• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 237
  • 63
  • 52
  • 34
  • 34
  • 6
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 532
  • 532
  • 136
  • 75
  • 58
  • 53
  • 52
  • 49
  • 45
  • 45
  • 39
  • 36
  • 35
  • 33
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
501

Complex photonic structures in nature : from order to disorder

Onelli, Olimpia Domitilla January 2018 (has links)
Structural colours arise from the interaction of visible light with nano-structured materials. The occurrence of such structures in nature has been known for over a century, but it is only in the last few decades that the study of natural photonic structures has fully matured due to the advances in imagining techniques and computational modelling. Even though a plethora of different colour-producing architectures in a variety of species has been investigated, a few significant questions are still open: how do these structures develop in living organisms? Does disorder play a functional role in biological photonics? If so, is it possible to say that the optical response of natural disordered photonics has been optimised under evolutionary pressure? And, finally, can we exploit the well-adapted photonic design principles that we observe in Nature to fabricate functional materials with optimised scattering response? In my thesis I try to answer the questions above: I microscopically investigate $\textit{in vivo}$ the growth of a cuticular multilayer, one of the most common colour-producing strategies in nature, in the green beetles $\textit{Gastrophysa viridula}$ showing how the interplay between different materials varies during the various life stages of the beetles; I further investigate two types of disordered photonic structures and their biological role, the random array of spherical air inclusions in the eggshells of the honeyguide $\textit{Prodotiscus regulus}$, a species under unique evolutionary pressure to produce blue eggs, and the anisotropic chitinous network of fibres in the white beetle $\textit{Cyphochilus}$, the whitest low-refractive index material; finally, inspired by these natural designs, I fabricate and study light transport in biocompatible highly-scattering materials.
502

Contributions à l’étude de la thermo diffusion de mélanges binaires en conditions de réservoirs / Contribution to the study of thermosdiffusion phenomena on binary mixtures in reservoir conditions.

Giraudet, Cédric Michel Marius 30 March 2015 (has links)
La thermodiffusion, également appelé effet Soret, décrit le couplage entre les gradients de température et les flux massiques qui en résultent. Ce phénomène intervient dans de nombreux processus naturels et applications industrielles. En particulier, les réservoirs pétroliers sont sujets à ce phénomène impliquant des fluides multi constituants confinés dans une matrice poreuse et soumis à un gradient de température. Néanmoins, malgré beaucoup des progrès, il existe relativement peu de mesures fiables de ce phénomène et sa modélisation reste largement un problème ouvert. L’objectif principal de cette thèse s’inscrit dans ce cadre, à savoir développer une approche expérimental permettant de fournir des données de références sur la thermodiffusion notamment dans l’optique de quantifier l’effet de la pression sur cette dernière. Ainsi, durant cette thèse, nous avons développé une cellule de thermodiffusion en milieu libre qui permet d’étudier par shadowgraphie les fluctuations de non équilibre induites par effet Soret. L’appareil de mesure a ensuite été utilisé pour étudier deux mélanges binaires représentatifs de fluides pétroliers, à savoir le mélange équimassique tétraline/dodécane (en phase liquide) et le mélange dioxyde de carbone/méthane (en phases gaz et supercritique). En complément, des simulations de dynamique moléculaire ont été réalisées sur le mélange dioxyde de carbone/méthane. Par analyse dynamique des images de shadowgraphie nous avons pu déterminer les coefficients de diffusion et Soret en fonction de la pression pour le mélange tétraline/dodécane. Aux incertitudes près, nous observons une décroissance linéaire avec la pression pour ces coefficients. De plus nous avons observé l’effet du confinement de la cellule sur les fluctuations en très bon accord avec la théorie et les simulations. Pour le mélange dioxyde de carbone/méthane l’analyse dynamique a montré une cinétique difficilement accessible de par les limites physiques et informatiques du dispositif expérimental utilisé. L’analyse statique montre, quant à lui, une croissance rapide de l’amplitude des fluctuations avec la pression jusqu’à un seuil au-delà duquel elle décroît. Sur ce mélange les simulations de dynamique moléculaire ont montré un bon accord avec les prédictions théoriques. / Thermodiffusion, also called the Soret effect, describes the coupling between temperature gradient and resulting fluxes. This phenomenon is involved in a number of natural and industrial processes. In particular, multi components fluids in petroleum reservoirs are subjected to this phenomenon because of the geo-thermal gradient. Nevertheless, in spite of a lot of advances, there are few available data of this phenomenon and the establishment of a theoretical model, able to give a quantitative estimation of these transport coefficients whatever molecules in presence, is still an open question. The principal aim of this thesis is to develop an experimental approach allowing providing reference data on thermodiffusion as a function of the pressure. During this thesis, we developed a high pressure thermodiffusion cell in free medium, enabling us to study concentration non-equilibrium fluctuations induced by the Soret effect by means of shadowgraph optical technique. With this setup we investigated two binary mixtures representatives of petroleum fluids; namely the equimassic tetralin/dodecane mixture in liquid phase and the carbon dioxide/methane mixture in gaseous and super critical state. Furthermore, molecular dynamic simulations on the second mixture were performed. Using a dynamic image analysis, we have measured molecular diffusion and Soret coefficient for the tetralin/dodecane mixture. Within experimental uncertainties, we observed a linear decrease of these coefficients with the pressure. Furthermore, we were able to observe the effect of confinement (finite size effect induced by cell vertical boundary conditions) on fluctuation dynamics, in good agreement with calculations and simulations based on hydrodynamic fluctuation theory on similar solutal Rayleigh number. Concerning the carbon dioxide/methane mixture, the dynamic analysis revealed a kinetic too fast for our experimental apparatus. Conversely, static analysis revealed a rapid increase of the non-equilibrium fluctuation magnitude as a function of the pressure up to a threshold beyond which it decreases. On this mixture, performed molecular dynamic simulations provided results in good agreement with expected theoretical behaviour.
503

Estudos das intera??es de quitosana/CTAB/C12E8

Santos, Zilvam Melo dos 22 February 2013 (has links)
Made available in DSpace on 2014-12-17T15:42:26Z (GMT). No. of bitstreams: 1 ZilvamMS_TESE_reduzido.pdf: 9108618 bytes, checksum: 613dad3fd1a359dce84e2af73b067934 (MD5) Previous issue date: 2013-02-22 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Surfactant-polymer interactions are widely used when required rheological properties for specific applications, such as the production of fluids for oil exploration. Studies of the interactions of chitosan with cationic surfactants has attracted attention by being able to cause changes in rheological parameters of the systems making room for new applications. The commercial chitosan represents an interesting alternative to these systems, since it is obtained from partial deacetylation of chitin: the residues sites acetylated can then be used for the polymer-surfactant interactions. Alkyl ethoxylated surfactants can be used in this system, since these non-ionic surfactants can interact with hydrophobic sites of chitosan, modifying the rheology of solutions or emulsions resultants, which depends on the relaxation phenomenon occurring in these systems. In this work, first, inverse emulsions were prepared from chitosan solution as the dispersed phase and cyclohexane as the continuous phase were, using CTAB as a surfactant. The rheological analysis of these emulsions showed pronounced pseudoplastic behavior. This behavior was attributed to interaction of "loops" of chitosan chains. Creep tests were also performed and gave further support to these discussions. Subsequently, in order to obtain more information about the interaction of chitosan with non-ionic surfactants, solutions of chitosan were mixed with C12E8 and and carried out rheological analysis and dynamic light scattering. The systems showed marked pseudoplastic behavior, which became less evident when the concentration of surfactant was increased. Arrhenius and KWW equations were used to obtain parameters of the apparent activation energy and relaxation rate distribution, respectively, to which were connected to the content of surfactant and temperature used in this work / As intera??es tensoativo-pol?mero s?o amplamente usadas quando s?o necess?rias propriedades reol?gicas para aplica??es espec?ficas, como a produ??o de fluidos para explora??o do petr?leo. Estudos das intera??es de quitosana com tensoativos cati?nicos tem chamado aten??o por serem capazes de causar mudan?as nos par?metros reol?gicos dos sistemas abrindo espa?o para novas aplica??es. A quitosana comercial representa uma alternativa interessante para estes sistemas, uma vez que ela ? obtida a partir da desacetila??o parcial da quitina: os s?tos acetilados residuais podem, ent?o, ser usados para as intera??es pol?mero-tensoativo. Tensoativos alquil etoxilados podem ser utilizados neste sistema, pois estes tensoativos n?o i?nicos podem interagir com s?tios hidrof?bicos da quitosana, modificando a reologia de solu??es ou emuls?es resultantes, os quais dependem do fen?meno de relaxa??o ocorrendo nestes sistemas. Neste trabalho, primeiramente, foram preparadas emuls?es inversas de solu??o de quitosana como fase dispersa e cicloexano como fase cont?nua usando CTAB como tensoativo. A an?lise reol?gica destas emuls?es mostrou pronunciado comportamento pseudopl?stico. Esta pseudoplasticidade foi atribu?da ? intera??o por la?os loops de cadeias de quitosana. Ensaios de flu?ncia tamb?m foram executados e deram maior suporte a estas discuss?es. Em seguida, a fim de se obter maiores informa??es sobre as intera??es da quitosana com tensoativos n?o i?nicos, solu??es de quitosana foram misturadas com C12E8 e levadas ?s an?lises reol?gica e de espalhamento din?mico de luz. Os sistemas tiveram elevado comportamento pseudopl?stico, o qual se tornava menos evidente, quando o teor de tensoativo foi aumentado. Equa??es de Arrhenius e de KWW foram usadas para obter par?metros de energia de ativa??o aparente e de distribui??o da taxa de relaxa??o, respectivamente, aos quais foram relacionados em fun??o do teor de tensoativo e da temperatura, usados neste trabalho
504

Caractérisations biophysiques et structurales du complexe de réplication des Rhabdoviridae

Gerard, Francine 28 November 2008 (has links) (PDF)
Le virus de la stomatite vésiculaire (VSV) sert de modèle pour l'étude de la multiplication des virus (Mononegavirales) alors que la rage(RV) reste un sérieux problème de santé publique. Le génome de VSV et RV code notamment la nucléoprotéine (N) et la phosphoprotéine (P). N s'associe étroitement à l'ARN viral. Ce complexe N-ARN sert de matrice pour la réplication et la transcription virale. P est le cofacteur de la polymérase virale (L) et chaperonne N. En interagissant avec N-ARN (domaine C-terminal) et avec L (domaine N-terminal), P assure le lien physique entre l'ARN viral et L. La stœchiométrie de P, sa structure et son rôle exact pendant la transcription et la réplication restent incertains. Mon travail a consisté à une caractérisation biophysique et structurale de P et des complexes N-ARN-P pour mieux comprendre la dynamique du complexe de réplication de ces virus.<br />L'analyse biophysique montre que P RV & VSV existent sous forme de dimère allongé en solution. L'analyse bioinformatique a révélé une organisation modulaire, confirmé par des études biochimiques et biophysiques de mutants de P RV. La structure du domaine C-terminal de P VSV a été résolue par RMN et montre une homologie celle du C-ter de P RV. La caractérisation de l'interaction entre P et les anneaux N-ARN a révélé l'existence de deux types de complexes N-ARN-P (contenant un et 2 dimères de P par anneau). L'étude par ME des complexes nucléocapsides-P a permis de mettre en évidence un changement de conformation important.<br />Pour devenir accessible à L, l'ARN viral doit se dissocier localement de N. L'interaction N-ARN-P représente potentiellement une nouvelle cible pour le développement d'antiviraux.
505

Surface Characterization using Radiometric and Fourier Optical Methods

Hansson, Peter January 2003 (has links)
This thesis treats static and dynamic surface characterization using radiometric and Fourier optical methods. A Fourier optical method has been developed for real time image processing in paper production and printing applications. It has been shown that the method can be used to measure crepe frequency, an important parameter in tissue paper production, as well as to monitor the wire mark pattern at paper web velocities of up to 20 m/s. The wire mark pattern has been used to measure dimensional variations across a paper web. These are important for the mechanical properties of paper. Imaging of the moving surfaces onto a spatial light modulator, necessary for Fourier optical analysis of opaque objects, constitutes a motion blur problem. This problem has been solved by means of optical motion compensation using a rotating mirror. A rotating mirror system has also been developed for the inspection of small particles fixed to a rotating sample disc. The optical motion compensation configurations have made exposure times of more than two orders of magnitude longer than the exposure time without compensation possible. A light scattering model for opaque objects, for example coated paper, has also been developed and verified, with a coefficient of determination between theory and measurement ranging from r2=0.84 to r2=0.98, on various paper samples. The light scattering model has been used in the development of an instrument based on the photometric stereo principle. In this instrument the reflectance (or color) and topography of opaque samples are determined from two or more images of the sample illuminated from different directions. The method has been successfully used for studies of the relation between topography and print results in gravure and flexographic printing. Comparisons of surface height profiles measured with the photometric stereo method and profiles obtained with mechanical and optical scanning stylus instruments have shown coefficients of determination of up to r2=0.97. The main advantages of the method are the high speed, the scalability and the ability to obtain reflectance and surface height maps of a surface simultaneously.
506

The Characterization of Bimodal Droplet Size Distributions in the Ultrafiltration of Highly Concentrated Emulsions Applied to the Production of Biodiesel

Falahati, Hamid 26 August 2010 (has links)
A non-reactive model system comprising a highly concentrated and unstable oil-in-water emulsion was used to investigate the retention of oil by the membrane in producing biodiesel with a membrane reactor. Critical flux was identified using the relationship between the permeate flux and transmembrane pressure along with the separation efficiency of the membrane. It was shown that separation efficiencies above 99.5% could be obtained at all operating conditions up to the critical flux. It was observed that the concentration of oil in all collected permeate samples using the oil-water system was below 0.2 wt% when operating at a flux below the critical flux. Studies to date have been limited to the characterization of low concentrated emulsions below 15 vol.%. The average oil droplet size in highly concentrated emulsions was measured as 3200 nm employing direct light scattering (DLS) measurement methods. It was observed that the estimated cake layer thickness of 20 to 80 mm was larger than external diameter of the membrane tube i.e. 6 mm based on a large particle size. Settling of the concentrated emulsion permitted the detection of a smaller particle size distribution (30-100 nm) within the larger particles averaging 3200 nm. It was identified that DLS methods could not efficiently give the droplet size distribution of the oil in the emulsion since large particles interfered with the detection of smaller particles. The content of the smaller particles represented 1% of the total weight of oil at 30°C and 5% at 70°C. This was too low to be detected using DLS measurements but was sufficient to affect ultrafiltration. In order to study the critical flux in the presence of transesterification reaction and the effect of cross flow velocity on separation, various oils were transesterified in another membrane reactor providing higher cross flow velocity. higher cross flow velocity provides better separation by reducing materials deposition on the surface of the membrane due to higher shearing. The oils tested were canola, corn, sunflower and unrefined soy oils (Free Fatty Acids (FFA< 1%)), and waste cooking oil (FFA= 9%). The quality of all biodiesel samples was studied in terms of glycerine, mono-glyceride, di-glyceride and tri-glyceride concentrations. The composition of all biodiesel samples were in the range required by ASTM D6751 and EN 14214 standards. A critical flux based on operating pressure in the reactor was reached for waste cooking and pre-treated corn oils. It was identified that the reaction residence time in the reactor was an extremely important design parameter affecting the operating pressure in the reactor. / Natural Sciences and Engineering Research Council of Canada (NSERC)
507

The Characterization of Bimodal Droplet Size Distributions in the Ultrafiltration of Highly Concentrated Emulsions Applied to the Production of Biodiesel

Falahati, Hamid 26 August 2010 (has links)
A non-reactive model system comprising a highly concentrated and unstable oil-in-water emulsion was used to investigate the retention of oil by the membrane in producing biodiesel with a membrane reactor. Critical flux was identified using the relationship between the permeate flux and transmembrane pressure along with the separation efficiency of the membrane. It was shown that separation efficiencies above 99.5% could be obtained at all operating conditions up to the critical flux. It was observed that the concentration of oil in all collected permeate samples using the oil-water system was below 0.2 wt% when operating at a flux below the critical flux. Studies to date have been limited to the characterization of low concentrated emulsions below 15 vol.%. The average oil droplet size in highly concentrated emulsions was measured as 3200 nm employing direct light scattering (DLS) measurement methods. It was observed that the estimated cake layer thickness of 20 to 80 mm was larger than external diameter of the membrane tube i.e. 6 mm based on a large particle size. Settling of the concentrated emulsion permitted the detection of a smaller particle size distribution (30-100 nm) within the larger particles averaging 3200 nm. It was identified that DLS methods could not efficiently give the droplet size distribution of the oil in the emulsion since large particles interfered with the detection of smaller particles. The content of the smaller particles represented 1% of the total weight of oil at 30°C and 5% at 70°C. This was too low to be detected using DLS measurements but was sufficient to affect ultrafiltration. In order to study the critical flux in the presence of transesterification reaction and the effect of cross flow velocity on separation, various oils were transesterified in another membrane reactor providing higher cross flow velocity. higher cross flow velocity provides better separation by reducing materials deposition on the surface of the membrane due to higher shearing. The oils tested were canola, corn, sunflower and unrefined soy oils (Free Fatty Acids (FFA< 1%)), and waste cooking oil (FFA= 9%). The quality of all biodiesel samples was studied in terms of glycerine, mono-glyceride, di-glyceride and tri-glyceride concentrations. The composition of all biodiesel samples were in the range required by ASTM D6751 and EN 14214 standards. A critical flux based on operating pressure in the reactor was reached for waste cooking and pre-treated corn oils. It was identified that the reaction residence time in the reactor was an extremely important design parameter affecting the operating pressure in the reactor. / Natural Sciences and Engineering Research Council of Canada (NSERC)
508

A study of type-3 copper proteins from arthropods

Baird, Sharon January 2007 (has links)
Arthropod hemocyanin and phenoloxidase are members of a group of proteins called the Type-3 copper oxygen-binding proteins, both possessing a highly conserved oxygen-binding site containing two copper atoms each coordinated by three histidine residues (Decker and Tuczek, 2000). Despite similarities in their active site, these proteins have very different physiological functions. Phenoloxidase possesses both tyrosinase and o-diphenoloxidase activity, and is predominantly involved in reactions which protect insects from infection (Kopàcek et al., 1995). Hemocyanin is a large multi-subunit protein with a primary function as a respiratory protein, reversibly binding and transporting molecular O2 (Decker and Rimke, 1998; Decker and Tuczek, 2000). Recently, it has been demonstrated in vitro that arthropod hemocyanin possesses an inducible phenoloxidase activity when incubated with denaturants, detergents, phospholipids or proteolytic enzymes. This activity appears to be restricted to only a few subunit types, and it has been hypothesised that it may be accompanied by conformational change which opens the active site increasing access for larger phenolic substrates (Decker and Jaenicke, 2004; Decker et al., 2001; Decker and Tuczek, 2000). This possibly suggests a dual role of hemocyanin in arthropods. The presented thesis deals with two distinct aims. The first was to isolate and sequence a phenoloxidase gene from the insect Spodoptera littoralis (Egyptian Cottonleaf Worm). Despite efforts, progress was hindered by a number of experimental problems which are outlined within the relevant chapters. The second aim was to characterise the mode of SDS induced phenoloxidase activity in arthropod hemocyanin from the ancient chelicerates Limulus polyphemus (horseshoe crab) and Eurypelma californicum (tarantula) and the more modern chelicerate Pandinus imperator (scorpion), using a number of biophysical techniques. The results indicated that the SDS induced phenoloxidase activity is associated with localised tertiary and secondary conformational changes in hemocyanin, most likely in the vicinity of the dicopper centre, thus enhancing access for larger phenolic substrates. Experiments indicate that copper remains associated with the protein during these structural changes; however the nature of the association is unclear. SDS concentrations approximating the CMC appeared critical in causing the necessary structural changes required for a significant increase in the detectable phenoloxidase activity to be exhibited.
509

Étude des poly(2-alkyl-2-oxazoline)s munis d'extrémités hydrophobes en solution aqueuse et à linterface eau/air

El Hajj Obeid, Rodolphe January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
510

The Characterization of Bimodal Droplet Size Distributions in the Ultrafiltration of Highly Concentrated Emulsions Applied to the Production of Biodiesel

Falahati, Hamid 26 August 2010 (has links)
A non-reactive model system comprising a highly concentrated and unstable oil-in-water emulsion was used to investigate the retention of oil by the membrane in producing biodiesel with a membrane reactor. Critical flux was identified using the relationship between the permeate flux and transmembrane pressure along with the separation efficiency of the membrane. It was shown that separation efficiencies above 99.5% could be obtained at all operating conditions up to the critical flux. It was observed that the concentration of oil in all collected permeate samples using the oil-water system was below 0.2 wt% when operating at a flux below the critical flux. Studies to date have been limited to the characterization of low concentrated emulsions below 15 vol.%. The average oil droplet size in highly concentrated emulsions was measured as 3200 nm employing direct light scattering (DLS) measurement methods. It was observed that the estimated cake layer thickness of 20 to 80 mm was larger than external diameter of the membrane tube i.e. 6 mm based on a large particle size. Settling of the concentrated emulsion permitted the detection of a smaller particle size distribution (30-100 nm) within the larger particles averaging 3200 nm. It was identified that DLS methods could not efficiently give the droplet size distribution of the oil in the emulsion since large particles interfered with the detection of smaller particles. The content of the smaller particles represented 1% of the total weight of oil at 30°C and 5% at 70°C. This was too low to be detected using DLS measurements but was sufficient to affect ultrafiltration. In order to study the critical flux in the presence of transesterification reaction and the effect of cross flow velocity on separation, various oils were transesterified in another membrane reactor providing higher cross flow velocity. higher cross flow velocity provides better separation by reducing materials deposition on the surface of the membrane due to higher shearing. The oils tested were canola, corn, sunflower and unrefined soy oils (Free Fatty Acids (FFA< 1%)), and waste cooking oil (FFA= 9%). The quality of all biodiesel samples was studied in terms of glycerine, mono-glyceride, di-glyceride and tri-glyceride concentrations. The composition of all biodiesel samples were in the range required by ASTM D6751 and EN 14214 standards. A critical flux based on operating pressure in the reactor was reached for waste cooking and pre-treated corn oils. It was identified that the reaction residence time in the reactor was an extremely important design parameter affecting the operating pressure in the reactor. / Natural Sciences and Engineering Research Council of Canada (NSERC)

Page generated in 0.1014 seconds