnPc:C60 Blends with Balanced Mixing Ratios 5.3.1 Current-Voltage Measurements 5.3.2 Drift-Diffusion Model 5.3.3 Modeling Results 5.3.4 Discussion 5.4 Hole Transport in Fullerene-Rich ZnPc:C60 Blends 5.4.1 Results and Discussion 5.5 Electron Transport in ZnPc:C60 (1:1) 5.5.1 Results and Discussion 5.6 Transport in Blend Layers with the High Efficiency Donor DCV2-5T-Me33 5.6.1 Hole Transport in DCV2-5T-Me33:C60 5.6.2 Electron Transport in DCV2-5T-Me33:C60 5.7 Conclusions for Transport in Blend Layers 6 Doping-Enabled Density of States Determination in Donor-Acceptor Blend Layers 6.1 Motivation 6.2 Theory 6.3 Methods 6.4 Results 6.4.1 Impedance Spectroscopy 6.4.2 Fermi level, Mott-Schottky Analysis, and Band Diagram 6.4.3 DOOS Determination 6.4.4 Thermally Stimulated Currents 6.4.5 Solar Cell Characteristics 6.5 Discussion 6.6 Conclusions on the DOS of ZnPc:C60 (1:1) 7 Conclusion and Outlook Materials, Symbols, Abbreviations Bibliography
6

Untersuchung des elektronischen Transports an 28nm MOSFETs und an Schottky-Barrieren FETs aus Silizium-Nanodrähten

Beister, Jürgen 19 January 2019 (has links)
As modern microelectronics advances, enormous challenges have to be overcome in order to further increase device performance, enabling highspeed and ultra-low-power applications. With progressive scaling of Silicon MOSFETs, charge carrier mobility has dropped significantly and became a critical device parameter over the last decade. Present technology nodes make use of strain engineering to partially recover this mobility loss. Even though carrier mobility is a crucial parameter for present technology nodes, it cannot be determined accurately by methods typically available in industrial environments. A major objective of this work is to study the magnetoresistance mobility μMR of strained VLSI devices based on a 28 nm ground rule. This technique allows for a more direct access to charge carrier mobility, compared to conventional current/ voltage and capacitance/ voltage mobility derivation methods like the effective mobility μeff, in which series resistance, inversion charge density and effective channel length are necessary to extract the mobility values of the short channel devices. Aside from providing an anchor for accurate μeff measurements in linear operation conditions, μMR opens the possibility to investigate the saturation region of the device, which cannot be accessed by μeff. Electron and hole mobility of nFET and pFET devices with various gate lengths are studied from linear to saturation region. In addition, the interplay between mobility enhancement due to strain improvement, and mobility degradation due to short channel effects with decreasing channel length is analyzed. As a concept device for future nanoelectronic building blocks, silicon nanowire Schottky field-effect transistors are investigated in the second part of this work. These devices exhibit an ambipolar behaviour, which gives the opportunity to measure both electron and hole transport on a single device. The temperature dependence of the source/drain current for specific gate and drain voltages is analyzed within the framework of voltage dependent effective barrier heights.:1. Einleitung 2. Theoretische Grundlagen 3. Charakterisierungsmethoden 4. Messaufbau 5. Ergebnisse der Untersuchungen an MOSFETs 6. Ergebnisse der Untersuchungen an SiNW Transistoren 7. Zusammenfassung Anhang Danksagungen
7

Elektrische und spektroskopische Charakterisierung von organischen Feldeffekttransistor-Strukturen

Lehmann, Daniel 03 April 2009 (has links) (PDF)
In dieser Arbeit werden die Resultate aus den elektrischen Untersuchungen an organischen Feldeffekttransistoren (OFETs) auf der Basis von Pentacen und von verschiedenen Perylentetracarbonsäurediimid-Derivaten (PTCDI) vorgestellt und diskutiert. Die PTCDI-Derivate wurden zudem mit der spektroskopischen Ellipsometrie hinsichtlich ihrer Morphologie und ihrer optischen Eigenschaften untersucht. Im Rahmen dieser Arbeit wurde ein System zur Herstellung und zur elektrischen Charakterisierung von OFET-Strukturen entwickelt. Dieses erlaubt die Herstellung von Strukturen bzw. Schichtsystemen unter gekühlten oder erhitzten Bedingungen im Hochvakuum. Die elektrische Vermessung kann danach direkt im Vakuum erfolgen, ohne das erzeugte Bauteil den Gasen der Umgebungsluft oder Licht auszusetzen, wodurch die Ergebnisse von den Einflüssen beider Faktoren unabhängig sind. Außerhalb des Vakuums fanden weitere Messmethoden Verwendung, um die Grenzflächeneinflüsse und das organische Schichtwachstum detailliert zu untersuchen und mit den Ergebnissen der elektrischen Messungen korrelieren zu können. Das in der Literatur bereits vielfach besprochene p-leitende Pentacen wurde einerseits als Referenzmaterial bei der Entwicklung der Herstellungsprozedur für die hier erzeugten OFETs eingesetzt, andererseits auch zum Vergleich zwischen sowohl mit hydrophobisierendem Octadecyltrichlorosilan (OTS) oberflächenbehandelten und -unbehandelten OFETs. Zudem wurde es auch zum Vergleich zwischen dem hier verwendeten Top-Kontakt-Aufbau und dem in der Literatur diskutierten Bottom-Kontakt-Aufbau verwendet. Die elektrischen Messungen offenbarten einerseits eine um den Faktor 2 höhere Lochmobilität und andererseits auch eine erhöhte Stabilität unter Spannungsbelastung der OTS-behandelten Probe gegenüber der Nichtbehandlung. Die Schwellspannung blieb unbeeinflusst. Unter Verwendung der Potentiometrie konnten ortsaufgelöste Spannungsverläufe in Abhängigkeit von der Position im Kanal aufgenommen werden. Dabei zeigte sich für die hier verwendeten Top-Kontakt-OFETs kein signifikanter Kontaktwiderstand zwischen Gold und Pentacen an der Grenzfläche der Source- und Drain-Elektroden, wie es in der Literatur für Bottom-Kontakt-OFETs berichtet wurde. Das extrahierte ortsaufgelöste elektrische Feld im Kanal erschien für die OTS-behandelte Probe symmetrisch, während die unbehandelte Probe einen asymmetrischen Verlauf aufwies. Mit Hilfe der spektroskopischen Ellipsometrie konnten Aussagen über die Morphologie der n-leitenden PTCDI-Derivate DiMe-PTCDI, DiPhenyl-PTCDI, DiMethoxyethyl-PTCDI, Di3Pentyl-PTCDI, DiHeptyl-PTCDI und PDI-8CN2 getroffen werden. Die dabei im selben Prozess ermittelten dielektrischen Funktionen können für die Verwendung der untersuchten organischen Halbleiter in optoelektronischen Bauelementen von großer Bedeutung sein. Zur korrekten Beschreibung der unter DiPhenyl-PTCDI und DiMethoxyethyl-PTCDI auftretenden großen Oberflächenrauigkeiten wurde ein neues Ellipsometrie-Modell entwickelt, womit auch für diese Derivate die dielektrische Funktion bestimmt werden konnte. Ausgehend von den aus Rasterkraftmikroskopiebildern ermittelten tiefenabhängigen Materialdichteverteilungen wurde dabei ein angepasster Verlauf für die Materialdichte innerhalb der Rauigkeitsschicht entwickelt, welcher das traditionelle Modell vollständig ersetzen kann. Die elektrischen Messungen ergaben für die PTCDI-Derivate erheblich unterschiedliche Kenngrößen. Die verschiedenen Seitenketten führten dabei zu Unterschieden in der Elektronenmobilität von bis zu vier Größenordnungen. Ebenso wiesen die Schwellspannungen Differenzen bis 20 V auf. Des Weiteren zeigten sich unter elektrischer Belastung und nach einer thermischen Behandlung deutlich unterschiedliche und teilweise konträre Effekte hinsichtlich der Entwicklung der Elektronenmobilität und der Schwellspannung. Da alle untersuchten PTCDI-Derivate optisch isotrop aufwuchsen, konnte über der Molekülorientierung kein Bezug zur Ladungsträgermobilität gefunden werden. Jedoch konnten die sehr geringen Mobilitäten von DiPhenyl-PTCDI und DiMethoxyethyl-PTCDI auf deren Inselwachstum zurückgeführt werden, welches die nötige Pfadlänge für die Ladungsträger zwischen den Elektroden erhöhte. An Umgebungsluft stellten alle PTCDI-Derivate bis auf PDI-8CN2 ihre Funktionalität ein. Abgesehen von letzterem war DiMe-PTCDI nach erneutem Einbringen ins Vakuum und einer Erholungszeit von mehreren zehn Minuten wieder funktionstüchtig. Eine OTS-Behandlung wurde für PDI-8CN2 durchgeführt, um zu einem Vergleich mit den Ergebnissen von Pentacen zu gelangen. Es zeigte sich aber, dass nahezu alle elektrischen Eigenschaften von PDI-8CN2 durch diese Behandlung negativ beeinflusst wurden. / In this work the results of the electrical characterization of organic field-effect transistors (OFETs) based on pentacene and various derivatives of perylene tetracarboxylic diimide (PTCDI) are presented and discussed. The PTCDI derivatives were also characterized regarding their morphology and their optical properties using spectroscopic ellipsometry. A system for the preparation and electrical characterization of OFET structures was developed, which allows the preparation of thin film devices under cooled and annealed conditions, respectively, in high vacuum. The electrical measurements can be performed directly in vacuum without exposing the prepared device to the environmental gases or light making the results independent of these factors. Under ambient atmosphere further techniques have been used to study the growth of the organic layers in detail to correlate these results with the results of the electrical characterization. Pentacene is a p-conducting organic semiconductor which is most often discussed in literature regarding OFETs and has been used in this work as a reference material for the developed preparation system. Pentacene was also used for the comparison of two different dielectric/organic interfaces: one interface was bare SiO2 and the second interface was SiO2 treated with a self assembling monolayer of octadecyltrichlorosilane (OTS). Additionally it was used to compare the top-contact configuration for OFETs of this work with the bottom-contact configuration discussed in literature. The electrical measurements revealed on the one hand an increase in the hole mobility by a factor of two and on the other hand also an enhanced stability against bias stress for the OTS treated sample. The threshold voltage remained unchanged. Using potentiometry the electrical potential distribution within the transistor channel could be obtained. No interface resistance at the organic/metal interface could be found for top-contact configuration, in opposite to the high interface resistance reported in literature for the bottom-contact configuration. The extracted electrical field distribution within the channel showed a symmetric behavior for the OTS treated sample while it was asymmetric for the untreated sample. Using spectroscopic ellipsometry the morphology of the n-conducting PTCDI derivatives DiMe-PTCDI, DiPhenyl-PTCDI, DiMethoxyethyl-PTCDI, Di3Pentyl-PTCDI, DiHeptyl-PTCDI, and PDI-8CN2 could be revealed. The also determined dielectric functions are important for the use of the investigated organic semiconductors within opto-electronic devices. For a precise evaluation of large surface roughnesses, as found for DiPhenyl-PTCDI and DiMethoxyethyl-PTCDI, a new ellipsometry model was developed. Using atomic force microscopy pictures a depth-dependent material concentration could be determined which was put into the ellipsometry model of surface roughness. This new model can fully replace the traditional model. The electrical measurements for the PTCDI derivatives revealed a considerable influence of the various side groups on the device performance. The electron mobility spread over four orders of magnitude and the threshold voltage deviated by up to 20 V. Additionally the influence of bias stress and thermal annealing revealed different and partially oppositional behavior regarding the change in electron mobility and threshold voltage. As all molecules showed optical isotropy, the molecule orientation could not be correlated with the charge carrier mobility. However, the very low electron mobilities of Diphenyl-PTCDI and DiMethoxyethyl-PTCDI could be correlated with island growth which extends the necessary path length for the charge carriers between the electrodes. Under ambient atmosphere none of the PTCDI derivatives - beside PDI-8CN2 - was working. Nevertheless, DiMe-PTCDI continued its functionality when it was brought back into the vacuum. An OTS treatment was applied for one PDI-8CN2 sample. This treatment, however, led to worse electrical characteristics.
8

Elektrische und spektroskopische Charakterisierung von organischen Feldeffekttransistor-Strukturen

Lehmann, Daniel 27 March 2009 (has links)
In dieser Arbeit werden die Resultate aus den elektrischen Untersuchungen an organischen Feldeffekttransistoren (OFETs) auf der Basis von Pentacen und von verschiedenen Perylentetracarbonsäurediimid-Derivaten (PTCDI) vorgestellt und diskutiert. Die PTCDI-Derivate wurden zudem mit der spektroskopischen Ellipsometrie hinsichtlich ihrer Morphologie und ihrer optischen Eigenschaften untersucht. Im Rahmen dieser Arbeit wurde ein System zur Herstellung und zur elektrischen Charakterisierung von OFET-Strukturen entwickelt. Dieses erlaubt die Herstellung von Strukturen bzw. Schichtsystemen unter gekühlten oder erhitzten Bedingungen im Hochvakuum. Die elektrische Vermessung kann danach direkt im Vakuum erfolgen, ohne das erzeugte Bauteil den Gasen der Umgebungsluft oder Licht auszusetzen, wodurch die Ergebnisse von den Einflüssen beider Faktoren unabhängig sind. Außerhalb des Vakuums fanden weitere Messmethoden Verwendung, um die Grenzflächeneinflüsse und das organische Schichtwachstum detailliert zu untersuchen und mit den Ergebnissen der elektrischen Messungen korrelieren zu können. Das in der Literatur bereits vielfach besprochene p-leitende Pentacen wurde einerseits als Referenzmaterial bei der Entwicklung der Herstellungsprozedur für die hier erzeugten OFETs eingesetzt, andererseits auch zum Vergleich zwischen sowohl mit hydrophobisierendem Octadecyltrichlorosilan (OTS) oberflächenbehandelten und -unbehandelten OFETs. Zudem wurde es auch zum Vergleich zwischen dem hier verwendeten Top-Kontakt-Aufbau und dem in der Literatur diskutierten Bottom-Kontakt-Aufbau verwendet. Die elektrischen Messungen offenbarten einerseits eine um den Faktor 2 höhere Lochmobilität und andererseits auch eine erhöhte Stabilität unter Spannungsbelastung der OTS-behandelten Probe gegenüber der Nichtbehandlung. Die Schwellspannung blieb unbeeinflusst. Unter Verwendung der Potentiometrie konnten ortsaufgelöste Spannungsverläufe in Abhängigkeit von der Position im Kanal aufgenommen werden. Dabei zeigte sich für die hier verwendeten Top-Kontakt-OFETs kein signifikanter Kontaktwiderstand zwischen Gold und Pentacen an der Grenzfläche der Source- und Drain-Elektroden, wie es in der Literatur für Bottom-Kontakt-OFETs berichtet wurde. Das extrahierte ortsaufgelöste elektrische Feld im Kanal erschien für die OTS-behandelte Probe symmetrisch, während die unbehandelte Probe einen asymmetrischen Verlauf aufwies. Mit Hilfe der spektroskopischen Ellipsometrie konnten Aussagen über die Morphologie der n-leitenden PTCDI-Derivate DiMe-PTCDI, DiPhenyl-PTCDI, DiMethoxyethyl-PTCDI, Di3Pentyl-PTCDI, DiHeptyl-PTCDI und PDI-8CN2 getroffen werden. Die dabei im selben Prozess ermittelten dielektrischen Funktionen können für die Verwendung der untersuchten organischen Halbleiter in optoelektronischen Bauelementen von großer Bedeutung sein. Zur korrekten Beschreibung der unter DiPhenyl-PTCDI und DiMethoxyethyl-PTCDI auftretenden großen Oberflächenrauigkeiten wurde ein neues Ellipsometrie-Modell entwickelt, womit auch für diese Derivate die dielektrische Funktion bestimmt werden konnte. Ausgehend von den aus Rasterkraftmikroskopiebildern ermittelten tiefenabhängigen Materialdichteverteilungen wurde dabei ein angepasster Verlauf für die Materialdichte innerhalb der Rauigkeitsschicht entwickelt, welcher das traditionelle Modell vollständig ersetzen kann. Die elektrischen Messungen ergaben für die PTCDI-Derivate erheblich unterschiedliche Kenngrößen. Die verschiedenen Seitenketten führten dabei zu Unterschieden in der Elektronenmobilität von bis zu vier Größenordnungen. Ebenso wiesen die Schwellspannungen Differenzen bis 20 V auf. Des Weiteren zeigten sich unter elektrischer Belastung und nach einer thermischen Behandlung deutlich unterschiedliche und teilweise konträre Effekte hinsichtlich der Entwicklung der Elektronenmobilität und der Schwellspannung. Da alle untersuchten PTCDI-Derivate optisch isotrop aufwuchsen, konnte über der Molekülorientierung kein Bezug zur Ladungsträgermobilität gefunden werden. Jedoch konnten die sehr geringen Mobilitäten von DiPhenyl-PTCDI und DiMethoxyethyl-PTCDI auf deren Inselwachstum zurückgeführt werden, welches die nötige Pfadlänge für die Ladungsträger zwischen den Elektroden erhöhte. An Umgebungsluft stellten alle PTCDI-Derivate bis auf PDI-8CN2 ihre Funktionalität ein. Abgesehen von letzterem war DiMe-PTCDI nach erneutem Einbringen ins Vakuum und einer Erholungszeit von mehreren zehn Minuten wieder funktionstüchtig. Eine OTS-Behandlung wurde für PDI-8CN2 durchgeführt, um zu einem Vergleich mit den Ergebnissen von Pentacen zu gelangen. Es zeigte sich aber, dass nahezu alle elektrischen Eigenschaften von PDI-8CN2 durch diese Behandlung negativ beeinflusst wurden. / In this work the results of the electrical characterization of organic field-effect transistors (OFETs) based on pentacene and various derivatives of perylene tetracarboxylic diimide (PTCDI) are presented and discussed. The PTCDI derivatives were also characterized regarding their morphology and their optical properties using spectroscopic ellipsometry. A system for the preparation and electrical characterization of OFET structures was developed, which allows the preparation of thin film devices under cooled and annealed conditions, respectively, in high vacuum. The electrical measurements can be performed directly in vacuum without exposing the prepared device to the environmental gases or light making the results independent of these factors. Under ambient atmosphere further techniques have been used to study the growth of the organic layers in detail to correlate these results with the results of the electrical characterization. Pentacene is a p-conducting organic semiconductor which is most often discussed in literature regarding OFETs and has been used in this work as a reference material for the developed preparation system. Pentacene was also used for the comparison of two different dielectric/organic interfaces: one interface was bare SiO2 and the second interface was SiO2 treated with a self assembling monolayer of octadecyltrichlorosilane (OTS). Additionally it was used to compare the top-contact configuration for OFETs of this work with the bottom-contact configuration discussed in literature. The electrical measurements revealed on the one hand an increase in the hole mobility by a factor of two and on the other hand also an enhanced stability against bias stress for the OTS treated sample. The threshold voltage remained unchanged. Using potentiometry the electrical potential distribution within the transistor channel could be obtained. No interface resistance at the organic/metal interface could be found for top-contact configuration, in opposite to the high interface resistance reported in literature for the bottom-contact configuration. The extracted electrical field distribution within the channel showed a symmetric behavior for the OTS treated sample while it was asymmetric for the untreated sample. Using spectroscopic ellipsometry the morphology of the n-conducting PTCDI derivatives DiMe-PTCDI, DiPhenyl-PTCDI, DiMethoxyethyl-PTCDI, Di3Pentyl-PTCDI, DiHeptyl-PTCDI, and PDI-8CN2 could be revealed. The also determined dielectric functions are important for the use of the investigated organic semiconductors within opto-electronic devices. For a precise evaluation of large surface roughnesses, as found for DiPhenyl-PTCDI and DiMethoxyethyl-PTCDI, a new ellipsometry model was developed. Using atomic force microscopy pictures a depth-dependent material concentration could be determined which was put into the ellipsometry model of surface roughness. This new model can fully replace the traditional model. The electrical measurements for the PTCDI derivatives revealed a considerable influence of the various side groups on the device performance. The electron mobility spread over four orders of magnitude and the threshold voltage deviated by up to 20 V. Additionally the influence of bias stress and thermal annealing revealed different and partially oppositional behavior regarding the change in electron mobility and threshold voltage. As all molecules showed optical isotropy, the molecule orientation could not be correlated with the charge carrier mobility. However, the very low electron mobilities of Diphenyl-PTCDI and DiMethoxyethyl-PTCDI could be correlated with island growth which extends the necessary path length for the charge carriers between the electrodes. Under ambient atmosphere none of the PTCDI derivatives - beside PDI-8CN2 - was working. Nevertheless, DiMe-PTCDI continued its functionality when it was brought back into the vacuum. An OTS treatment was applied for one PDI-8CN2 sample. This treatment, however, led to worse electrical characteristics.
9

Verspannungstechniken zur Leistungssteigerung von SOI-CMOS-Transistoren

Flachowsky, Stefan 25 October 2010 (has links)
Mit dem Erreichen der Grenzen der konventionellen MOSFET-Skalierung werden neue Techniken untersucht, um die Leistungsfähigkeit der CMOS-Technologie dem bisherigen Trend folgend weiter zu steigern. Einer dieser Ansätze ist die Verwendung mechanischer Verspannungen im Transistorkanal. Mechanische Verspannungen führen zu Kristalldeformationen und ändern die elektronische Bandstruktur von Silizium, so dass n- und p-MOSFETs mit verspannten Kanälen erhöhte Ladungsträgerbeweglichkeiten und demzufolge eine gesteigerte Leistungsfähigkeit aufweisen. Die vorliegende Arbeit beschäftigt sich mit den Auswirkungen mechanischer Verspannungen auf die elektronischen Eigenschaften planarer Silicon-On-Insulator-MOSFETs für Höchstleistungsanwendungen sowie mit deren Optimierung und technologischen Begrenzungen. Der Effekt der Verspannung auf die Bandstruktur von Silizium und die Ladungsträgerbeweglichkeit wird zunächst systematisch mit Hilfe der empirischen Pseudopotenzialmethode und der Deformationspotenzialtheorie untersucht. Verringerte Streuraten und kleinere effektive Massen als Folge der Aufspaltung der Energiebänder sowie von Bandverformungen sind der Hauptgrund für eine erhöhte Löcher- bzw. Elektronenbeweglichkeit. Die unterschiedlichen Konzepte zur Erzeugung der Verspannung werden kurz rekapituliert. Der Schwerpunkt der Untersuchungen liegt auf den verspannten Deckschichten, den Si1-xGex- bzw. Si1-yCy- Source/Drain-Gebieten, den verspannungsspeichernden Prozessen und den verspannten Substraten. Die starke Abhängigkeit dieser Verspannungstechniken von der Transistorstruktur macht die Nutzung numerischer Simulationen unabdingbar. So werden die Auswirkungen von Variationen der Transistorgeometrie sowie von Prozessparametern im Hinblick auf die Verspannung und die Drainstromänderungen der Transistoren neben den Messungen am gefertigten Transistor auch anhand numerischer Simulationen dargestellt und verglichen. Wesentliche Parameter für eine erhöhte Verspannung werden bestimmt und technologische Herausforderungen bei der Prozessintegration diskutiert. Die durchgeführten Simulationen und das erlangte Verständnis der Wirkungsweise der Verspannungstechniken ermöglichen es, das Potenzial dieser Verspannungstechniken für weitere Leistungssteigerungen in zukünftigen Technologiegenerationen abzuschätzen. Dadurch ist es möglich, die Prozessbedingungen und die Eigenschaften der fertigen Bauelemente im Hinblick auf eine gesteigerte Leistungsfähigkeit hin zu optimieren. Mit der weiteren Verkleinerung der Strukturgrößen der Bauelemente wird der zunehmende Einfluss der parasitären Source/Drain-Widerstände als Begrenzung der Effektivität der Verspannungstechniken identifiziert. Anschließend werden die Wechselwirkungen zwischen den einzelnen Verspannungstechniken hervorgehoben bzw. die gegebenenfalls auftretenden Einschränkungen angesprochen. Abschließend wird das Transportverhalten sowohl im linearen ohmschen Bereich als auch unter dem Einfluss hoher elektrischer Feldstärken analysiert und die deutlichen Unterschiede für die Leistungssteigerungen der verspannten n- und p-MOSFETs begründet. / As conventional MOSFET scaling is reaching its limits, several novel techniques are investigated to extend the CMOS roadmap. One of these techniques is the introduction of mechanical strain in the silicon transistor channel. Because strain changes the inter-atomic distances and thus the electronic band structure of silicon, ntype and p-type transistors with strained channels can show enhanced carrier mobility and performance. The purpose of this thesis is to analyze and understand the effects of strain on the electronic properties of planar silicon-on-insulator MOSFETs for high-performance applications as well as the optimization of various stress techniques and their technological limitations. First, the effect of strain on the electronic band structure of silicon and the carrier mobility is studied systematically using the empirical pseudopotential method and the deformation potential theory. Strain-induced energy band splitting and band deformations alter the electron and hole mobility through modulated effective masses and modified scattering rates. The various concepts for strain generation inside the transistor channel are reviewed. The focus of this work is on strained overlayer films, strained Si1-xGex and Si1-yCy in the source/drain regions, stress memorization techniques and strained substrates. It is shown, that strained silicon based improvements are highly sensitive to the device layout and geometry. For that reason, numerical simulations are indispensable to analyze the efficiency of the strain techniques to transfer strain into the channel. In close relation with experimental work the results from detailed simulation studies including parameter variations and material analyses are presented, as well as a thorough investigation of critical parameters to increase the strain in the transistor channel. Thus, the process conditions and the properties of the fabricated devices can be optimized with respect to higher performance. In addition, technological limitations are discussed and the potential of the different strain techniques for further performance enhancements in future technology generations is evaluated. With the continuing reduction in device dimensions the detrimental impact of the parasitic source/drain resistance on device performance is quantified and projected to be the bottleneck for strain-induced performance improvements. Next, the effects from a combination of individual strain techniques are studied and their interactions or possible restrictions are highlighted. Finally, the transport properties in the low-field transport regime as well as under high electrical fields are analyzed and the notable differences between strained n-type and p-type transistors are discussed.
10

Elektrische und morphologische Charakterisierung organischer Feldeffekttransistoren mit aufgedampften, gesprühten sowie aufgeschleuderten organischen Halbleitern

Lüttich, Franziska 09 January 2015 (has links) (PDF)
In dieser Arbeit werden organische Feldeffekttransistoren (OFETs) aus den verschiedenen Materialien Manganphthalocyanin (MnPc), [6,6]Phenyl-C61-butansäuremethylester (PCBM), 6,13-Bis(triisopropylsilyethinyl)pentacen (TIPS-Pentacen) und N,N’- Bis(n-octyl)-1,6-Dicyanoperylen-3,4:9,10-Bis(Dicarboximid) (PDI8-CN2) hergestellt. Dabei finden unterschiedliche Abscheidemethoden wie die Molekularstrahlabscheidung, die Ultraschallsprühbeschichtung und die Drehbeschichtung Anwendung. Die Morphologie sowie die Funktionsweise der Transistoren werden in Abhängigkeit von den Herstellungsparametern und bezüglich ihrer Stabilität gegenüber Lufteinfluss und elektrischer Belastung charakterisiert. Durch Aufdampfen von MnPc konnten so zum ersten Mal ambipolare MnPc-OFETs hergestellt und charakterisiert werden. Die bestimmten Löcher- und Elektronenbeweglichkeiten bestätigen die Eignung von MnPc für die Anwendung in Spintronik-Bauelementen. Desweiteren wird anhand gesprühter PCBM- und TIPS-Pentacen-OFETs gezeigt, dass die Ultraschallsprühbeschichtung eine geeignete Technik ist, um organische Halbleiter aus Lösung für die Verwendung in OFETs abzuscheiden. Die Abscheidung organischer Filme lässt sich mit einer Vielzahl an Parametern beeinflussen und die Funktionsweise von OFETs optimieren. In Verbindung mit den Untersuchungen aufgeschleuderter PDI8-CN2-OFETs konnte ein erheblicher Einfluss der Oberflächenenergie des verwendeten SiO2-Gateisolators auf die Korngröße im organischen Film festgestellt werden.

Page generated in 0.0695 seconds