• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 14
  • 11
  • 7
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 119
  • 64
  • 26
  • 24
  • 19
  • 15
  • 13
  • 13
  • 12
  • 12
  • 12
  • 11
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Diffusion Maximum Or Levitation Effect In Porous Solids, Dense Fluids And Polar Liquids And Development Of Hydrocarbon-Zeolite Potential And Related Aspects

Ghorai, Pradip Kumar 08 1900 (has links) (PDF)
No description available.
102

Návrh elektrodynamického magnetického ložiska / Electrodynamic magnetic bearing design

Pavluš, Ondřej January 2021 (has links)
High speed applications demands with a need for lower energy consumption lead to designing new types of bearings. In the last decades magnetic bearing, which would be able to obtain passive stable levitation using regular materials at room temperature, has been searched. This has lead to development of electrodynamic bearing based on eddy currents principle. Currently the electrodynamic bearings are still not fully explored and further research is needed. The aim of the work is to describe the theory about modern magnetic bearing, analysis and design of electrodynamic bearing according to given parameters. The finite element method is used for further analysis and evaluate behaviour of its properties.
103

Návrh hybridního magnetického ložiska / Hybrid magnetic bearing design

Šindelář, Petr January 2021 (has links)
The thesis deals with the design of a hybrid magnetic bearing. This is an extension of the issue of common bearings in high-speed motors. The work is divided into three parts. A general theory of magnetic bearings is described in the first part. The second part deals with the mathematical description of the bearing. A proposal of specific hybrid magnetic bearing is described in the third part. The bearing for the motor was already designed. It is a 45000rpm motor with a power output of 12 kW. This thesis aims to create a design of hybrid magnetic bearing with magnets to create a permanent magnetic field and coils to regulate forces to stabilize the rotor and limit vibrations. The practical design includes mathematical calculation in Matlab and computer simulation based on the finite element method in ANSYS Maxwell.
104

Manipulation sans contact pour le micro-assemblage: lévitation acoustique / Contactless handling for micro-assembly: acoustic levitation

Vandaele, Vincent 21 February 2008 (has links)
Micro-assembly is of crucial importance in industry nowadays. Nevertheless, currently applied processes require improvements. Indeed, when dealing with the assembly of submillimetric components, usually neglected surface forces disturb the manipulation task. They are responsible for the component sticking to the gripper, because of downscaling laws. A promising strategy to tackle adhesion consists in working without contact. The present dissertation is focused on contactless handling with acoustic levitation.<p>The advantages of contactless handling, the physical principles suitable for levitation and their applications are detailed. The opportunity for new handling strategies are shown. Acoustic levitation appears as the most fitted principle for micro-assembly. The elements to model acoustic forces are analysed and performances of existing modellings are assessed. A general numerical model of acoustic forces is implemented and theoretically validated with literature benchmarks. A fully automated modular levitator prototype is designed and used to experimentally validate the implemented numerical model. Specific instrumentations and protocols are developed for the acoustic force measurements.<p>The numerical model is finally applied to the real levitator. Modelling results are used to support experimental observations: the optimisation of the levitator resonance, the influence of the reflector shape, the dynamical study of the component oscillations, the stability with lateral centring forces and rotation torques, the component insertion and extraction from the levitator, the effect of pressure harmonics on the acoustic forces, and the manipulation of non spherical components. Acoustic forces are experimentally measured and a very good agreement with the modellings is obtained. Consequently, the implemented simulation tool can successfully be applied to a complex manipulation task with a component of any shape in a real levitator. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
105

Computational Design of a Vertical Wind Tunnel for Stable Droplet Levitation

Nawaz, Muneebullah 10 May 2023 (has links)
The efficient study of liquid droplets ranging from micrometers to a few centimeters by levitation is usually hindered by conventional design limitations. This is due to continuous droplet deformation in the test section. This research discusses the development of a robust design methodology for large droplet-stabilization (d > Capillary Number (Ca)) vertical wind tunnels. A modeling and simulation design environment has been developed that involves component sizing and integration at a central ANSYS-Fluent platform, followed by design optimization. The work inculcates numerical analysis of guide vanes to minimize the viscous losses and, subsequently, the wind tunnel dimensions. The process is followed by the design of honeycomb and wire screens and their analyses for a given geometry. A multi-variable design optimization problem has been optimized with response surface approximations. Statistical modeling of the expensive functions obtained from the solution of Navier-stokes equations has been accomplished in order to deal with non-linear and discontinuous behavior. Numerical optimization of the meta-model can help to find the most feasible wind tunnel design with computational efficiency. A non-conventional design with varying test area cross-sections has been introduced to investigate the droplet stability in constantly changing velocity profiles. Longitudinal as well as lateral velocity variations in the test section, creating velocity buckets with minimum turbulence intensity, has been introduced and analyzed using novel concept designs. The research highlights a systematic design methodology and an alternate configuration for liquid droplet wind tunnels while focusing on stable droplet levitation.
106

Laser Levitation of Solid Particles for Combustion and Gasification Applications

Lewis, Skigh E. 20 March 2009 (has links) (PDF)
This dissertation details theoretical and experimental work in the development of a novel combustion diagnostic: laser levitation of solid particles. Theoretical analyses of the forces involved in the suspension of solid particles in a laser beam provide a comprehensive description of the levitation mechanism. Experimental work provides extensive observations and data that describe each of the forces involved, including results from detailed models. Theoretical models establish that a free-convective drag force, light scattering, photon momentum, and other minor forces contribute to the trapping mechanism. The theory quantitatively predicts particle temperature and magnitudes of each of the forces involved. Experimental measurements contain significant scatter, primarily due to the difficulty of making measurements on these very small particles. However, the best estimate trends of the measurements agree well with the predicted behavior despite the scatter. Computational fluid dynamics (CFD) predictions of the free-convective drag force qualitatively agree with published experimental values. The technique represents a tool for studying combustion and gasification of single, micron-sized, solid particles. Biomass fuels and coal (among many others) provide experimental demonstration of particle suspension. The system suspends particles near the focal point of a visible-light laser, allowing continuous monitoring of their size, shape, temperature, and possibly mass. The Particle Levitation Model (PLM) establishes the trapping mechanism using data from three submodels: an energy balance, a drag force model, and a photon force model. Biomass fuels provide experimental demonstrations of particle levitation under a variety of conditions that illustrate each of the primary levitation mechanisms. Several different trapping techniques provide single-particle data in literature, including optical tweezers and electrodynamic levitation. However, optical levitation of opaque particles is a relatively new technique and, although less-well understood, provides a potentially powerful novel diagnostic technique for single-particle combustion investigations. The diagnostic consists of a solid-state laser, a high-speed color camera, an infrared camera, and a variety of optics. All experimental data are obtained optically, including particle dynamics, size and shape, and particle temperature. Thus, this technique enables the in situ investigation of micron-sized, solid particles under conditions similar to commercial combustion and gasification processes.
107

Agglomeration, Evaporation And Morphological Changes In Droplets With Nanosilica And Nanoalumina Suspensions In An Acoustic Field

Tijerino, Erick 01 January 2012 (has links)
Acoustic levitation permits the study of droplet dynamics without the effects of surface interactions present in other techniques such as pendant droplet methods. Despite the complexities of the interactions of the acoustic field with the suspended droplet, acoustic levitation provides distinct advantages of controlling morphology of droplets with nanosuspensions post precipitation. Droplet morphology is controlled by vaporization, deformation and agglomeration of nanoparticles, and therefore their respective timescales are important to control the final shape. The balance of forces acting on the droplet, such as the acoustic pressure and surface tension, determine the geometry of the levitated droplet. Thus, the morphology of the resultant structure can be controlled by manipulating the amplitude of the levitator and the fluid properties of the precursor nanosuspensions. The interface area in colloidal nanosuspensions is very large even at low particle concentrations. The effects of the presence of this interface have large influence in the properties of the solution even at low concentrations. This thesis focuses on the dynamics of particle agglomeration in acoustically levitated evaporating nanofluid droplets leading to shell structure formation. These experiments were performed by suspending 500µm droplets in a pressure node of a standing acoustic wave in a levitator and heating them using a carbon dioxide laser. These radiatively heated functional droplets exhibit three distinct stages, namely, pure evaporation, agglomeration and structure formation. The temporal history of the droplet surface temperature shows two inflection points. Morphology and final precipitation structures of levitated droplets are due to competing mechanisms of particle agglomeration, evaporation and shape deformation. This thesis provides iv a detailed analysis for each process and proposes two important timescales for evaporation and agglomeration that determine the final diameter of the structure formed. It is seen that both agglomeration and evaporation timescales are similar functions of acoustic amplitude (sound pressure level), droplet size, viscosity and density. However it is shown that while the agglomeration timescale decreases with initial particle concentration, the evaporation timescale shows the opposite trend. The final normalized diameter hence can be shown to be dependent solely on the ratio of agglomeration to evaporation timescales for all concentrations and acoustic amplitudes. The experiments were conducted with 10nm silica, 20nm silica, 20nm alumina and 50nm alumina solutions. The structures exhibit various aspect ratios (bowls, rings, spheroids) which depend on the ratio of the deformation timescale (tdef) and the agglomeration timescale (tg). For tdef
108

Fully Levitated Rotor Magnetically Suspended by Two Pole-Pair Separated Conical Motors

Kascak, Peter Eugene 27 July 2010 (has links)
No description available.
109

Design and Fabrication of Transparent Ultrasonic Transducers for Optoelectronic Applications

Warren, Stephen Colby 08 December 2023 (has links) (PDF)
Acoustic levitation utilizes general principles of ultrasonics to trap particles in midair without external support. This is done by creating an array of ultrasonic transducers to propagate sound waves to a focused point in space. In order to optimize the particle trap it is necessary to design transducers that can produce enough sound to create pressure pockets. In this work I examine the fundamental principles of acoustics by testing the sound pressure levels (SPL) of a known transducer in both air and water mediums. A comparison between domed and bimorphed transducers are also examined. Experimentation was performed on the feasibility of implementing a domed transducer array. Methods are described to fabricate a piezoelectric thin film made from poly(vinylidene difluoride) (PVDF). These films were analyzed for β-phase concentration, as well as transmission, resolution, and contrast. An additional study into the use of Indium Tin Oxide (ITO) as a conductive dielectric layer of a transducer is also examined. These studies are designed to test if spin coating can provide the necessary conditions to fabricate transparent, piezoelectric PVDF films. Included are the research and experiments that I conducted to determine the transparency of PVDF. I performed analysis on the transmission, absorption, and scatter of fabricated PVDF films. My results show that it is possible to fabricate PVDF films that are both transparent and piezoelectric.
110

Magneticky levitující vozítko / Magnetically levitated cart

Jančuš, Rastislav January 2014 (has links)
Diploma thesis is summarizing common theoretical knowledge about permanent magnets and electromagnetism. Represent DC electromagnet as basic part for levitated high-speed train. Work is analyzing basics under cart and principles used for magnetic levitation in high-speed transportation. Second practice part including projecting construction levitated cart and analyzing acquired mathematical model of electromagnet. Work is analyzing process for projecting control for side electromagnets and realization real model, including tuning computer communication with states of sensors and comparison real model with model simulated in program Simulink.

Page generated in 0.1099 seconds