41 |
Campos de Gauge e matéria na rede - generalizando o Toric Code / Gauge and matter fields on a lattice: Generalizing Kitaev\'s Toric Code model.Juan Pablo Ibieta Jimenez 14 May 2015 (has links)
Fases topológicas da matéria são caracterizadas por terem uma degenerescên- cia do estado fundamental que depende da topologia da variedade em que o sistema físico é definido, além disso apresentam estados excitados no interior do sistema que são interpretados como sendo quase-partículas com estatística de tipo anyonica. Estes sistemas apresentam também excitações sem gap de energia em sua borda. Fases topologicamente ordenadas distintas não podem ser distinguidas pelo esquema usual de quebra de simetria de Ginzburg-Landau. Nesta dissertação apresentamos como exemplo o modelo mais simples de um sistema com Ordem Topológica, a saber, o Toric Code (TC), introduzido originalmente por A. Kitaev em [1]. O estado fundamental deste modelo ap- resenta degenerescência igual a 4 quando incorporado à superfície de um toro. As excitações elementares são interpretadas como sendo quase-partículas com estatística do tipo anyonica. O TC é um caso especial de uma classe mais geral de models chamados de Quantum Double Models (QDMs), estes modelos podem ser entendidos como sendo uma implementação de Teorias de gauge na rede em (2 + 1) dimensões na formulação Hamiltoniana, em que os graus de liberdade vivem nas arestas da rede e são elementos do grupo de gauge G. Nós generalizamos estes modelos com a inclusão de campos de matéria nos vértices da rede. Também apresentamos uma construção detalhada de tais modelos e mostramos que eles são exatamente solúveis. Em particular, exploramos o modelo que corresponde à escolher o grupo de gauge como sendo o grupo cíclico Z2 e os graus de liberdade de matéria como sendo elementos de um espaço vetorial bidimensional V2. Além disso, mostramos que a degenerescência do estado fundamental não depende da topologia da variedade e obtemos os estados excitados mais elementares deste modelo. / Topological phases of matter are characterized for having a topologically dependent ground state degeneracy, anyonic quasi-particle bulk excitations and gapless edge excitations. Different topologically ordered phases of matter can not be distinguished by te usual Ginzburg-Landau scheme of symmetry breaking. Therefore, a new mathematical framework for the study of such phases is needed. In this dissertation we present the simplest example of a topologically ordered system, namely, the \\Toric Code (TC) introduced by A. Kitaev in [1]. Its ground state is 4-fold degenerate when embedded on the surface of a torus and its elementary excited states are interpreted as quasi-particle anyons. The TC is a particular case of a more general class of lattice models known as Quantum Double Models (QDMs) which can be interpreted as an implementation of (2+1) Lattice Gauge Theories in the Hamiltonian formulation with discrete gauge group G. We generalize these models by the inclusion of matter fields at the vertices of the lattice. We give a detailed construction of such models, we show they are exactly solvable and explore the case when the gauge group is set to be the abelian Z_2 cyclic group and the matter degrees of freedom to be elements of a 2-dimensional vector space V_2. Furthermore, we show that the ground state degeneracy is not topologically dependent and obtain the most elementary excited states.
|
42 |
Variational Quantum Simulations of Lattice Gauge TheoriesStornati, Paolo 17 May 2022 (has links)
Simulationen von Gittereichtheorien spielen eine grundlegende Rolle bei First-Principles-Rechnungen im Kontext der Hochenergiephysik. Diese Arbeit zielt darauf ab, aktuelle Simulationsmethoden für First-Principle-Berechnungen zu verbessern und diese Methoden auf relevante physikalische Modelle anzuwenden. Wir gehen dieses Problem mit drei verschiedenen Ansätzen an: maschinelles Lernen, Quantencomputing und Tensornetzwerke. Im Rahmen des maschinellen Lernens haben wir eine Methode zur Schätzung thermodynamischer Observablen in Gitterfeldtheorien entwickelt. Genauer gesagt verwenden wir tiefe generative Modelle, um den absoluten Wert der freien Energie abzuschätzen. Wir haben die Anwendbarkeit unserer Methode durch die Untersuchung eines Spielzeugmodells demonstriert. Unser Ansatz erzeugt genauere Messungen im Vergleich mit dem Standard-Markov-Ketten-Monte-Carlo-Verfahren, wenn wir einen Phasenübergangspunkt überqueren. Im Kontext des Quantencomputings ist es unser Ziel, die aktuellen Algorithmen für Quantensimulationen zu verbessern. In dieser Arbeit haben wir uns mit zwei Themen moderner Quantencomputer befasst: der Quantenrauschunterdrückung und dem Design guter parametrischer Quantenschaltkreise. Wir haben eine Minderungsroutine zum Auslesen von Bit-Flip-Fehlern entwickelt, die Quantensimulationen drastisch verbessern kann. Wir haben auch eine dimensionale Aussagekraftanalyse entwickelt, die überflüssige Parameter in parametrischen Quantenschaltkreisen identifizieren kann. Darüber hinaus zeigen wir, wie man Expressivitätsanalysen mit Quantenhardware effizient umsetzen kann. Im Kontext des Tensornetzwerks haben wir ein Quantenbindungsmodell U(1) und 2+1-Dimensionen in einer Leitergeometrie mit DMRG untersucht. Unser Ziel ist es, die Eigenschaften des Grundzustands des Modells in einem endlichen chemischen Potential zu analysieren. Wir haben unterschiedliche Windungszahlsektoren beobachtet, als wir chemisches Potential in das System eingebracht haben. / Simulations of lattice gauge theories play a fundamental role in first principles calculations in the context of high energy physics. This thesis aims to improve state-of-the-art simulation methods for first-principle calculations and apply those methods to relevant physical models. We address this problem using three different approaches: machine learning, quantum computing, and tensor networks. In the context of machine learning, we have developed a method to estimate thermodynamic observables in lattice field theories. More precisely, we use deep generative models to estimate the absolute value of the free energy. We have demonstrated the applicability of our method by studying a toy model. Our approach produces more precise measurements in comparison with the standard Markov chain Monte Carlo method when we cross a phase transition point. In the context of quantum computing, our goal is to improve the current algorithms for quantum simulations. In this thesis, we have addressed two issues on modern quantum computers: the quantum noise mitigation and the design of good parametric quantum circuits. We have developed a mitigation routine ffor read-out bit-flip errors that can drastically improve quantum simulations. We have also developed a dimensional expressiveness analysis that can identify superfluous parameters in parametric quantum circuits. In addition, we show how to implement expressivity analysis using quantum hardware efficiently. In the context of the tensor network, we have studied a quantum bond model U(1) and 2+1 dimensions in a ladder geometry with DMRG. Our goal is to analyze the properties of the ground state of the model in a finite chemical potential. We have observed different winding number sectors when we have introduced chemical potential in the system.
|
43 |
Limites topológicos do modelo Gauge-Higgs com simetria Z(2) em uma rede bidimensional / Topological Limits in the Gauge-Higgs Model with Z(2) Symmetry in a Bidimensional LatticeAza, Nelson Javier Buitrago 04 November 2013 (has links)
Nesta dissertação estudamos as teorias de gauge acoplada com campos de matéria em variedades bidimensionais. Para isso, descrevemos primeiro um formalismo em duas e três dimensões o qual é baseado na ideia de Kuperberg de definir um invariante topológico em três dimensões usando álgebras de Hopf e diagramas de Heegaard. O uso do formalismo é útil para este trabalho pois é fácil a identificação de limites topológicos sem resolver o modelo. Também escrevemos o modelo de gauge com campos de matéria usando uma fixação de gauge chamada de gauge unitário. Trabalhamos com o grupo abeliano $\\mathbb_$ e explicamos com detalhe o caso $\\mathbb_$. Calculamos as funções de partição e loops de Wilson para este grupo nos diferentes limites topológicos. Mostramos que existem casos nos quais os resultados dependem da triangulação mas de maneira trivial, estes casos foram chamados de quase-topológicos. / In this thesis we study gauge theories coupled with matter fields in two-dimensional manifolds. In order to proceed we first describe a formalism in two and three dimensions which is based on the idea of Kuperberg of defining a topological invariant in three dimensions using Hopf algebras and Heegaard diagrams. The use of this formalism is useful here because it is easy to identify topological limits without solving the model. Furthermore, we write the gauge model with matter fields choosing the unitary gauge. We work with abelians groups Z(n) and explain the Z(2) case in detail. We calculate partition functions and Wilson loops for this group in the different topological limits. We show that, there were cases in which the results depended on the triangulation but in a trivial way, these cases are called quasi-topological.
|
44 |
Limites topológicos do modelo Gauge-Higgs com simetria Z(2) em uma rede bidimensional / Topological Limits in the Gauge-Higgs Model with Z(2) Symmetry in a Bidimensional LatticeNelson Javier Buitrago Aza 04 November 2013 (has links)
Nesta dissertação estudamos as teorias de gauge acoplada com campos de matéria em variedades bidimensionais. Para isso, descrevemos primeiro um formalismo em duas e três dimensões o qual é baseado na ideia de Kuperberg de definir um invariante topológico em três dimensões usando álgebras de Hopf e diagramas de Heegaard. O uso do formalismo é útil para este trabalho pois é fácil a identificação de limites topológicos sem resolver o modelo. Também escrevemos o modelo de gauge com campos de matéria usando uma fixação de gauge chamada de gauge unitário. Trabalhamos com o grupo abeliano $\\mathbb_$ e explicamos com detalhe o caso $\\mathbb_$. Calculamos as funções de partição e loops de Wilson para este grupo nos diferentes limites topológicos. Mostramos que existem casos nos quais os resultados dependem da triangulação mas de maneira trivial, estes casos foram chamados de quase-topológicos. / In this thesis we study gauge theories coupled with matter fields in two-dimensional manifolds. In order to proceed we first describe a formalism in two and three dimensions which is based on the idea of Kuperberg of defining a topological invariant in three dimensions using Hopf algebras and Heegaard diagrams. The use of this formalism is useful here because it is easy to identify topological limits without solving the model. Furthermore, we write the gauge model with matter fields choosing the unitary gauge. We work with abelians groups Z(n) and explain the Z(2) case in detail. We calculate partition functions and Wilson loops for this group in the different topological limits. We show that, there were cases in which the results depended on the triangulation but in a trivial way, these cases are called quasi-topological.
|
45 |
Teorias de campos discretas e modelos topológicos / Discrete field theories and topological modelsFerreira, Miguel Jorge Bernabé 02 March 2012 (has links)
Neste trabalho estudamos as teorias de gauge puras (sem campo de matéria) na rede em três dimensões. Em especial, estudamos a subclasse das teorias topológicas. A maneira como denimos e tratamos as teorias de gauge e diferente, mas equivalente, à forma usual apresentada em [2, 3]. Definimos estas teorias via o formalismo de Kuperberg, que é um formalismo puramente matemático de um invariante topológico de variedades tridimensionais. Este formalismo, embora bastante abstrato, pode ser adaptado para descrever as classes de modelos das teorias de gauge na rede, e traz várias vantagens, pois possibilita que tratemos de teorias topológicas e não topológicas, além da fácil identicação dos limites topológicos da função de partição. Estudamos também a classe das teorias chamadas quase topológicas, que podem ser pensadas como deformações de teorias topológicas. Em particular, consideramos teorias de gauge com grupo de gauge Z2, que é o grupo de gauge mais simples possível com dinâmica não trivial. Dentro das teorias de gauge, identicamos as classes de modelos que são quase topológicos, além de outras classes nas quais a função de partição pode ser trivialmente calculada. A função de partição foi calculada explicitamente no caso quase topológico em duas situações: sobre a esfera tridimensional S3 e sobre o toroS1x S1x S1x, que representa uma rede com condições periódicas de contorno. Dois modelos físicos de teorias de gauge, ainda com grupo de gauge Z2, foram estudados: o modelo com ação de Wilson SW = Pfaces [Tr(g) - 1] e o modelo com ação spin-gauge SSG = Pfaces Tr(g). No limite de baixa temperatura ambos os modelos mostram-se ser topológicos, enquanto que no limite de alta temperatura mostraram-se ser trivialmente calculáveis. / In this work we studied the class of models of pure lattice gauge theories (without matter elds) in three dimensions. Especially, we studied the subclass of topological theories. Lattice gauge theories were dened in an unusual way, unlike the description shown in [2, 3]. We dened lattice gauge theories via the Kuperberg\'s formalism [4], which is a mathematical model for a topological invariant of 3-manifolds. Such formalism, although completely abstract, can describe the class of models of lattice gauge theories because it can describe both topological and non topological theories, besides it provides an easy identication of the partition function topological limits. We also studied the class of theories called quasi topological, which can be thought as deformations of topological theories. As an example, we consider Z2 as gauge group, because it is the simplest group that does not imply trivial dynamics. Inside this class of models we identify the subclasses of quasi topological theories and also other classes in which the partition function can be trivially computed. The partition function was explicitly computed in two situations: on the 3-sphere S3 and on the 3-manifold S1 x S1 x S1 that represents periodic boundary conditions. Two physical models were studied: the model with Wilson\'s action SW(conf)1 and the model with spin-gauge action SSG(conf)2. In the low temperature limit both models shown to be topological and in the high temperature limit they could be trivially computed.
|
46 |
QCD na rede: um estudo não-perturbativo no calibre de Feynman / Lattice QCD: a nonperturbative study in the Feynman GaugeSantos, Elton Márcio da Silva 16 August 2011 (has links)
O comportamento infra-vermelho dos propagadores de glúons e de ghosts é de fundamental importância para o entendimento do limite de baixas energias da cromodinâmica quântica (QCD), especialmente no que diz respeito ao problema do confinamento de quarks e de glúons. O objetivo desta tese é implementar um novo método para o estudo do propagador de glúons no calibre covariante linear para a QCD na rede. Em particular, analisamos em detalhe a nova implementação proposta e estudamos os algoritmos para fixação numérica deste calibre. Note que a fixação numérica da condição de calibre de Feynman apresenta vários problemas não encontrados nos casos de Landau e de Coulomb, o que impossibilitou por longo tempo o seu estudo adequado. De fato, a definição considerada inicialmente, por Giusti et. al., é de difícil implementação numérica e introduz condições espúrias na fixação de calibre. Como consequência, os únicos estudos efetuados anteriormente referem-se aos propagadores de glúons e de quarks em redes relativamente pequenas, não permitindo uma análise cuidadosa do limite infra-vemelho da QCD neste calibre. A obtenção de novas soluções para a implementação do calibre de Feynman na rede é portanto de grande importância para viabilizar estudos numéricos mais sistemáticos dos propagadores e dos vértices neste calibre e, em geral, no calibre covariante linear. / The infrared behavior of gluon and ghost propagators is of fundamental importance for the understanding of the low-energy limit of quantum chromodynamics (QCD), especially with respect to the problem of the confinement of quarks and gluons. The goal of this thesis is to implement a new method to study the gluon propagator in the linear covariant gauge in lattice QCD. In particular, we analyze in detail the newly proposed implementation and study the algorithms for numerically fixing this gauge. Note that the numerical fixing of the Feynman gauge condition poses several problems that are not present in the Landau and Coulomb cases, which prevented it from being properly studied for a long time. In fact, the definition considered initially, by Giusti et. al., is of difficult numerical implementation and introduces spurious conditions into the gauge fixing. As a consequence, the only studies carried out previously involved gluon and quark propagators on relatively small lattices, hindering a careful analysis of the infrared limit of QCD in this gauge. Obtaining new solutions for the implementation of the Feynman gauge on the lattice is therefore of great importance to enable more systematic numerical studies of propagators and vertices in this gauge and, in general, in the linear covariant gauge.
|
47 |
Teorias de campos discretas e modelos topológicos / Discrete field theories and topological modelsMiguel Jorge Bernabé Ferreira 02 March 2012 (has links)
Neste trabalho estudamos as teorias de gauge puras (sem campo de matéria) na rede em três dimensões. Em especial, estudamos a subclasse das teorias topológicas. A maneira como denimos e tratamos as teorias de gauge e diferente, mas equivalente, à forma usual apresentada em [2, 3]. Definimos estas teorias via o formalismo de Kuperberg, que é um formalismo puramente matemático de um invariante topológico de variedades tridimensionais. Este formalismo, embora bastante abstrato, pode ser adaptado para descrever as classes de modelos das teorias de gauge na rede, e traz várias vantagens, pois possibilita que tratemos de teorias topológicas e não topológicas, além da fácil identicação dos limites topológicos da função de partição. Estudamos também a classe das teorias chamadas quase topológicas, que podem ser pensadas como deformações de teorias topológicas. Em particular, consideramos teorias de gauge com grupo de gauge Z2, que é o grupo de gauge mais simples possível com dinâmica não trivial. Dentro das teorias de gauge, identicamos as classes de modelos que são quase topológicos, além de outras classes nas quais a função de partição pode ser trivialmente calculada. A função de partição foi calculada explicitamente no caso quase topológico em duas situações: sobre a esfera tridimensional S3 e sobre o toroS1x S1x S1x, que representa uma rede com condições periódicas de contorno. Dois modelos físicos de teorias de gauge, ainda com grupo de gauge Z2, foram estudados: o modelo com ação de Wilson SW = Pfaces [Tr(g) - 1] e o modelo com ação spin-gauge SSG = Pfaces Tr(g). No limite de baixa temperatura ambos os modelos mostram-se ser topológicos, enquanto que no limite de alta temperatura mostraram-se ser trivialmente calculáveis. / In this work we studied the class of models of pure lattice gauge theories (without matter elds) in three dimensions. Especially, we studied the subclass of topological theories. Lattice gauge theories were dened in an unusual way, unlike the description shown in [2, 3]. We dened lattice gauge theories via the Kuperberg\'s formalism [4], which is a mathematical model for a topological invariant of 3-manifolds. Such formalism, although completely abstract, can describe the class of models of lattice gauge theories because it can describe both topological and non topological theories, besides it provides an easy identication of the partition function topological limits. We also studied the class of theories called quasi topological, which can be thought as deformations of topological theories. As an example, we consider Z2 as gauge group, because it is the simplest group that does not imply trivial dynamics. Inside this class of models we identify the subclasses of quasi topological theories and also other classes in which the partition function can be trivially computed. The partition function was explicitly computed in two situations: on the 3-sphere S3 and on the 3-manifold S1 x S1 x S1 that represents periodic boundary conditions. Two physical models were studied: the model with Wilson\'s action SW(conf)1 and the model with spin-gauge action SSG(conf)2. In the low temperature limit both models shown to be topological and in the high temperature limit they could be trivially computed.
|
48 |
QCD na rede: um estudo não-perturbativo no calibre de Feynman / Lattice QCD: a nonperturbative study in the Feynman GaugeElton Márcio da Silva Santos 16 August 2011 (has links)
O comportamento infra-vermelho dos propagadores de glúons e de ghosts é de fundamental importância para o entendimento do limite de baixas energias da cromodinâmica quântica (QCD), especialmente no que diz respeito ao problema do confinamento de quarks e de glúons. O objetivo desta tese é implementar um novo método para o estudo do propagador de glúons no calibre covariante linear para a QCD na rede. Em particular, analisamos em detalhe a nova implementação proposta e estudamos os algoritmos para fixação numérica deste calibre. Note que a fixação numérica da condição de calibre de Feynman apresenta vários problemas não encontrados nos casos de Landau e de Coulomb, o que impossibilitou por longo tempo o seu estudo adequado. De fato, a definição considerada inicialmente, por Giusti et. al., é de difícil implementação numérica e introduz condições espúrias na fixação de calibre. Como consequência, os únicos estudos efetuados anteriormente referem-se aos propagadores de glúons e de quarks em redes relativamente pequenas, não permitindo uma análise cuidadosa do limite infra-vemelho da QCD neste calibre. A obtenção de novas soluções para a implementação do calibre de Feynman na rede é portanto de grande importância para viabilizar estudos numéricos mais sistemáticos dos propagadores e dos vértices neste calibre e, em geral, no calibre covariante linear. / The infrared behavior of gluon and ghost propagators is of fundamental importance for the understanding of the low-energy limit of quantum chromodynamics (QCD), especially with respect to the problem of the confinement of quarks and gluons. The goal of this thesis is to implement a new method to study the gluon propagator in the linear covariant gauge in lattice QCD. In particular, we analyze in detail the newly proposed implementation and study the algorithms for numerically fixing this gauge. Note that the numerical fixing of the Feynman gauge condition poses several problems that are not present in the Landau and Coulomb cases, which prevented it from being properly studied for a long time. In fact, the definition considered initially, by Giusti et. al., is of difficult numerical implementation and introduces spurious conditions into the gauge fixing. As a consequence, the only studies carried out previously involved gluon and quark propagators on relatively small lattices, hindering a careful analysis of the infrared limit of QCD in this gauge. Obtaining new solutions for the implementation of the Feynman gauge on the lattice is therefore of great importance to enable more systematic numerical studies of propagators and vertices in this gauge and, in general, in the linear covariant gauge.
|
49 |
Discrete-time quantum walks and gauge theories / Marches quantiques à temps discret et théories de jaugeArnault, Pablo 18 September 2017 (has links)
Un ordinateur quantique (OQ), i.e. utilisant les ressources de la physique Q, superposition et intrication, pourrait fournir un gain exponentiel de temps de calcul. Une simulation utilisant ces ressources est appelée simulation Q (SQ). L’avantage des SQs sur les simulations classiques est bien établi au niveau théorique, i.e. software. Leur avantage pratique requiert un hardware Q. L’OQ, sous-entendu universel (cf. plus bas), n’a pas encore vu le jour, mais les efforts en ce sens sont croissants et variés. Aussi la SQ a-t-elle déjà été illustrée par de nombreuses expériences de principe, grâce à des calculateurs ou simulateurs Qs de taille réduite. Les marches Qs (MQs) sont des schémas de SQ particulièrement étudiés, étant des briques élémentaires pour concevoir n’importe quel algorithme Q, i.e. pour le calcul Q universel. La présente thèse est un pas de plus vers une simulation des théories Qs des champs basée sur les MQs à temps discret (MQTD). En effet, il est montré, dans certains cas, comment les MQTD peuvent simuler, au continu, l'action d'un champ de jauge Yang-Mills sur de la matière fermionique, et la rétroaction de cette-dernière sur la dynamique du champ de jauge. Les schémas proposés préservent l’invariance de jauge au niveau de la grille d’espace-temps, i.e. pas seulement au continu. Il est proposé (i) des équations de Maxwell sur grille, compatibles avec la conservation du courant sur la grille, et (ii) une courbure non-abélienne définie sur la grille. De plus, il est montré comment cette matière fermionique à base de MQTD peut être couplée à des champs gravitationnels relativistes du continu, i.e. des espaces-temps courbes, en dimension 1+2. / A quantum (Q) computer (QC), i.e. utilizing the resources of Q physics, superposition of states and entanglement, could fournish an exponential gain in computing time. A simulation using such resources is called a Q simulation (QS). The advantage of QSs over classical ones is well established at the theoretical, i.e. software level. Their practical benefit requires their implementation on a Q hardware. The QC, i.e. the universal one (see below), has not seen the light of day yet, but the efforts in this direction are both growing and diverse. Also, QS has already been illustrated by numerous experimental proofs of principle, thanks too small-size and specific-task Q computers or simulators. Q walks (QWs) are particularly-studied QS schemes, being elementary bricks to conceive any Q algorithm, i.e. to achieve so-called universal Q computation. The present thesis is a step more towards a simulation of Q field theories based on discrete-time QWs (DTQWs). Indeed, it is shown, in certain cases, how DTQWs can simulate, in the continuum, the action of Yang-Mills gauge fields on fermionic matter, and the retroaction of the latter on the gauge-field dynamics. The suggested schemes preserve gauge invariance on the spacetime lattice, i.e. not only in the continuum. In the (1+2)D Abelian case, consistent lattice equivalents to both Maxwell’s equations and the current conservation are suggested. In the (1+1)D non-Abelian case, a lattice version of the non-Abelian field strength is suggested. Moreover, it is shown how this fermionic matter based on DTQWs can be coupled to relativistic gravitational fields of the continuum, i.e. to curved spacetimes, in several spatial dimensions.
|
50 |
Nonequilibrium dynamics in lattice gauge theories: disorder-free localization and string breakingVerdel Aranda, Roberto 01 March 2022 (has links)
Lattice gauge theories are crucial for our understanding of many physical phenomena ranging from fundamental particle interactions in high-energy physics to frustration and topological order in condensed matter. Hence, many equilibrium aspects of these theories have been studied intensively over the past decades. Recent developments, however, have shown that the study of nonequilibrium dynamics in lattice gauge theories also provides a very fertile ground for interesting phenomena.
This thesis is devoted to the study of two particular dynamical processes in lattice gauge theories and related quantum spin models. First, we show that an interacting two-dimensional lattice gauge theory can exhibit disorder-free localization: a mechanism for ergodicity breaking due to local constraints imposed by gauge invariance. This result is particularly remarkable as the stability in two dimensions of the more conventional (disorder-induced) many-body localization is still debated. Concretely, we show this type of nonergodic behavior in the quantum link model. Our central result is based on a bound on the localization-delocalization transition, which is established through a concomitant classical percolation problem. Further, we develop a numerical method dubbed “variational classical networks”, to study the quantum dynamics in this system. This technique provides an efficient and perturbatively controlled representation of the wave function in terms of networks of classical spins akin to artificial neural networks. This allows us to identify distinguishing transport properties in the localized and ergodic phases, respectively.
In the second problem, we study the dynamics of string breaking, a key process in confining gauge theories, where a string connecting two charges decays due to the creation of new particle-antiparticle pairs. Our main result here is that string breaking can also be observed in quantum Ising chains, in which domain walls get confined either by a symmetry-breaking field or by long-range interactions. We identify, in general, two distinct stages in this process. While at the beginning the initial charges remain stable, the string can exhibit complex dynamics with strong quantum correlations. We provide an effective description of this string motion, and find that it can be highly constrained. In the second stage, the string finally breaks at a timescale that depends sensitively on the initial separation of domain walls. We observe that the second stage can be significantly delayed as a consequence of the dynamical constraints appearing in the first stage. Finally, we discuss the generalization of our results to low-dimensional confining gauge theories.
As a general aspect of this work, we discuss how the phenomena studied here could be realized experimentally with current and future technologies in quantum simulation. Furthermore, the methods developed in this thesis can also be applied to other lattice gauge theories and constrained quantum many-body models, not only to address purely theoretical questions but also to provide a theoretical description of experiments in quantum simulators. / Gittereichtheorien sind ein wichtiger Bestandteil im Verständnis vieler physikalischer Phänomene und Grundlage verschiedener Theorien, welche sich von der elementaren Wechselwirkungen in der Hochenergiephysik, Frustration in Spinmodellen bis hin zu topologischer Ordnung in der Festkörperphysik erstrecken. Die Eigenschaften von Eichtheorien im Gleichgewicht waren in den letzten Jahrzehnten ein zentraler Punkt der Forschung. Obwohl sich Untersuchungen der Dynamik jenseits des Gleichgewichs als eine große Herausfordung dargestellt haben, haben kürzliche Erkenntnisse gezeigt, dass die Dynamik in Gittereichtheorien überraschende und interessante Entdeckungen bereithält.
Diese Dissertation behandelt zwei zentrale dynamische Prozesse in Gittereichtheorien und verwandten Spinmodellen. Einerseits soll die Dynamik von zweidimensionalen und wechselwirkenden Gittereichtheorien untersucht werden im Falle des sogenan- nten Quanten-Link-Modells untersucht werden. Entgegen der Ergodenhypothese zeigt das System Lokalisierung ohne Unordnung aufgrund lokaler Zwangsbedingungen durch Eininvarianz. Dieses Ergebnis ist insofern bemerkenswert, als die gewöhnliche, durch Unordnung induzierte, Vielteilchenlokalisierung in zwei Dimensionen umstritten ist. Als ein Hauptergebnis finden wir einen Übergang zwischen einer lokalisierten und ergodischen Phase, dessen Existenz durch ein zugehöriges klassisches Perkolationsproblem gezeigt werden konnte. Die quantenmechanischen Transporteigenschaften, elementar verschieden in der lokalisierten und ergodischen Phase, werden charakterisiert und untersucht. Die Lösung der quantenmechanischen Zeitentwicklung wird durch eine methodische Weiterentwicklung der sogenannten „variationellen klassischen Netzwerke“ erreicht Diese Methode stellt eine perturbative, aber kontrollierte Repräsentation von zeitentwickelten quantenmechanischen Wellenfunktionen dar in Form von Netzwerken klassischer Spins, ähnlich wie bei einem künstlichen neuronalen Netz.
Im zweiten Teil untersuchen wir die Dynamik eines Schlüsselprozesses in Eichtheorien mit Confinement, welcher als „String-Breaking“ bezeichnet wird In diesem Prozess zerfällt der der Strang, der zwei elementare Ladungen verbindet, durch die Bildung neuer Teilchen-Antiteilchen-Paare. Ein Hauptresultat dieser Arbeit ist die Beobachtung dieses dynamischen Phänomens in Quantum-Ising-Ketten und damit in Systemen ohne Eichinvarianz. Das Confinement entsteht dabei zwischen Domänenwänden entweder durch eine langreichweitige Wechselwirkung zwischen den beteiligten Spins oder durch symmetriebrechende Magnetfelder. Es wird gezeigt, dass während des „String-breaking“ Prozesses das Modell zwei Phasen durchläuft: Während zu Beginn die Anfangsladungen stabil bleiben, weist der Strang eine komplexe Dynamik mit starken Quantenkorrelationen auf. Für diese erste Phase wird eine effektive Beschreibung eingeführt, um die verschiedenen Aspekte zu analysieren und zu verstehen. Die Zeitskalen zur Destabilisierung des Strangs innerhalb einer zweiten Phase zeigen eine starke Abhängigkeit von der anfänglichen Trennung der Domänenwände. Es wird gezeigt, dass die zweite Phase als Konsequenz der dynamischen Beschränkungen der ersten Phase signifikant verzögert werden kann. Diese Resultate können in niedrigdimensionalen Eichtheorien verallgemeinert werden.
Weiterführend sollen die Ergebnisse als Grundlage einer experimentellen Realisierung durch Quantensimulationen dienen. Die entwickelten Methoden können auf andere Eichtheorien und verwandten Vielteilchenmodellen angewendet werden und bieten eine Plattform für weitere Ansätze.
|
Page generated in 0.0388 seconds