• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 8
  • 8
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optoacoustic frequency stabilization of a carbon dioxide laser

Abu-Taha, M. I. A. January 1987 (has links)
No description available.
2

Réalisation d’un oscillateur paramétrique optique stabilisé en fréquence et accordable continûment sur 500ghz pour la spectroscopie infrarouge / 500-GHz mode-hop-free idler tuning range with a frequency-stabilized singly-resonant parametric oscillator

Andrieux, Emeline 16 December 2011 (has links)
Nous avons développé un oscillateur paramétrique optique simplement résonant (SRO) basé sur un cristal non linéaire de niobate de lithium dopé 5%-MgO et périodiquement polarisé (ppMgCLN). Il est pompé à 1064 nm par une diode laser en cavité étendue balayable continûment de 1050 à 1070 nm injectant un amplificateur Yb-fibré de puissance 10 W. Il génère une onde idler comprise entre 3 et 4 µm et une onde signal entre 1450 et 1650 nm. La cavité SRO est asservie sur le pic de transmission d'une cavité Fabry-Perot de grande finesse. Nous avons alors pu démontrer un balayage mono-fréquence sans saut de mode de l'onde idler sur 500 GHz. Cette large accordabilité continue pourrait être utilisée pour la spectroscopie haute résolution multi-espèces dans le moyen infrarouge. Par ailleurs, nous avons revisité la théorie ondes planes du SRO, dont les solutions analytiques ont été données pour la première fois en 1969 par Kreuzer sous la forme d'une équation transcendante, en utilisant une méthode perturbative très puissante qui tient compte de la déplétion de la pompe. Nous avons pu ainsi déterminer les relations d'entrée-sortie du SRO sous la forme de relations explicites très simples, montrant que les puissances de sortie sont proportionnelles à la racine cubique de la puissance pompe. / We developed a singly-resonant optical parametric oscillator (SRO) based on a nonlinear crystal of 5%-ppMgCLN congruent lithium niobate chip and pumped at 1064 nm by an extended cavity diode laser widely tuneable from 1050 to 1070 nm injecting a 10 W Yb-fiber amplifier. It generates an idler wave between 3 and 4 µm and a signal wave between 1450 and 1650 nm. The SRO cavity is stabilized to the top of a Fabry-Perot transmission fringe. We then demonstrated a mode-hop-free idler tuning range of 500 GHz. This broad continuous tunability could be used for multi-species high resolution spectroscopy in the mid-infrared. Moreover, we have revisited the plane waves SRO theory, whose analytical solutions were given for the first time in 1969 by Kreuzer in the form of a transcendental equation, using a very powerful perturbative method which takes into account the depletion of the pump. We were able to determine the input-output relations of SRO in the form of very simple explicit relationships, showing that the output powers are proportional to the cubic root of the pump power.
3

Optical and noise studies for Advanced Virgo and filter cavities for quantum noise reduction in gravitational-wave interferometric detectors / Études optiques et de bruit pour Advanced Virgo et cavités de filtrage pour la réduction du bruit quantique dans les détecteurs interférométriques d’ondes gravitationnelles

Capocasa, Eleonora 13 November 2017 (has links)
L'astronomie gravitationnelle a débuté en septembre 2015 avec la première détection de la fusion de deux trous noirs par LIGO. Depuis lors, plusieurs fusions de trous noirs et une fusion d'étoiles à neutrons ont été observées. Advanced Virgo a rejoint les deux observatoires LIGO dans la prise de données en août 2017, augmentant fortement les capacités de localisation du réseau. Afin d'exploiter pleinement le potentiel scientifique de ce nouveau domaine, un énorme effort expérimental est nécessaire pour améliorer la sensibilité des interféromètres. Cette thèse, développée dans ce contexte, est composée de deux parties. La première concerne Advanced Virgo : nous avons développé un budget de bruit automatique pour le bruit de fréquence du laser et nous avons effectué des mesures de caractérisation optique pour les cavités de bras kilométriques. Des pertes aller-retour aussi faibles que 80 ppm ont été mesurées. Elles sont parmi les plus basses jamais mesurées avec un faisceau de cette taille. La deuxième partie concerne la conception et le développement d'une cavité de filtrage de 300 m, un prototype pour démontrer la production de lumière squeezing dépendante de la fréquence avec les propriétés nécessaires pour une réduction du bruit quantique à large bande dans KAGRA, Advanced Virgo et Advanced LIGO. Nous avons contribué à la fois aux phases de conception et d'intégration du projet. Nous avons d'abord fait le design optique de la cavité, y compris les spécifications pour l'optique de la cavité et une estimation détaillée des sources de dégradation pour le squeezing. Nous avons donc développé un système de contrôle pour les miroirs, assemblé les suspensions et finalement aligné et mis la cavité en résonance avec la lumière laser / Gravitational wave astronomy has started in September 2015 with the first detection of a binary black-hole merger by LIGO. Since then, several black-hole mergers and a binary neutron star merger have been observed. Advanced Virgo joined the two LIGO detector in the observation run, in August 2017, highly increasing the localization capabilities of the network. In order to fully exploit the scientific potential of this new-born field, a huge experimental effort is needed to bring the instruments at their design sensitivity and to further improve them. This thesis, developed in this context, it is composed of two parts. The first is about Advanced Virgo: we have developed an automatic noise budget for the laser frequency noise and we have performed optical characterization measurements for the kilometric arm cavities. Round trip Losses as low as 80 ppm have been measured. They are among the lowest ever measured for beams of these size. The second part is about the design and development of a 300 m filter cavity, a prototype to demonstrate the frequency dependent squeezing production with properties needed for a broadband quantum noise reduction in the future upgrades of KAGRA, Advanced Virgo and Advanced LIGO. We have contributed to the design and integration phases of the project. We have first made the optical design of the cavity, including the the specifications for the main cavity optics and a detailed estimation of the squeezing degradation sources. We have then developed a local control system for the mirrors, assembled the suspensions, and finally aligned and brought the cavity in resonance with the laser light
4

Laser-based Absorption Spectrometry : Development of NICE-OHMS Towards Ultra-sensitive Trace Species Detection

Schmidt, Florian January 2007 (has links)
<p>Laser-based absorption spectroscopy (AS) is a powerful technique for qualitative and quantitative studies of atoms and molecules. An important field of use of AS is the detection of species in trace concentrations, which has applications not only in physics and chemistry but also in biology and medicine, encompassing environmental monitoring, regulation of industrial processes and breath analysis. Although a large number of molecular species can successfully be detected with established AS techniques, there are some applications that require higher sensitivity, selectivity and accuracy, yet robust and compact instrumentation.</p><p>Various approaches have been made during the years to improve on the performance of AS, usually based on modulation spectrometry or external cavities. The most sensitive absorption technique of today is, however, noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS). This technique elegantly combines several approaches: external cavities (for optical path length enhancement), modulation techniques (for noise reduction) and saturation spectroscopy (for enhanced selectivity). However, due to its complexity, the technique has so far not been applied to practical trace species detection.</p><p>This thesis provides the background for an understanding of NICE-OHMS and describes the construction of a first compact NICE-OHMS spectrometer based on a narrowband fiber laser. Moreover, it gives theoretical expressions for NICE-OHMS signal lineshapes, measured in various modes of detection, which can be fitted to the experimental data and thereby facilitate the assessment of species concentration. The sensitivity of the instrumentation is demonstrated by detection of acetylene (C<sub>2</sub>H<sub>2</sub>) and carbon dioxide (CO<sub>2</sub>) in the 1.5 μm region. A fractional absorption sensitivity of 3*10<sup>-9</sup> (integrated absorption of 5*10<sup>-11</sup> cm<sup>-1</sup>), could be achieved using a cavity with a finesse of 4800 and an acquisition time of 0.7 s. This results in a detection limit for C<sub>2</sub>H<sub>2</sub> of 4.5 ppt (4.5*10<sup>-12</sup> atm).</p><p>In addition, the thesis revives the idea of using an accurate (frequency) measurement of the free-spectral-range (FSR) of an external cavity for sensitive and calibration-free concentration assessment. A theoretical description of the expected signal lineshapes is given, and in a first experimental demonstration the FSR could be measured with a resolution of 5 Hz, resulting in a fractional absorption sensitivity of 1*10<sup>-7</sup>, and subsequently in a detection limit for C<sub>2</sub>H<sub>2</sub> of 180 ppt (12.5 s acquisition time).</p><p>The thesis, finally, also contributes to the continuously ongoing development of conventional AS and wavelength modulated AS by addressing concepts related to when the light optically saturates the transition.</p>
5

Laser-based absorption spectrometry : development of NICE-OHMS towards ultra-sensitive trace species detection

Schmidt, Florian January 2007 (has links)
Laser-based absorption spectroscopy (AS) is a powerful technique for qualitative and quantitative studies of atoms and molecules. An important field of use of AS is the detection of species in trace concentrations, which has applications not only in physics and chemistry but also in biology and medicine, encompassing environmental monitoring, regulation of industrial processes and breath analysis. Although a large number of molecular species can successfully be detected with established AS techniques, there are some applications that require higher sensitivity, selectivity and accuracy, yet robust and compact instrumentation. Various approaches have been made during the years to improve on the performance of AS, usually based on modulation spectrometry or external cavities. The most sensitive absorption technique of today is, however, noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS). This technique elegantly combines several approaches: external cavities (for optical path length enhancement), modulation techniques (for noise reduction) and saturation spectroscopy (for enhanced selectivity). However, due to its complexity, the technique has so far not been applied to practical trace species detection. This thesis provides the background for an understanding of NICE-OHMS and describes the construction of a first compact NICE-OHMS spectrometer based on a narrowband fiber laser. Moreover, it gives theoretical expressions for NICE-OHMS signal lineshapes, measured in various modes of detection, which can be fitted to the experimental data and thereby facilitate the assessment of species concentration. The sensitivity of the instrumentation is demonstrated by detection of acetylene (C2H2) and carbon dioxide (CO2) in the 1.5 μm region. A fractional absorption sensitivity of 3*10-9 (integrated absorption of 5*10-11 cm-1), could be achieved using a cavity with a finesse of 4800 and an acquisition time of 0.7 s. This results in a detection limit for C2H2 of 4.5 ppt (4.5*10-12 atm). In addition, the thesis revives the idea of using an accurate (frequency) measurement of the free-spectral-range (FSR) of an external cavity for sensitive and calibration-free concentration assessment. A theoretical description of the expected signal lineshapes is given, and in a first experimental demonstration the FSR could be measured with a resolution of 5 Hz, resulting in a fractional absorption sensitivity of 1*10-7, and subsequently in a detection limit for C2H2 of 180 ppt (12.5 s acquisition time). The thesis, finally, also contributes to the continuously ongoing development of conventional AS and wavelength modulated AS by addressing concepts related to when the light optically saturates the transition.
6

Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry

Foltynowicz, Aleksandra January 2009 (has links)
Noise-immune cavity-enhanced optical heterodyne molecular spectro-metry (NICE-OHMS) is one of the most sensitive laser-based absorption techniques. The high sensitivity of NICE-OHMS is obtained by a unique combination of cavity enhancement (for increased interaction length with a sample) with frequency modulation spectrometry (for reduction of noise). Moreover, sub-Doppler detection is possible due to the presence of high intensity counter-propagating waves inside an external resonator, which provides an excellent spectral selectivity. The high sensitivity and selectivity make NICE-OHMS particularly suitable for trace gas detection. Despite this, the technique has so far not been often used for practical applications due to its technical complexity, originating primarily from the requirement of an active stabilization of the laser frequency to a cavity mode. The main aim of the work presented in this thesis has been to develop a simpler and more robust NICE-OHMS instrumentation without compro-mising the high sensitivity and selectivity of the technique. A compact NICE-OHMS setup based on a fiber laser and a fiber-coupled electro-optic modulator has been constructed. The main advantage of the fiber laser is its narrow free-running linewidth, which significantly simplifies the frequency stabilization procedure. It has been demonstrated, using acetylene and carbon dioxide as pilot species, that the system is capable of detecting relative absorption down to 3 × 10-9 on a Doppler-broadened transition, and sub-Doppler optical phase shift down to 1.6 × 10-10, the latter corresponding to a detection limit of 1 × 10-12 atm of C2H2. Moreover, the potential of dual frequency modulation dispersion spectrometry (DFM-DS), an integral part of NICE-OHMS, for concentration measurements has been assessed. This thesis contributes also to the theoretical description of Doppler-broadened and sub-Doppler NICE-OHMS signals, as well as DFM-DS signals. It has been shown that the concentration of an analyte can be deduced from a Doppler-broadened NICE-OHMS signal detected at an arbitrary and unknown detection phase, provided that a fit of the theoretical lineshape to the experimental data is performed. The influence of optical saturation on Doppler-broadened NICE-OHMS signals has been described theoretically and demonstrated experimentally. In particular, it has been shown that the Doppler-broadened dispersion signal is unaffected by optical saturation in the Doppler limit. An expression for the sub-Doppler optical phase shift, valid for high degrees of saturation, has been derived and verified experimentally up to degrees of saturation of 100.
7

Détection non-destructive pour l’interférométrie atomique et Condensation de Bose-Einstein dans une cavité optique de haute finesse / Nondestructive detection for atom interferometry and Bose-Einstein condensation in a high finesse optical cavity

Vanderbruggen, Thomas 13 April 2012 (has links)
Ce mémoire de thèse étudie diverses méthodes d'amélioration des interféromètres atomiques. Dans la première partie du manuscrit, nous analysons comment une détection non-destructive, au sens où elle préserve la cohérence entre les états internes de l'ensemble atomique, permet d'améliorer la sensibilité des interféromètres. Nous montrons tout d'abord, grâce à une étude théorique, que la projection du vecteur d'onde engendrée par la mesure permet de préparer des états comprimés de spin. Nous présentons ensuite la mise en œuvre de cette méthode à l'aide d'une détection reposant sur la spectroscopie par modulation de fréquence. Finalement, nous exposons quelques premières applications de cette détection non-destructive, plus précisément nous présentons la réalisation du rétroaction quantique qui protège l'état atomique contre la décohérence induite par un basculement du spin collectif, nous montrons aussi comment réaliser une boucle à verrouillage de phase où les atomes servent de référence de phase. Dans la seconde partie du manuscrit, nous présentons la réalisation tout-optique d'un condensat de Bose-Einstein dans une cavité de haute finesse, exploitant les technologies développées pour les télécommunications optiques. Nous commençons par une analyse du résonateur et des méthodes d'asservissement, nous introduisons notamment une méthode d'asservissement originale exploitant la modulation serrodyne. Enfin, nous montrons comment un condensat est obtenu par évaporation dans le mode optique de la cavité. / In this thesis, we study several methods to improve atom interferometers. In the first part of the manuscript, we analyze how a nondestructive detection, that preserves the coherence between the internal degrees of freedom in an atomic ensemble, can be used to increase the sensitivity of interferometers. We first theoretically show how the projection of the wave-function induced by the measurement prepares spin-squeezed states. We then present the implementation of this method with a detection based on the frequency modulation spectroscopy. Finally, some first applications are described, more explicitly we show how to implement a quantum feedback that preserve the atomic state against the decoherence induced by a random collective flip, we also introduce a phase-locked loop where the atomic sample is used as the phase reference. In the second part of the manuscript, we present the all-optical realization of a Bose-Einstein condensate in a high-finesse cavity using a laser system based on standard telecoms technologies. We first describe the resonator and the frequency lock of the laser on the resonance, in particular, we introduce a new stabilization method based of the serrodyne modulation. Finally, we show how the condensate is obtained from the evaporation in the cavity mode.
8

Optical frequency references based on hyperfine transitions in molecular iodine

Döringshoff, Klaus 14 May 2018 (has links)
Diese Arbeit beschäftigt sich mit der Entwicklung und Untersuchung von optischen Absolutfrequenzreferenzen basierend auf rovibronischen Übergängen in molekularen Jod. Dabei werden Methoden der Doppler-freien Sättigungsspektroskopie angewendet, um einzelne Übergänge der Hyperfeinstruktur mit Linienbreiten unterhalb von 1 MHz im B-X System von molekularem Iod bei 532 nm, der zweiten harmonischen des Nd:YAG-Laser, aufzulösen. Elektronische Regelungstechniken ermöglichen eine präzise Stabilisierung der optischen Frequenz auf die Linienmitte der Übergänge mit einer Auflösung von Teilen in 10^5. Mit dem Ziel einer weltraumtauglichen Absolutfrequenzreferenz für zukünftige Weltraummissionen, wurden zwei Spektroskopiemodule konzipiert und in quasi-monolithischen Glaskeramik-Aufbauten, als sogenanntes elegant breadboard model und engineering model, realisiert. Diese Jodfrequenzreferenzen wurden im Detail in Bezug auf ihre Frequenzstabilität und Reproduzierbarkeit untersucht und Letzteres wurde für die angestrebte Weltraumqualifizierung ersten Umwelttests, sowohl vibrations- als auch thermischen Belastungstests, unterzogen. Für die Untersuchung der Frequenzstabilität dieser Jodreferenzen wurde ein auf einen optischen Resonator hoher Güte stabilisiertes Lasersystem für direkte Frequenzvergleiche bei 1064 nm realisiert. Die Analyse der Frequenzstabilität der Jod Referenzen zeigt eine Frequenzstabilität von 6x10^−15 bei 1 s, und weniger als 2x10^−15 bei 100 s Integrationszeit, was der bis heute besten veröffentlichten Frequenzstabilität entspricht die mit Jod Referenzen erreicht wurde. Mit der erreichten Frequenzstabilität ermöglichen diese Absolutfrequenzreferenzen präzise Lasersysteme für zukünftige Weltraummissionen wie z.B. zur Detektion von Gravitationswellen, zur Vermessung des Gravitationsfelds der Erde oder für Präzisionstest fundamentaler Theorien der Physik. / This thesis deals with the development and investigation of optical absolute frequency references based on rovibronic transitions in molecular iodine. Doppler-free saturation spectroscopy methods are employed to resolve individual transitions of the hyperfine structure with linewidths below 1 MHz in the B-X system of molecular iodine at 532 nm with the second harmonic of Nd:YAG lasers. Electronic feedback control systems are employed for laser frequency stabilization to the line center of the optical transitions with a line splitting of 10^5. With the goal of a space qualified optical absolute frequency reference for future laser-interferometric space missions, two spectroscopy setups were designed and realized in quasi-monolithic, glass-ceramic setups as so called elegant bread board model and engineering model. These iodine references were characterized in detail with respect to their frequency stability and reproducibility and the engineering model was subject to environmental tests, including vibrations and thermal cycling to verify its applicability in future space missions. For the investigation of the frequency instability of these iodine references, a frequency stabilized laser system was realized based on a temperature controlled high Finesse ULE cavity for direct frequency comparisons at 1064 nm. Analysis of the frequency stability of the iodine references revealed exceptionally low fractional frequency instability of 6x10^−15 at 1 s, averaging down to less than 2×10^−15 at 100 s integration time, constituting the best reported stability achieved with iodine references to date. With the demonstrated performance, these absolute frequency references enable precision laser systems required for future space missions that are dedicated to, e.g., the detection of gravitational waves, mapping of the Earth’s gravitational field or precision test of fundamental physics.

Page generated in 0.1437 seconds