401 |
Improving microalgae for biofuel productionKaloudis, Dimitrios January 2015 (has links)
Microalgae are a diverse group of oxygenic photosynthetic microorganisms which show great promise as a source of biofuel. However, significant challenges still remain before microalgae can be considered a viable source of biofuel. The main current challenges are nutrient sourcing and recycling as well as downstream processing. The algal cell wall and especially the presence of an algaenan cell wall in some Chlorophyte algae could be an important variable in determining downstream processing costs but not much comparative research has been done to elucidate this. The first part of the present study focuses on the recently isolated alga Pseudochoricystis ellipsoidea (Trebouxiophyceae) and its improvement and assessment for biofuel production. Random mutagenesis and FACS screening protocols were developed for the isolation of pigment and cell wall mutants but despite considerable efforts no suitable mutants could be identified in the first half of this project. Two 500 L raceway ponds as well as an algal growth room and bubble column bioreactors were set up to facilitate algal research at the University of Bath and assess the performance of P. ellipsoidea in realistic culture conditions. P. ellipsoidea showed a maximum growth of 1.53 divisions day-1 in semi-open raceway ponds, resistance to contamination and a 30% lipid content, making it particularly suitable for raceway pond cultures. In the second part of this project six species of Chlorophyte (“green”) algae, three of which produced algaenan, were compared for suitability to growth in anaerobic digestate and municipal wastewater as well as cell wall strength, permeability and suitability to hydrothermal liquefaction. We found that anaerobic digestate was a good medium for the growth of all species independently of autoclaving and that non-autoclaved wastewater was a very challenging medium. Algaenan production did not affect cell disruption by ultrasonication but growth stage and cell wall thickness did. Lipid extraction kinetics by chloroform/methanol were greatly affected by algaenan, meaning that this material is relatively impermeable to organic solvents. Cell wall thickness, cell volume and lipid content also had an effect on lipid extraction kinetics but this was only measurable after 180 minutes of extraction. 8 Hydrothermal liquefaction showed high solid and low oil yields, very low sulphur (≤0.1 %) as well as a 1.1 % -1.8 % nitrogen content which is significantly lower than most algal HTL studies to date. This suggests that stationary stage algae are more difficult to process but give a cleaner biocrude and reduce the loss of nitrogen through incorporation in the oil. Significant opportunities for optimisation still exist in the HTL process.
|
402 |
Wave-Associated Seabed Behaviour near Submarine Buried PipelinesShabani, Behnam January 2008 (has links)
Master of Engineering (Research) / Soil surrounding a submarine buried pipeline consolidates as ocean waves propagate over the seabed surface. Conventional models for the analysis of soil behaviour near the pipeline assume a two-dimensional interaction problem between waves, the seabed soil, and the structure. In other words, it is often considered that water waves travel normal to the orientation of pipeline. However, the real ocean environment is three-dimensional and waves approach the structure from various directions. It is therefore the key objective of the present research to study the seabed behaviour in the vicinity of marine pipelines from a three-dimensional point of view. A three-dimensional numerical model is developed based on the Finite Element Method to analyse the so-called momentary behaviour of soil under the wave loading. In this model, the pipeline is assumed to be rigid and anchored within a rigid impervious trench. A non-slip condition is considered to exist between the pipe and the surrounding soil. Quasi-static soil consolidation equations are then solved with the aid of the proposed FE model. In this analysis, the seabed behaviour is assumed to be linear elastic with the soil strains remaining small. The influence of wave obliquity on seabed responses, i.e. the pore pressure and soil stresses, are then studied. It is revealed that three-dimensional characteristics systematically affect the distribution of soil response around the circumference of the underwater pipeline. Numerical results suggest that the effect of wave obliquity on soil responses can be explained through the following two mechanisms: (i) geometry-based three-dimensional influences, and (ii) the formation of inversion nodes. Further, a parametric study is carried out to investigate the influence of soil, wave and pipeline properties on wave-associated pore pressure as well as principal effective and shear stresses within the porous bed, with the aid of proposed three-dimensional model. There is strong evidence in the literature that the failure of marine pipelines often stems from the instability of seabed soil close to this structure, rather than from construction deficiencies. The wave-induced seabed instability is either associated with the soil shear failure or the seabed liquefaction. Therefore, the developed three-dimensional FE model is used in this thesis to further investigate the instability of seabed soil in the presence of a pipeline. The widely-accepted criterion, which links the soil liquefaction to the wave-induced excess pressure is used herein to justify the seabed liquefaction. It should be pointed out that although the present analysis is only concerned with the momentary liquefaction of seabed soil, this study forms the basis for the three-dimensional analysis of liquefaction due to the residual mechanisms. The latter can be an important subject for future investigations. At the same time, a new concept is developed in this thesis to apply the dynamic component of soil stress angle to address the phenomenon of wave-associated soil shear failure. At this point, the influence of three-dimensionality on the potentials for seabed liquefaction and shear failure around the pipeline is investigated. Numerical simulations reveal that the wave obliquity may not notably affect the risk of liquefaction near the underwater pipeline. But, it significantly influences the potential for soil shear failure. Finally, the thesis proceeds to a parametric study on effects of wave, soil and pipeline characteristics on excess pore pressure and stress angle in the vicinity of the structure.
|
403 |
An Engineering Geological Investigation of the Seismic Subsoil Classes in the Central Wellington Commercial Area.Semmens, Stephen Bradley January 2010 (has links)
The city of Wellington has a high population concentration and lies within a geologically active landscape at the southern end of the North Island, New Zealand. Wellington has a high seismic risk due to its close proximity to several major fault systems, with the active Wellington Fault located in the north-western central city. Varying soil depth and properties in combination with the close proximity of active faults mean that in a large earthquake rupture event, ground shaking amplification is expected to occur in Thorndon, Te Aro and around the waterfront.
This thesis focuses on the area bounded by Thorndon Overbridge in the north, Wellington Hospital in the south, Kelburn in the west, and Oriental Bay in the east. It includes many of the major buildings and infrastructural elements located within the central Wellington commercial area. The main objectives were to create an electronic database which allows for convenient access to all available data within the study area, to create a 3D geological model based upon this data, and to define areas of different seismic subsoil class and depth to rock within the study area at a scale that is useful for preliminary geotechnical analysis (1:5,000.
Borelogs from 1025 holes with accompanying geological and geotechnical data obtained from GNS Science and Tonkin & Taylor were compiled into a database, together with the results from SPAC microtremor testing at 12 sites undertaken specifically for this study. This thesis discusses relevant background work and defines the local Wellington geology.
A 3D geological model of the central Wellington commercial area, along with ten ArcGIS maps including surficial, depth to bedrock, site period, Vs30, ground shaking amplification hazard and site class (NZS 1170.5:2004) maps were created. These outputs show that a significant ground shaking amplification risk is posed on the city, with the waterfront, Te Aro and Thorndon areas most at risk.
|
404 |
Wave-Associated Seabed Behaviour near Submarine Buried PipelinesShabani, Behnam January 2008 (has links)
Master of Engineering (Research) / Soil surrounding a submarine buried pipeline consolidates as ocean waves propagate over the seabed surface. Conventional models for the analysis of soil behaviour near the pipeline assume a two-dimensional interaction problem between waves, the seabed soil, and the structure. In other words, it is often considered that water waves travel normal to the orientation of pipeline. However, the real ocean environment is three-dimensional and waves approach the structure from various directions. It is therefore the key objective of the present research to study the seabed behaviour in the vicinity of marine pipelines from a three-dimensional point of view. A three-dimensional numerical model is developed based on the Finite Element Method to analyse the so-called momentary behaviour of soil under the wave loading. In this model, the pipeline is assumed to be rigid and anchored within a rigid impervious trench. A non-slip condition is considered to exist between the pipe and the surrounding soil. Quasi-static soil consolidation equations are then solved with the aid of the proposed FE model. In this analysis, the seabed behaviour is assumed to be linear elastic with the soil strains remaining small. The influence of wave obliquity on seabed responses, i.e. the pore pressure and soil stresses, are then studied. It is revealed that three-dimensional characteristics systematically affect the distribution of soil response around the circumference of the underwater pipeline. Numerical results suggest that the effect of wave obliquity on soil responses can be explained through the following two mechanisms: (i) geometry-based three-dimensional influences, and (ii) the formation of inversion nodes. Further, a parametric study is carried out to investigate the influence of soil, wave and pipeline properties on wave-associated pore pressure as well as principal effective and shear stresses within the porous bed, with the aid of proposed three-dimensional model. There is strong evidence in the literature that the failure of marine pipelines often stems from the instability of seabed soil close to this structure, rather than from construction deficiencies. The wave-induced seabed instability is either associated with the soil shear failure or the seabed liquefaction. Therefore, the developed three-dimensional FE model is used in this thesis to further investigate the instability of seabed soil in the presence of a pipeline. The widely-accepted criterion, which links the soil liquefaction to the wave-induced excess pressure is used herein to justify the seabed liquefaction. It should be pointed out that although the present analysis is only concerned with the momentary liquefaction of seabed soil, this study forms the basis for the three-dimensional analysis of liquefaction due to the residual mechanisms. The latter can be an important subject for future investigations. At the same time, a new concept is developed in this thesis to apply the dynamic component of soil stress angle to address the phenomenon of wave-associated soil shear failure. At this point, the influence of three-dimensionality on the potentials for seabed liquefaction and shear failure around the pipeline is investigated. Numerical simulations reveal that the wave obliquity may not notably affect the risk of liquefaction near the underwater pipeline. But, it significantly influences the potential for soil shear failure. Finally, the thesis proceeds to a parametric study on effects of wave, soil and pipeline characteristics on excess pore pressure and stress angle in the vicinity of the structure.
|
405 |
New approach in prediction of soil liquefactionDaftari, Abbas 23 December 2015 (has links) (PDF)
Liquefaction is the phenomena when there is loss of strength in saturated and cohesion-less soils because of increased pore water pressures and hence reduced effective stresses due to dynamic loading. It is a phenomenon in which the strength and stiffness of a soil is reduced by earthquake shaking or other rapid loading.
In this study, after the short review of liquefaction definition, the models of prediction and estimation of liquefaction were considered. Application of numerical modelling with two major software (FLAC & PLAXIS) for the Wildlife site liquefaction, under superstition earthquake in 1987 were compared and analysed.
Third step was started with introduction of Fuzzy logic and neural network as two common intelligent mathematical methods. These two patterns for prediction of soil liquefaction were combined. The “Neural network- Fuzzy logic-Liquefaction- Prediction” (NFLP) was applied for liquefaction prediction in Wildlife site. The results show the powerful prediction of liquefaction happening with high degree of accuracy in this case.
|
406 |
Relation structure/réactivité en conversion hydrothermale des macromolécules de lignocellulose / Correspondence between reactivity and structure during lignocellulose macromolecule hydrothermal conversionBarbier, Jérémie Alain 09 December 2010 (has links)
Ce travail porte sur l'étude des voies réactionnelles accompagnant la liquéfaction desconstituants de la biomasse lignocellulosique dans un milieu aqueux proche du pointcritique. La stratégie expérimentale consiste à étudier la réaction en unité pilote decomposés lignocellulosiques modèles et à développer une approche analytiquemultitechnique originale afin de caractériser les structures et les masses moléculairesdes produits. Les résultats obtenus montrent que les schémas réactionnels sontcomplexes faisant intervenir de nombreuses voies de fragmentation et de condensationcompétitives. L'étude cinétique à différents temps de séjour montre que la fractionglucidique de la biomasse lignocellulosique a une réactivité très différente de sa fractionligneuse. / This work deals with the study of the reaction pathway during the lignocellulosicconstituent liquefaction by water near its critical point. Experimental method consists ininvestigation of lignocellulosic model compounds conversion in pilot plant combined withdevelopment of a new multitechnique analytical approach in order to characterizeproduct chemical structures and molecular weights. Results show that reaction pathwaysare very complex consisting to several fragmentation and condensation competitivereactions. The kinetic study with different reaction times reveals an important differenceof comportment for the glucidic fraction than the lignin fraction of biomass.
|
407 |
Opções reais em projetos de investimentos: o caso de uma planta de liquefação de gás natural com flexibilidade de troca de mercado e de troca de produtoVeloso, Gustavo Zimbardi 29 May 2012 (has links)
Submitted by Gustavo Veloso (gustavo.veloso@petrobras.com.br) on 2014-10-20T15:58:35Z
No. of bitstreams: 1
Dissertação - Gustavo Zimbardi Veloso .pdf: 4574341 bytes, checksum: 88d023bd5d97f4d6e844ca71ca7ad27b (MD5) / Approved for entry into archive by Vitor Souza (vitor.souza@fgv.br) on 2015-03-26T18:38:36Z (GMT) No. of bitstreams: 1
Dissertação - Gustavo Zimbardi Veloso .pdf: 4574341 bytes, checksum: 88d023bd5d97f4d6e844ca71ca7ad27b (MD5) / Approved for entry into archive by GILSON ROCHA MIRANDA (gilson.miranda@fgv.br) on 2015-03-31T12:22:55Z (GMT) No. of bitstreams: 1
Dissertação - Gustavo Zimbardi Veloso .pdf: 4574341 bytes, checksum: 88d023bd5d97f4d6e844ca71ca7ad27b (MD5) / Made available in DSpace on 2015-04-08T18:07:25Z (GMT). No. of bitstreams: 1
Dissertação - Gustavo Zimbardi Veloso .pdf: 4574341 bytes, checksum: 88d023bd5d97f4d6e844ca71ca7ad27b (MD5)
Previous issue date: 2012-05-29 / O objetivo deste trabalho é revisar os principais aspectos teóricos para a aplicação de Opções Reais em avaliação de projetos de investimento e analisar, sob esta metodologia, um caso real de projeto para investir na construção de uma Planta de Liquefação de gás natural. O estudo do caso real considerou a Opção de Troca de Mercado, ao avaliar a possibilidade de colocação de cargas spot de GNL em diferentes mercados internacionais e a Opção de Troca de Produto, devido à flexibilidade gerencial de não liquefazer o gás natural, deixando de comercializar GNL no mercado internacional e passando a vender gás natural seco no mercado doméstico. Para a valoração das Opções Reais foi verificado, através da série histórica dos preços de gás natural, que o Movimento Geométrico Browniano não é rejeitado e foram utilizadas simulações de Monte Carlo do processo estocástico neutro ao risco dos preços. O valor da Opção de Troca de Mercado fez o projeto estudado mais que dobrar de valor, sendo reduzido com o aumento da correlação dos preços. Por outro lado, o valor da Opção de Troca de Produto é menos relevante, mas também pode atingir valores significativos com o incremento de sua volatilidade. Ao combinar as duas opções simultaneamente, foi verificado que as mesmas não são diretamente aditivas e que o efeito do incremento da correlação dos preços, ao contrário do que ocorre na Opção de Troca de Mercado, é inverso na Opção de Troca de Produto, ou seja, o derivativo aumenta de valor com uma maior correlação, apesar do valor total das opções integradas diminuir. / The main purpose of this paper is to review the theoretical aspects of the Real Options applied to project valuation of investments and to evaluate, under this methodology, a real case of a project for the construction of a LNG Plant. The case considered the Switch-Market Option by evaluating the possibility of selling the LNG at different international spot markets and also contemplated the Switch-Output Option due to the existent flexibility to decide not to liquefy the natural gas and, therefore, stop the trading of LNG at the international market and start to negotiate the selling of dry natural gas at the domestic market. In order to measure the two mentioned Real Options, it was confirmed, by analyzing the historical series of natural gas prices, that the Geometric Brownian Motion could not be rejected and then, Monte Carlo simulations of its risk-neutral stochastic process were performed. The value of the Switch- Market Option allowed the project to more than double its original value, being reduced with the increase of the correlation between the prices. On the other hand, the value of the Switch- Output Option is less relevant, but may also reach significant values considering the increase of its volatility. By analyzing the two options simultaneously, it could be verified that they can not be directly added up and that the outcome in the Switch-Output Option of an increase in the correlation between the prices is the opposite of what happens with the Switch-Market Option, in other words, the derivative increases its value with a higher correlation, despite the decrease in the total value of the integrated options.
|
408 |
Comprehensive Seismic Hazard Analysis of IndiaKolathayar, Sreevalsa January 2012 (has links) (PDF)
Planet earth is restless and one cannot control its inside activities and vibrations those leading to natural hazards. Earthquake is one of such natural hazards that have affected the mankind most. Most of the causalities due to earthquakes happened not because of earthquakes as such, but because of poorly designed structures which could not withstand the earthquake forces. The improper building construction techniques adopted and the high population density are the major causes of the heavy damage due to earthquakes. The damage due to earthquakes can be reduced by following proper construction techniques, taking into consideration of appropriate forces on the structure that can be caused due to future earthquakes. The steps towards seismic hazard evaluation are very essential to estimate an optimal and reliable value of possible earthquake ground motion during a specific time period. These predicted values can be an input to assess the seismic vulnerability of an area based on which new construction and the restoration works of existing structures can be carried out.
A large number of devastating earthquakes have occurred in India in the past. The northern region of India, which is along the plate boundary of the Indian plate with the Eurasian plate, is seismically very active. The north eastern movement of Indian plate has caused deformation in the Himalayan region, Tibet and the North Eastern India. Along the Himalayan belt, the Indian and Eurasian plates converge at the rate of about 50 mm/year (Bilham 2004; Jade 2004). The North East Indian (NEI) region is known as one of the most seismically active regions in the world. However the peninsular India, which is far away from the plate boundary, is a stable continental region, which is considered to be of moderate seismic activity. Even though, the activity is considered to be moderate in the Peninsular India, world’s deadliest earthquake occurred in this region (Bhuj earthquake 2001). The rapid drifting of Indian plate towards Himalayas in the north east direction with a high velocity along with its low plate thickness might be the cause of high seismicity of the Indian region. Bureau of Indian Standard has published a seismic zonation map in 1962 and revised it in 1966, 1970, 1984 and 2002. The latest version of the seismic zoning map of India assigns four levels of seismicity for the entire Country in terms of different zone factors. The main drawback of the seismic zonation code of India (BIS-1893, 2002) is that, it is based on the past seismic activity and not based on a scientific seismic hazard analysis. Several seismic hazard studies, which were taken up in the recent years, have shown that the hazard values given by BIS-1893 (2002) need to be revised (Raghu Kanth and Iyengar 2006; Vipin et al. 2009; Mahajan et al. 2009 etc.). These facts necessitate a comprehensive study for evaluating the seismic hazard of India and development of a seismic zonation map of India based on the Peak Ground Acceleration (PGA) values. The objective of this thesis is to estimate the seismic hazard of entire India using updated seismicity data based on the latest and different methodologies.
The major outcomes of the thesis can be summarized as follows. An updated earthquake catalog that is uniform in moment magnitude, has been prepared for India and adjoining areas for the period till 2010. Region specific magnitude scaling relations have been established for the study region, which facilitated the generation of a homogenous earthquake catalog. By carefully converting the original magnitudes to unified MW magnitudes, we have removed a major obstacle for consistent assessment of seismic hazards in India. The earthquake catalog was declustered to remove the aftershocks and foreshocks. Out of 203448 events in the raw catalog, 75.3% were found to be dependent events and remaining 50317 events were identified as main shocks of which 27146 events were of MW ≥ 4. The completeness analysis of the catalog was carried out to estimate completeness periods of different magnitude ranges. The earthquake catalog containing the details of the earthquake events until 2010 is uploaded in the website the catalog was carried out to estimate completeness periods of different magnitude ranges. The earthquake catalog containing the details of the earthquake events until 2010 is uploaded in the website the catalog was carried out to estimate completeness periods of different magnitude ranges. The earthquake catalog containing the details of the earthquake events until 2010 is uploaded in the website
A quantitative study of the spatial distribution of the seismicity rate across India and its vicinity has been performed. The lower b values obtained in shield regions imply that the energy released in these regions is mostly from large magnitude events. The b
value of northeast India and Andaman Nicobar region is around unity which implies that the energy released is compatible for both smaller and larger events. The effect of aftershocks in the seismicity parameters was also studied. Maximum likelihood estimations of the b value from the raw and declustered earthquake catalogs show significant changes leading to a larger proportion of low magnitude events as foreshocks and aftershocks. The inclusions of dependent events in the catalog affect the relative abundance of low and high magnitude earthquakes. Thus, greater inclusion of dependent events leads to higher b values and higher activity rate. Hence, the seismicity parameters obtained from the declustered catalog is valid as they tend to follow a Poisson distribution. Mmax does not significantly change, since it depends on the largest observed magnitude rather than the inclusion of dependent events (foreshocks and aftershocks). The spatial variation of the seismicity parameters can be used as a base to identify regions of similar characteristics and to delineate regional seismic source zones.
Further, Regions of similar seismicity characteristics were identified based on fault alignment, earthquake event distribution and spatial variation of seismicity parameters. 104 regional seismic source zones were delineated which are inevitable input to seismic hazard analysis. Separate subsets of the catalog were created for each of these zones and seismicity analysis was done for each zone after estimating the cutoff magnitude. The frequency magnitude distribution plots of all the source zones can be found at http://civil.iisc.ernet.in/~sitharam . There is considerable variation in seismicity parameters and magnitude of completeness across the study area. The b values for various regions vary from a lower value of 0.5 to a higher value of 1.5. The a value for different zones vary from a lower value of 2 to a higher value of 10. The analysis of seismicity parameters shows that there is considerable difference in the earthquake recurrence rate and Mmax in India. The coordinates of these source zones and the seismicity parameters a, b & Mmax estimated can be directly input into the Probabilistic seismic hazard analysis. The seismic hazard evaluation of the Indian landmass based on a state-of-the art Probabilistic Seismic Hazard Analysis (PSHA) study has been performed using the classical Cornell–McGuire approach with different source models and attenuation relations. The most recent knowledge of seismic activity in the region has been used to evaluate the hazard incorporating uncertainty associated with different modeling parameters as well as spatial and temporal uncertainties. The PSHA has been performed with currently available data and their best possible scientific interpretation using an appropriate instrument such as the logic tree to explicitly account for epistemic uncertainty by considering alternative models (source models, maximum magnitude in hazard computations, and ground-motion attenuation relationships). The hazard maps have been produced for horizontal ground motion at bedrock level (Shear wave velocity ≥ 3.6 km/s) and compared with the earlier studies like Bhatia et al., 1999 (India and adjoining areas); Seeber et al, 1999 (Maharashtra state); Jaiswal and Sinha, 2007 (Peninsular India); Sitharam and Vipin, 2011 (South India); Menon et al., 2010 (Tamilnadu). It was observed that the seismic hazard is moderate in Peninsular shield (except the Kutch region of Gujarat), but the hazard in the North and Northeast India and Andaman-Nicobar region is very high. The ground motion predicted from the present study will not only give hazard values for design of structures, but also will help in deciding the locations of important structures such as nuclear power plants.
The evaluation of surface level PGA values is of very high importance in the engineering design. The surface level PGA values were evaluated for the entire study area for four NEHRP site classes using appropriate amplification factors. If the site class at any location in the study area is known, then the ground level PGA values can be obtained from the respective map. In the absence of VS30 values, the site classes can be identified based on local geological conditions. Thus this method provides a simplified methodology for evaluating the surface level PGA values. The evaluation of PGA values for different site classes were evaluated based on the PGA values obtained from the DSHA and PSHA. This thesis also presents VS30 characterization of entire country based on the topographic gradient using existing correlations. Further, surface level PGA contour map was developed based on the same. Liquefaction is the conversion of formally stable cohesionless soils to a fluid mass, due to increase in pore pressure and is prominent in areas that have groundwater near the surface and sandy soil. Soil liquefaction has been observed during the earthquakes because of the sudden dynamic earthquake load, which in turn increases the pore pressure. The evaluation of liquefaction potential involves evaluation of earthquake loading and evaluation of soil resistance to liquefaction. In the present work, the spatial variation of the SPT value required to prevent liquefaction has been estimated using a probabilistic methodology, for entire India.
To summarize, the major contribution of this thesis are the development of region specific magnitude correlations suitable for Indian subcontinent and an updated homogeneous earthquake catalog for India that is uniform in moment magnitude scale. The delineation and characterization of regional seismic source zones for a vast country like India is a unique contribution, which requires reasonable observation and engineering judgement. Considering complex seismotectonic set up of the country, the present work employed numerous methodologies (DSHA and PSHA) in analyzing the seismic hazard using appropriate instrument such as the logic tree to explicitly account for epistemic uncertainties considering alternative models (For Source model, Mmax estimation and Ground motion prediction equations) to estimate the PGA value at bedrock level. Further, VS30 characterization of India was done based on the topographic gradient, as a first level approach, which facilitated the development of surface level PGA map for entire country using appropriate amplification factors. Above factors make the present work very unique and comprehensive touching various aspects of seismic hazard. It is hoped that the methodology and outcomes presented in this thesis will be beneficial to practicing engineers and researchers working in the area of seismology and geotechnical engineering in particular and to the society as a whole.
|
409 |
Assessment Of Seismic Hazard With Local Site Effects : Deterministic And Probabilistic ApproachesVipin, K S 12 1900 (has links)
Many researchers have pointed out that the accumulation of strain energy in the Penninsular Indian Shield region may lead to earthquakes of significant magnitude(Srinivasan and Sreenivas, 1977; Valdiya, 1998; Purnachandra Rao, 1999; Seeber et al., 1999; Ramalingeswara Rao, 2000; Gangrade and Arora, 2000). However very few studies have been carried out to quantify the seismic hazard of the entire Pennisular Indian region. In the present study the seismic hazard evaluation of South Indian region (8.0° N - 20° N; 72° E - 88° E) was done using the deterministic and probabilistic seismic hazard approaches. Effects of two of the important geotechnical aspects of seismic hazard, site response and liquefaction, have also been evaluated and the results are presented in this work. The peak ground acceleration (PGA) at ground surface level was evaluated by considering the local site effects. The liquefaction potential index (LPI) and factor of safety against liquefaction wee evaluated based on performance based liquefaction potential evaluation method.
The first step in the seismic hazard analysis is to compile the earthquake catalogue. Since a comprehensive catalogue was not available for the region, it was complied by collecting data from different national (Guaribidanur Array, Indian Meterorological Department (IMD), National Geophysical Research Institute (NGRI) Hyderabad and Indira Gandhi Centre for Atomic Research (IGCAR) Kalpakkam etc.) and international agencies (Incorporated Research Institutions for Seismology (IRIS), International Seismological Centre (ISC), United States Geological Survey (USGS) etc.). The collected data was in different magnitude scales and hence they were converted to a single magnitude scale. The magnitude scale which is chosen in this study is the moment magnitude scale, since it the most widely used and the most advanced scientific magnitude scale. The declustering of earthquake catalogue was due to remove the related events and the completeness of the catalogue was analysed using the method suggested by Stepp (1972). Based on the complete part of the catalogue the seismicity parameters were evaluated for the study area.
Another important step in the seismic hazard analysis is the identification of vulnerable seismic sources. The different types of seismic sources considered are (i) linear sources (ii) point sources (ii) areal sources. The linear seismic sources were identified based on the seismotectonic atlas published by geological survey of India (SEISAT, 2000). The required pages of SEISAT (2000) were scanned and georeferenced. The declustered earthquake data was superimposed on this and the sources which were associated with earthquake magnitude of 4 and above were selected for further analysis.
The point sources were selected using a method similar to the one adopted by Costa et.al. (1993) and Panza et al. (1999) and the areal sources were identified based on the method proposed by Frankel et al. (1995). In order to map the attenuation properties of the region more precisely, three attenuation relations, viz. Toto et al. (1997), Atkinson and Boore (2006) and Raghu Kanth and Iyengar (2007) were used in this study.
The two types of uncertainties encountered in seismic hazard analysis are aleatory and epistemic. The uncertainty of the data is the cause of aleatory variability and it accounts for the randomness associated with the results given by a particular model. The incomplete knowledge in the predictive models causes the epistemic uncertainty (modeling uncertainty). The aleatory variability of the attenuation relations are taken into account in the probabilistic seismic hazard analysis by considering the standard deviation of the model error. The epistemic uncertainty is considered by multiple models for the evaluation of seismic hazard and combining them using a logic tree.
Two different methodologies were used in the evaluation of seismic hazard, based on deterministic and probabilistic analysis. For the evaluation of peak horizontal acceleration (PHA) and spectral acceleration (Sa) values, a new set of programs were developed in MATLAB and the entire analysis was done using these programs. In the deterministic seismic hazard analysis (DSHA) two types of seismic sources, viz. linear and point sources, were considered and three attenuation relations were used. The study area was divided into small grids of size 0.1° x 0.1° (about 12000 grid points) and the PHA and Sa values were evaluated for the mean and 84th percentile values at the centre of each of the grid points. A logic tree approach, using two types of sources and three attenuation relations, was adopted for the evaluation of PHA and Sa values. Logic tree permits the use of alternative models in the hazard evaluation and appropriate weightages can be assigned to each model. By evaluating the 84th percentile values, the uncertainty in spectral acceleration values can also be considered (Krinitzky, 2002). The spatial variations of PHA and Sa values for entire South India are presented in this work.
The DSHA method will not consider the uncertainties involved in the earthquake recurrence process, hypocentral distance and the attenuation properties. Hence the seismic hazard analysis was done based on the probabilistic seismic hazard analysis (PSHA), and the evaluation of PHA and Sa values were done by considering the uncertainties involved in the earthquake occurrence process. The uncertainties in earthquake recurrence rate, hypocentral location and attenuation characteristic were considered in this study. For evaluating the seismicity parameters and the maximum expected earthquake magnitude (mmax) the study area was divided into different source zones. The division of study area was done based on the spatial variation of the seismicity parameters ‘a’ and ‘b’ and the mmax values were evaluated for each of these zones and these values were used in the analysis. Logic tree approach was adopted in the analysis and this permits the use of multiple models. Twelve different models (2 sources x 2 zones x 3 attenuation) were used in the analysis and based on the weightage for each of them; the final PHA and Sa values at bed rock level were evaluated. These values were evaluated for a grid size of 0.1° x 0.1° and the spatial variation of these values for return periods of 475 and 2500 years (10% and 2% probability of exceedance in 50 years) are presented in this work.
Both the deterministic and probabilistic analyses highlighted that the seismic hazard is high at Koyna region. The PHA values obtained for Koyna, Bangalore and Ongole regions are higher than the values given by BIS-1893(2002). The values obtained for south western part of the study area, especially for parts of kerala are showing the PHA values less than what is provided in BIS-1893(2002). The 84th percentile values given DSHA can be taken as the upper bound PHA and Sa values for South India.
The main geotechnical aspects of earthquake hazard are site response and seismic soil liquefaction. When the seismic waves travel from the bed rock through the overlying soil to the ground surface the PHA and Sa values will get changed. This amplification or de-amplification of the seismic waves depends on the type of the overlying soil. The assessment of site class can be done based on different site classification schemes. In the present work, the surface level peak ground acceleration (PGA) values were evaluated based on four different site classes suggested by NEHRP (BSSC, 2003) and the PGA values were developed for all the four site classes based on non-linear site amplification technique. Based on the geotechnical site investigation data, the site class can be determined and then the appropriate PGA and Sa values can be taken from the respective PGA maps.
Response spectra were developed for the entire study area and the results obtained for three major cities are discussed here. Different methods are suggested by various codes to
Smooth the response spectra. The smoothed design response spectra were developed for these cities based on the smoothing techniques given by NEHRP (BSSC, 2003), IS code (BIS-1893,2002) and Eurocode-8 (2003). A Comparison of the results obtained from these studies is also presented in this work.
If the site class at any location in the study area is known, then the peak ground acceleration (PGA) values can be obtained from the respective map. This provides a simplified methodology for evaluating the PGA values for a vast area like South India. Since the surface level PGA values were evaluated for different site classes, the effects of surface topography and basin effects were not taken into account. The analysis of response spectra clearly indicates the variation of peak spectral acceleration values for different site classes and the variation of period of oscillation corresponding to maximum Sa values. The comparison of the smoothed design response spectra obtained using different codal provisions suggest the use of NEHRP(BSSC, 2003) provisions.
The conventional liquefaction analysis method takes into account only one earthquake magnitude and ground acceleration values. In order to overcome this shortfall, a performance based probabilistic approach (Kramer and Mayfield, 2007) was adopted for the liquefaction potential evaluation in the present work. Based on this method, the factor of safety against liquefaction and the SPT values required to prevent liquefaction for return periods of 475 and 2500 years were evaluated for Bangalore city. This analysis was done based on the SPT data obtained from 450 boreholes across Bangalore. A new method to evaluate the liquefaction return period based on CPT values is proposed in this work. To validate the new method, an analysis was done for Bangalore by converting the SPT values to CPT values and then the results obtained were compared with the results obtained using SPT values. The factor of safety against liquefaction at different depths were integrated using liquefaction potential index (LPI) method for Bangalore. This was done by calculating the factor of safety values at different depths based on a performance based method and then the LPI values were evaluated. The entire liquefaction potential analysis and the evaluation of LPI values were done using a set of newly developed programs in MATLAB.
Based on the above approaches it is possible to evaluate the SPT and CPT values required to prevent liquefaction for any given return period. An analysis was done to evaluate the SPT and CPT values required to prevent liquefaction for entire South India for return periods of 475 and 2500 years. The spatial variations of these values are presented in this work.
The liquefaction potential analysis of Bangalore clearly indicates that majority of the area is safe against liquefaction. The liquefaction potential map developed for South India, based on both SPT and CPT values, will help hazard mitigation authorities to identify the liquefaction vulnerable area. This in turn will help in reducing the liquefaction hazard.
|
410 |
Seismic Site Response Evaluation Using Ambient Vibrations And Earthquakes : Applications in Active And Vulnerable Regions with Emphasis on the 2001 Bhuj (India) EarthquakeNatarajan, Thulasiraman January 2016 (has links) (PDF)
Local site conditions are known to influence ground motion during earthquake events and increase the severity of damage. Data from earthquakes are useful to study the response but they are available only from active regions. Ubiquitous ambient vibrations on the other hand offer a more practical approach to quantify site responses. This thesis explores the use of various methods for obtaining site responses. The primary area of study is the Kachchh rift basin, NW India, a Mesozoic rift that features significant lateral variations in surface geology and has experienced ground responses during 1819 and 2001 earthquakes. The Mw 7.6, 2001 event was followed by hundreds of aftershocks, which were recorded by temporary networks. In this study we have used earthquake signals as well as ambient vibrations to understand site response in various parts of the basin. In addition we have collected data from a few sites from the Indo-Gangetic plains and Kathmandu valley, both affected by large earthquakes, 1934 the M ~ 8 (Bihar) and 2015, Mw 7.8 (Nepal). Velocity and acceleration records from a network of eight stations in the Kachchh Rift were used to evaluate site responses using Standard Spectral Ratio (SSR) and Horizontal to Vertical spectral ratio (HVSR-E) methods. Ambient vibrations were analyzed following Nakamura’s H/V method (HVSR-AV), for data collected from 110 sites that represent different field conditions within the Kachchh Rift. Fundamental resonance frequency (f0) varied between 0.12 – 2.30 Hz, while the amplification factor (A0) was in the range of 2.0 – 9.1. We found that higher A0 and liquefaction index (Kg) values were mostly associated with higher liquefaction potential. Using a close network of stations, we studied the role of site response in damage to the Bhuj city that suffered maximum damage in 2001; our results suggest that site response was not a significant factor.
Studies based on passive data were complemented by Multi-channel Analysis of Surface Waves (MASW) to map shear wave velocities of the various subsurface units up to depths of 10m (Vs10) and 30m (Vs30). Our results imply average Vs could be a good proxy to characterize site amplifications where sediment thicknesses are shallow. Power law relationship between f0 and thickness (h) suggest a strong positive correlation (r = 0.89) adding credence to HVSR-AV method, making it a cost-effective alternative to MASW to infer site conditions. Further, to understand the influence of topography on site effects, we analyzed data from hills, valleys and their edges, both from the Kachchh rift and Kathmandu valley. Sites on the edges of valleys showed multiple, fuzzy peaks in the low frequency range (< 1 Hz) and broad peaks attributable to sites prone to higher damage. Spectrograms generated through Huang-Hilbert Transforms (HHT) suggested focusing of energy in narrow frequency bands on the edges, while valleys tend to scatter energy over wide frequencies.
Although our current results are based on limited observations, we recognize spectral analysis as a powerful tool to quantify site effects in regions with significant topography.
It is known that coseismic liquefaction could lead to nonlinear behavior wherein the near-surface soil layer loses its shear strength, causing a reduction of its fundamental resonance frequency. We used data from selected sites of coseismic liquefaction to highlight the significance of nonlinear effects in site response. Earthquake signals and ambient vibrations from Umedpur, a region that experienced intense liquefaction during 2001 were used in this analysis. Here we followed an empirical decomposition method based on HHT and signals were decomposed as many intrinsic mode functions (IMFs) that showed characteristic peaks for events of various values of PGAs. Thus, the first IMF for events with relatively higher PGAs (0.03g) showed distinct peaks for the S wave coda part, which were not noted for those with lower PGA (0.01g). These observations in a region of coseismic liquefaction are useful in developing models for quantifying nonlinear behavior.
In conclusion, site response studies using different types of data and processing techniques in regions affected by recent earthquakes brings out the scope and limitations of each of these sets of data and techniques. This study suggests that ambient vibrations provide reasonable estimates of site response and can be reliably used in regions where earthquake data are not available.
|
Page generated in 0.0953 seconds