• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hochauflösende Rutherford-Streuspektrometrie zur Untersuchung von ZrO2-Schichtwachstum im Anfangsstadium

Vieluf, Maik 28 June 2010 (has links) (PDF)
Die vorliegende Arbeit entstand im Rahmen einer Kooperation des Forschungszentrums Dresden-Rossendorf mit Qimonda Dresden GmbH & Co. OHG. Mithilfe der hochauflösenden Rutherford-Streuspektrometrie (HR-RBS) wurden das Diffusionsverhalten und Schichtwachstum von ZrO2 auf SiO2 und TiN im Anfangsstadium untersucht. Auf Grund der exzellenten Tiefenauflösung von 0,3 nm an der Oberfläche stand die Analyse von Konzentrationsprofilen in ultradünnen Schichten, respektive an deren Grenzflächen im Vordergrund. Zur qualitativen Verbesserung der Messergebnisse wurde erstmals ein zweidimensionaler positionsempfindlicher Halbleiterdetektor in den Aufbau der HR-RBS implementiert und charakterisiert. Außerdem wurde ein Messverfahren in Betrieb genommen, das mögliche Schädigungen durch den Ioneneintrag in die Messprobe minimiert. Durch die Optimierung der experimentellen Bedingungen und die Entwicklung eines Programmpaketes zur Unterstützung des Analysten konnte ein effizienter Routine-Messablauf erstellt werden. Im Moment einer binären Kollision zwischen einfallendem Ion und Targetelement kommt es bei kleinem Stoßparameter zu Veränderungen des Ladungszustands der gestreuten Ionen, insbesondere durch die abrupte Geschwindigkeitsänderung des Projektils und der Überlappung der Elektronenwolken. Bei der HR-RBS mit Energie separierendem Dipolmagneten muss zur Interpretation von Streuspektren die Ladungszustandsverteilung der gestreuten Projektile bekannt sein. Erstmalig konnte eine signifikante Abhängigkeit der Ladungszustandsverteilung gestreuter C-Ionen sowohl von der Schichtdicke als auch der Ordnungszahl des detektierten Targetelements, hier der vierten Nebengruppe, nachgewiesen werden. Diese gewonnen Erkenntnisse ermöglichten systematische Untersuchungen zum ZrO2-Schichtwachstum im Anfangsstadium. Zur Herstellung der ZrO2-Schichten wurde die Atomlagenabscheidung (ALD) verwendet. Anhand der nachgewiesenen Agglomeration von ZrO2 auf nativen SiO2 wurde mithilfe der Rasterkraftmikroskopie (AFM) zur Bestimmung von Oberflächenrauigkeiten eine Methode konzipiert, welche die Auswirkung lokaler Schichtdickeninhomogenitäten auf die niederenergetische Flanke eines Streuspektrums berücksichtigt. Auf dieser Grundlage durchgeführte Simulationsrechnungen ergeben, dass keine Diffusion von Zr in die darunter liegende Schicht stattfand, jedoch eine ZrSiO4-Grenzflächenschicht existiert. Für das Wachstum von ZrO2 auf TiN wird aus den hoch aufgelösten Streuspektren ein völlig anderes Verhalten abgeleitet. Messungen zu Oberflächentopografien der TiN-Schicht liefern nicht zu vernachlässigende Werte für die Rauigkeit. Um den Einfluss der Oberflächenrauigkeit auf die Form des hoch aufgelösten Spektrums erfassen zu können, wurde eine Software entwickelt. Auf Basis von AFM-Messungen ermöglicht dieses Programm das Extrahieren einer Energieverteilung aus den Weglängen von ausschließlich an der Oberfläche gestreuten Ionen. Unter Berücksichtigung des Effekts der Oberflächenrauigkeit auf die HR-RBS Spektrenform konnte die Diffusion von Zr in das polykristalline TiN erstmals verifiziert werden. Die Beobachtungen weisen daraufhin, dass bereits nach dem ersten ALD-Zyklus ein geringer Anteil der deponierten Zr-Atome bis in eine Tiefe von etwa 3 nm in das TiN diffundiert. Die vorläufigen Ergebnisse legen Korngrenzendiffusion nahe. / This thesis originated from a cooperation between Research Center Dresden-Rossendorf and Qimonda Dresden GmbH & Co. OHG. By means of High Resolution Rutherford Backscattering Spectrometry (HR-RBS) the diffusion behaviour and layer growth of ZrO2 on SiO2 and TiN in the initial regime were investigated. The analysis of concentration profiles in ultrathin layers and interfaces was the focus of this work, made possible by the excellent depth resolution of less than 0.3 nm near the surface. For the first time a two-dimensional position sensitive semiconductor detector was implemented and characterized in the setup of the HR-RBS for the improvement of the quality of the measurement results. Furthermore, a measurement procedure was put into operation that allowed the reduction of ion induced damage. Through the optimization of the experimental conditions and the development of a program package for the support of the analyst, an efficient measurement procedure could be routinely ensured. At the time of a binary collision between the incident ion and the target element with a small impact factor, the charge state changes frequently, especially due to the abruptly decreasing ion velocity of the projectile and the overlapping of the electron clouds. For HR-RBS with an energy-separating dipole magnet, the charge state distribution of the scattered ions must be known for the interpretation of the measured spectra. For the first time a significant dependence of the charge state distribution of the scattered C ions on the layer thickness as well as atomic number of the detected target elements, here from the fourth subgroup, was emonstrated. This new knowledge allowed systematic investigations of the ZrO2 layer growth in the initial regime. The ZrO2 layers were produced by means of the atomic layer deposition (ALD). Based on the evidence for agglomeration of ZrO2 on SiO2 a method was introduced, which takes local thickness variations into account during the simulation of the HR-RBS spectra. An accurate statement about the ZrO2/SiO2 interface was possible due to the extraction of the thickness variation by the atomic force microscopy (AFM). The boundary surface is sharp except for a small intermediate ZrSiO4 layer and no diffusion of Zr atoms in SiO2 could be detected. A quite different behaviour could be derived from high resolution spectra for the growth of ZrO2 on TiN. Measurements of the surface topography of the TiN layer revealed non negligible values for the surface roughness. A program was developed to capture the influence of the surface roughness on the shape of the high resolution spectrum. This software uses AFM measurements to extract an energy distribution from calculated path length differences for ions scattered at the sample surface. Diffusion of Zr into polycrystalline TiN was demonstrated for the first time taking into account the effect of the surface roughness on the shape of the spectra. This observation indicates that already after the first ALD reaction cycle a small part of the deposited Zr atoms diffuses into the TiN layer up to a depth of 3 nm. Such preliminary results suggest grain boundary diffusion.
2

Hochauflösende Rutherford-Streuspektrometrie zur Untersuchung von ZrO2-Schichtwachstum im Anfangsstadium

Vieluf, Maik 03 June 2010 (has links)
Die vorliegende Arbeit entstand im Rahmen einer Kooperation des Forschungszentrums Dresden-Rossendorf mit Qimonda Dresden GmbH & Co. OHG. Mithilfe der hochauflösenden Rutherford-Streuspektrometrie (HR-RBS) wurden das Diffusionsverhalten und Schichtwachstum von ZrO2 auf SiO2 und TiN im Anfangsstadium untersucht. Auf Grund der exzellenten Tiefenauflösung von 0,3 nm an der Oberfläche stand die Analyse von Konzentrationsprofilen in ultradünnen Schichten, respektive an deren Grenzflächen im Vordergrund. Zur qualitativen Verbesserung der Messergebnisse wurde erstmals ein zweidimensionaler positionsempfindlicher Halbleiterdetektor in den Aufbau der HR-RBS implementiert und charakterisiert. Außerdem wurde ein Messverfahren in Betrieb genommen, das mögliche Schädigungen durch den Ioneneintrag in die Messprobe minimiert. Durch die Optimierung der experimentellen Bedingungen und die Entwicklung eines Programmpaketes zur Unterstützung des Analysten konnte ein effizienter Routine-Messablauf erstellt werden. Im Moment einer binären Kollision zwischen einfallendem Ion und Targetelement kommt es bei kleinem Stoßparameter zu Veränderungen des Ladungszustands der gestreuten Ionen, insbesondere durch die abrupte Geschwindigkeitsänderung des Projektils und der Überlappung der Elektronenwolken. Bei der HR-RBS mit Energie separierendem Dipolmagneten muss zur Interpretation von Streuspektren die Ladungszustandsverteilung der gestreuten Projektile bekannt sein. Erstmalig konnte eine signifikante Abhängigkeit der Ladungszustandsverteilung gestreuter C-Ionen sowohl von der Schichtdicke als auch der Ordnungszahl des detektierten Targetelements, hier der vierten Nebengruppe, nachgewiesen werden. Diese gewonnen Erkenntnisse ermöglichten systematische Untersuchungen zum ZrO2-Schichtwachstum im Anfangsstadium. Zur Herstellung der ZrO2-Schichten wurde die Atomlagenabscheidung (ALD) verwendet. Anhand der nachgewiesenen Agglomeration von ZrO2 auf nativen SiO2 wurde mithilfe der Rasterkraftmikroskopie (AFM) zur Bestimmung von Oberflächenrauigkeiten eine Methode konzipiert, welche die Auswirkung lokaler Schichtdickeninhomogenitäten auf die niederenergetische Flanke eines Streuspektrums berücksichtigt. Auf dieser Grundlage durchgeführte Simulationsrechnungen ergeben, dass keine Diffusion von Zr in die darunter liegende Schicht stattfand, jedoch eine ZrSiO4-Grenzflächenschicht existiert. Für das Wachstum von ZrO2 auf TiN wird aus den hoch aufgelösten Streuspektren ein völlig anderes Verhalten abgeleitet. Messungen zu Oberflächentopografien der TiN-Schicht liefern nicht zu vernachlässigende Werte für die Rauigkeit. Um den Einfluss der Oberflächenrauigkeit auf die Form des hoch aufgelösten Spektrums erfassen zu können, wurde eine Software entwickelt. Auf Basis von AFM-Messungen ermöglicht dieses Programm das Extrahieren einer Energieverteilung aus den Weglängen von ausschließlich an der Oberfläche gestreuten Ionen. Unter Berücksichtigung des Effekts der Oberflächenrauigkeit auf die HR-RBS Spektrenform konnte die Diffusion von Zr in das polykristalline TiN erstmals verifiziert werden. Die Beobachtungen weisen daraufhin, dass bereits nach dem ersten ALD-Zyklus ein geringer Anteil der deponierten Zr-Atome bis in eine Tiefe von etwa 3 nm in das TiN diffundiert. Die vorläufigen Ergebnisse legen Korngrenzendiffusion nahe. / This thesis originated from a cooperation between Research Center Dresden-Rossendorf and Qimonda Dresden GmbH & Co. OHG. By means of High Resolution Rutherford Backscattering Spectrometry (HR-RBS) the diffusion behaviour and layer growth of ZrO2 on SiO2 and TiN in the initial regime were investigated. The analysis of concentration profiles in ultrathin layers and interfaces was the focus of this work, made possible by the excellent depth resolution of less than 0.3 nm near the surface. For the first time a two-dimensional position sensitive semiconductor detector was implemented and characterized in the setup of the HR-RBS for the improvement of the quality of the measurement results. Furthermore, a measurement procedure was put into operation that allowed the reduction of ion induced damage. Through the optimization of the experimental conditions and the development of a program package for the support of the analyst, an efficient measurement procedure could be routinely ensured. At the time of a binary collision between the incident ion and the target element with a small impact factor, the charge state changes frequently, especially due to the abruptly decreasing ion velocity of the projectile and the overlapping of the electron clouds. For HR-RBS with an energy-separating dipole magnet, the charge state distribution of the scattered ions must be known for the interpretation of the measured spectra. For the first time a significant dependence of the charge state distribution of the scattered C ions on the layer thickness as well as atomic number of the detected target elements, here from the fourth subgroup, was emonstrated. This new knowledge allowed systematic investigations of the ZrO2 layer growth in the initial regime. The ZrO2 layers were produced by means of the atomic layer deposition (ALD). Based on the evidence for agglomeration of ZrO2 on SiO2 a method was introduced, which takes local thickness variations into account during the simulation of the HR-RBS spectra. An accurate statement about the ZrO2/SiO2 interface was possible due to the extraction of the thickness variation by the atomic force microscopy (AFM). The boundary surface is sharp except for a small intermediate ZrSiO4 layer and no diffusion of Zr atoms in SiO2 could be detected. A quite different behaviour could be derived from high resolution spectra for the growth of ZrO2 on TiN. Measurements of the surface topography of the TiN layer revealed non negligible values for the surface roughness. A program was developed to capture the influence of the surface roughness on the shape of the high resolution spectrum. This software uses AFM measurements to extract an energy distribution from calculated path length differences for ions scattered at the sample surface. Diffusion of Zr into polycrystalline TiN was demonstrated for the first time taking into account the effect of the surface roughness on the shape of the spectra. This observation indicates that already after the first ALD reaction cycle a small part of the deposited Zr atoms diffuses into the TiN layer up to a depth of 3 nm. Such preliminary results suggest grain boundary diffusion.
3

Elastische Rückstoßatomspektrometrie leichter Elemente mit Subnanometer-Tiefenauflösung

Kosmata, Marcel 29 February 2012 (has links) (PDF)
In der vorliegenden Arbeit wird erstmals das QQDS-Magnetspektrometer für die höchstauflösende Ionenstrahlanalytik leichter Elemente am Helmholtz-Zentrum Dresden-Rossendorf umfassend vorgestellt. Zusätzlich werden sowohl alle auf die Analytik Einfluss nehmenden Parameter untersucht als auch Methoden und Modelle vorgestellt, wie deren Einfluss vermieden oder rechnerisch kompensiert werden kann. Die Schwerpunkte dieser Arbeit gliedern sich in fünf Bereiche. Der Erste ist der Aufbau und die Inbetriebnahme des QQDS-Magnetspektrometers, der zugehörige Streukammer mit allen Peripheriegeräten und des eigens für die höchstauflösende elastische Rückstoßanalyse entwickelten Detektors. Sowohl das umgebaute Spektrometer als auch der im Rahmen dieser Arbeit gebaute Detektor wurden speziell an experimentelle Bedingungen für die höchstauflösende Ionenstrahlanalytik leichter Elemente angepasst und erstmalig auf einen routinemäßigen Einsatz hin getestet. Der Detektor besteht aus zwei Komponenten. Zum einen befindet sich am hinteren Ende des Detektors eine Bragg-Ionisationskammer, die zur Teilchenidentifikation genutzt wird. Zum anderen dient ein Proportionalzähler, der eine Hochwiderstandsanode besitzt und direkt hinter dem Eintrittsfenster montiert ist, zur Teilchenpositionsbestimmung im Detektor. Die folgenden zwei Schwerpunkte beinhalten grundlegende Untersuchungen zur Ionen-Festkörper-Wechselwirkung. Durch die Verwendung eines Magnetspektrometers ist die Messung der Ladungszustandsverteilung der herausgestreuten Teilchen direkt nach einem binären Stoß sowohl möglich als auch für die Analyse notwendig. Aus diesem Grund werden zum einen die Ladungszustände gemessen und zum anderen mit existierenden Modellen verglichen. Außerdem wird ein eigens entwickeltes Modell vorgestellt und erstmals im Rahmen dieser Arbeit angewendet, welches den ladungszustandsabhängigen Energieverlust bei der Tiefenprofilierung berücksichtigt. Es wird gezeigt, dass ohne die Anwendung dieses Modells die Tiefenprofile nicht mit den quantitativen Messungen mittels konventioneller Ionenstrahlanalytikmethoden und mit der Dickenmessung mittels Transmissionselektronenmikroskopie übereinstimmen, und damit falsche Werte liefern würden. Der zweite für die Thematik wesentliche Aspekt der Ionen-Festkörper-Wechselwirkung, sind die Probenschäden und -modifikationen, die während einer Schwerionen-bestrahlung auftreten. Dabei wird gezeigt, dass bei den hier verwendeten Energien sowohl elektronisches Sputtern als auch elektronisch verursachtes Grenzflächendurchmischen eintreten. Das elektronische Sputtern kann durch geeignete Strahlparameter für die meisten Proben ausreichend minimiert werden. Dagegen ist der Einfluss der Grenzflächendurchmischung meist signifikant, so dass dieser analysiert und in der Auswertung berücksichtigt werden muss. Schlussfolgernd aus diesen Untersuchungen ergibt sich für die höchstauflösende Ionenstrahlanalytik leichter Elemente am Rossendorfer 5-MV Tandembeschleuniger, dass die geeignetsten Primärionen Chlor mit einer Energie von 20 MeV sind. In Einzelfällen, wie zum Beispiel der Analyse von Bor, muss die Energie jedoch auf 6,5 MeV reduziert werden, um das elektronische Sputtern bei der notwendigen Fluenz unterhalb der Nachweisgrenze zu halten. Der vierte Schwerpunkt ist die Untersuchung von sowohl qualitativen als auch quantitativen Einflüssen bestimmter Probeneigenschaften, wie beispielsweise Oberflächenrauheit, auf die Form des gemessenen Energiespektrums beziehungsweise auf das analysierte Tiefenprofil. Die Kenntnis der Rauheit einer Probe an der Oberfläche und an den Grenzflächen ist für die Analytik unabdingbar. Als Resultat der genannten Betrachtungen werden die Einflüsse von Probeneigenschaften und Ionen-Festkörper-Wechselwirkungen auf die Energie- beziehungsweise Tiefenauflösung des Gesamtsystems beschrieben, berechnet und mit der konventionellen Ionenstrahlanalytik verglichen. Die Möglichkeiten der höchstauflösenden Ionenstrahlanalytik werden zudem mit den von anderen Gruppen veröffentlichten Komplementärmethoden gegenübergestellt. Der fünfte und letzte Schwerpunkt ist die Analytik leichter Elemente in ultradünnen Schichten unter Berücksichtigung aller in dieser Arbeit vorgestellten Modelle, wie die Reduzierung des Einflusses von Strahlschäden oder die Quantifizierung der Elemente im dynamischen Ladungszustandsnichtgleichgewicht. Es wird die Tiefenprofilierung von Mehrschichtsystemen, bestehend aus SiO2-Si3N4Ox-SiO2 auf Silizium, von Ultra-Shallow-Junction Bor-Implantationsprofilen und von ultradünnen Oxidschichten, wie zum Beispiel High-k-Materialien, demonstriert. / In this thesis the QQDS magnetic spectrometer that is used for high resolution ion beam analysis (IBA) of light elements at the Helmholtz-Zentrum Dresden-Rossendorf is presented for the first time. In addition all parameters are investigated that influence the analysis. Methods and models are presented with which the effects can be minimised or calculated. There are five focal points of this thesis. The first point is the construction and commissioning of the QQDS magnetic spectrometer, the corresponding scattering chamber with all the peripherals and the detector, which is specially developed for high resolution elastic recoil detection. Both the reconstructed spectrometer and the detector were adapted to the specific experimental conditions needed for high-resolution Ion beam analysis of light elements and tested for routine practice. The detector consists of two compo-nents. At the back end of the detector a Bragg ionization chamber is mounted, which is used for the particle identification. At the front end, directly behind the entrance window a proportional counter is mounted. This proportional counter includes a high-resistance anode. Thus, the position of the particles is determined in the detector. The following two points concern fundamental studies of ion-solid interaction. By using a magnetic spectrometer the charge state distribution of the particles scattered from the sample after a binary collision is both possible and necessary for the analysis. For this reason the charge states are measured and compared with existing models. In addition, a model is developed that takes into account the charge state dependent energy loss. It is shown that without the application of this model the depth profiles do not correspond with the quantitative measurements by conventional IBA methods and with the thickness obtained by transmission electron microscopy. The second fundamental ion-solid interaction is the damage and the modification of the sample that occurs during heavy ion irradiation. It is shown that the used energies occur both electronic sputtering and electronically induced interface mixing. Electronic sputtering is minimised by using optimised beam parameters. For most samples the effect is below the detection limit for a fluence sufficient for the analysis. However, the influence of interface mixing is so strong that it has to be included in the analysis of the layers of the depth profiles. It is concluded from these studies that at the Rossendorf 5 MV tandem accelerator chlorine ions with an energy of 20 MeV deliver the best results. In some cases, such as the analysis of boron, the energy must be reduced to 6.5 MeV in order to retain the electronic sputtering below the detection limit. The fourth focus is the study of the influence of specific sample properties, such as surface roughness, on the shape of a measured energy spectra and respectively on the analysed depth profile. It is shown that knowledge of the roughness of a sample at the surface and at the interfaces for the analysis is needed. In addition, the contribution parameters limiting the depth resolution are calculated and compared with the conventional ion beam analysis. Finally, a comparison is made between the high-resolution ion beam analysis and complementary methods published by other research groups. The fifth and last focus is the analysis of light elements in ultra thin layers. All models presented in this thesis to reduce the influence of beam damage are taken into account. The dynamic non-equilibrium charge state is also included for the quantification of elements. Depth profiling of multilayer systems is demonstrated for systems consisting of SiO2-Si3N4Ox-SiO2 on silicon, boron implantation profiles for ultra shallow junctions and ultra thin oxide layers, such as used as high-k materials.
4

Elastische Rückstoßatomspektrometrie leichter Elemente mit Subnanometer-Tiefenauflösung

Kosmata, Marcel 21 December 2011 (has links)
In der vorliegenden Arbeit wird erstmals das QQDS-Magnetspektrometer für die höchstauflösende Ionenstrahlanalytik leichter Elemente am Helmholtz-Zentrum Dresden-Rossendorf umfassend vorgestellt. Zusätzlich werden sowohl alle auf die Analytik Einfluss nehmenden Parameter untersucht als auch Methoden und Modelle vorgestellt, wie deren Einfluss vermieden oder rechnerisch kompensiert werden kann. Die Schwerpunkte dieser Arbeit gliedern sich in fünf Bereiche. Der Erste ist der Aufbau und die Inbetriebnahme des QQDS-Magnetspektrometers, der zugehörige Streukammer mit allen Peripheriegeräten und des eigens für die höchstauflösende elastische Rückstoßanalyse entwickelten Detektors. Sowohl das umgebaute Spektrometer als auch der im Rahmen dieser Arbeit gebaute Detektor wurden speziell an experimentelle Bedingungen für die höchstauflösende Ionenstrahlanalytik leichter Elemente angepasst und erstmalig auf einen routinemäßigen Einsatz hin getestet. Der Detektor besteht aus zwei Komponenten. Zum einen befindet sich am hinteren Ende des Detektors eine Bragg-Ionisationskammer, die zur Teilchenidentifikation genutzt wird. Zum anderen dient ein Proportionalzähler, der eine Hochwiderstandsanode besitzt und direkt hinter dem Eintrittsfenster montiert ist, zur Teilchenpositionsbestimmung im Detektor. Die folgenden zwei Schwerpunkte beinhalten grundlegende Untersuchungen zur Ionen-Festkörper-Wechselwirkung. Durch die Verwendung eines Magnetspektrometers ist die Messung der Ladungszustandsverteilung der herausgestreuten Teilchen direkt nach einem binären Stoß sowohl möglich als auch für die Analyse notwendig. Aus diesem Grund werden zum einen die Ladungszustände gemessen und zum anderen mit existierenden Modellen verglichen. Außerdem wird ein eigens entwickeltes Modell vorgestellt und erstmals im Rahmen dieser Arbeit angewendet, welches den ladungszustandsabhängigen Energieverlust bei der Tiefenprofilierung berücksichtigt. Es wird gezeigt, dass ohne die Anwendung dieses Modells die Tiefenprofile nicht mit den quantitativen Messungen mittels konventioneller Ionenstrahlanalytikmethoden und mit der Dickenmessung mittels Transmissionselektronenmikroskopie übereinstimmen, und damit falsche Werte liefern würden. Der zweite für die Thematik wesentliche Aspekt der Ionen-Festkörper-Wechselwirkung, sind die Probenschäden und -modifikationen, die während einer Schwerionen-bestrahlung auftreten. Dabei wird gezeigt, dass bei den hier verwendeten Energien sowohl elektronisches Sputtern als auch elektronisch verursachtes Grenzflächendurchmischen eintreten. Das elektronische Sputtern kann durch geeignete Strahlparameter für die meisten Proben ausreichend minimiert werden. Dagegen ist der Einfluss der Grenzflächendurchmischung meist signifikant, so dass dieser analysiert und in der Auswertung berücksichtigt werden muss. Schlussfolgernd aus diesen Untersuchungen ergibt sich für die höchstauflösende Ionenstrahlanalytik leichter Elemente am Rossendorfer 5-MV Tandembeschleuniger, dass die geeignetsten Primärionen Chlor mit einer Energie von 20 MeV sind. In Einzelfällen, wie zum Beispiel der Analyse von Bor, muss die Energie jedoch auf 6,5 MeV reduziert werden, um das elektronische Sputtern bei der notwendigen Fluenz unterhalb der Nachweisgrenze zu halten. Der vierte Schwerpunkt ist die Untersuchung von sowohl qualitativen als auch quantitativen Einflüssen bestimmter Probeneigenschaften, wie beispielsweise Oberflächenrauheit, auf die Form des gemessenen Energiespektrums beziehungsweise auf das analysierte Tiefenprofil. Die Kenntnis der Rauheit einer Probe an der Oberfläche und an den Grenzflächen ist für die Analytik unabdingbar. Als Resultat der genannten Betrachtungen werden die Einflüsse von Probeneigenschaften und Ionen-Festkörper-Wechselwirkungen auf die Energie- beziehungsweise Tiefenauflösung des Gesamtsystems beschrieben, berechnet und mit der konventionellen Ionenstrahlanalytik verglichen. Die Möglichkeiten der höchstauflösenden Ionenstrahlanalytik werden zudem mit den von anderen Gruppen veröffentlichten Komplementärmethoden gegenübergestellt. Der fünfte und letzte Schwerpunkt ist die Analytik leichter Elemente in ultradünnen Schichten unter Berücksichtigung aller in dieser Arbeit vorgestellten Modelle, wie die Reduzierung des Einflusses von Strahlschäden oder die Quantifizierung der Elemente im dynamischen Ladungszustandsnichtgleichgewicht. Es wird die Tiefenprofilierung von Mehrschichtsystemen, bestehend aus SiO2-Si3N4Ox-SiO2 auf Silizium, von Ultra-Shallow-Junction Bor-Implantationsprofilen und von ultradünnen Oxidschichten, wie zum Beispiel High-k-Materialien, demonstriert. / In this thesis the QQDS magnetic spectrometer that is used for high resolution ion beam analysis (IBA) of light elements at the Helmholtz-Zentrum Dresden-Rossendorf is presented for the first time. In addition all parameters are investigated that influence the analysis. Methods and models are presented with which the effects can be minimised or calculated. There are five focal points of this thesis. The first point is the construction and commissioning of the QQDS magnetic spectrometer, the corresponding scattering chamber with all the peripherals and the detector, which is specially developed for high resolution elastic recoil detection. Both the reconstructed spectrometer and the detector were adapted to the specific experimental conditions needed for high-resolution Ion beam analysis of light elements and tested for routine practice. The detector consists of two compo-nents. At the back end of the detector a Bragg ionization chamber is mounted, which is used for the particle identification. At the front end, directly behind the entrance window a proportional counter is mounted. This proportional counter includes a high-resistance anode. Thus, the position of the particles is determined in the detector. The following two points concern fundamental studies of ion-solid interaction. By using a magnetic spectrometer the charge state distribution of the particles scattered from the sample after a binary collision is both possible and necessary for the analysis. For this reason the charge states are measured and compared with existing models. In addition, a model is developed that takes into account the charge state dependent energy loss. It is shown that without the application of this model the depth profiles do not correspond with the quantitative measurements by conventional IBA methods and with the thickness obtained by transmission electron microscopy. The second fundamental ion-solid interaction is the damage and the modification of the sample that occurs during heavy ion irradiation. It is shown that the used energies occur both electronic sputtering and electronically induced interface mixing. Electronic sputtering is minimised by using optimised beam parameters. For most samples the effect is below the detection limit for a fluence sufficient for the analysis. However, the influence of interface mixing is so strong that it has to be included in the analysis of the layers of the depth profiles. It is concluded from these studies that at the Rossendorf 5 MV tandem accelerator chlorine ions with an energy of 20 MeV deliver the best results. In some cases, such as the analysis of boron, the energy must be reduced to 6.5 MeV in order to retain the electronic sputtering below the detection limit. The fourth focus is the study of the influence of specific sample properties, such as surface roughness, on the shape of a measured energy spectra and respectively on the analysed depth profile. It is shown that knowledge of the roughness of a sample at the surface and at the interfaces for the analysis is needed. In addition, the contribution parameters limiting the depth resolution are calculated and compared with the conventional ion beam analysis. Finally, a comparison is made between the high-resolution ion beam analysis and complementary methods published by other research groups. The fifth and last focus is the analysis of light elements in ultra thin layers. All models presented in this thesis to reduce the influence of beam damage are taken into account. The dynamic non-equilibrium charge state is also included for the quantification of elements. Depth profiling of multilayer systems is demonstrated for systems consisting of SiO2-Si3N4Ox-SiO2 on silicon, boron implantation profiles for ultra shallow junctions and ultra thin oxide layers, such as used as high-k materials.

Page generated in 0.0805 seconds