• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 430
  • 80
  • 56
  • 31
  • 14
  • 11
  • 9
  • 9
  • 8
  • 7
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 774
  • 774
  • 400
  • 337
  • 201
  • 134
  • 134
  • 95
  • 92
  • 78
  • 75
  • 72
  • 70
  • 69
  • 67
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Control-Oriented Thermal Model for a Hybrid Vehicle Battery

Modi, Rishit Bipinkumar 01 June 2020 (has links)
In a bid to reduce vehicular emissions, automobile manufacturers are moving towards elec- tric and hybrid vehicles. Most hybrid vehicles use Lithium-ion batteries as energy storage systems. Lithium-ion batteries have a narrow range of temperature within which they can be operated efficiently. Operation of Lithium-ion batteries outside this range decreases the life of batteries and reduces performance of the vehicle. Due to this limitation, it is important to prevent overheating of Lithium-ion batteries. Battery pack studied in this work has a fan system for air-cooling the cells. The battery management system (BMS) in the battery pack functions to keep the temperature of the cells within allowable limits by either regulating the fan speed or communicating with the vehicle controller to adjust magnitude of applied current. BMS used in the work is equipped with limited number of temperature sensors that can measure surface temperature of few cells in the battery pack. Additional temper- ature information can be used for better thermal control of the cells in the battery pack. Lithium-ion cells are known to have a measurable temperature gradient when operating un- der extreme conditions. As a result, the surface temperature of cells as measured by the temperature sensors in BMS is not always representative of the maximum cell temperature. To overcome these limitations, a simplified transient thermal model predicting core and sur- face temperature of cell is presented in this work. This model can be implemented in a BMS for real-time control of cell temperature. The thermal model is validated against data avail- able from testing the battery pack. Different current profiles, representative of real-world driving scenarios, are applied to the thermal model and the temperature rise of cells under those conditions is studied. For an array of cells, the thermal model predicts significant temperature rise along the airflow direction, suggesting the use of last cell temperature for thermal control. For short duration, high magnitude of current pulses, temperature rise is shown to be similar for same thermal energy deposited by different current pulses. The maximum thermal energy that can be deposited in the battery by a current pulse can be determined for given conditions of airflow rate, continuous current and air inlet temperature. The maximum magnitude of thermal energy that can be deposited by a peak current pulse to limit cell temperature is shown to be a function of current magnitude squared and the pulse duration time. For multiple current pulses applied to the battery pack, the model can evaluate the minimum time interval between current pulses to keep the temperature of cells within prescribed limits. The minimum time required between two current pulses is shown to decrease by increasing the airflow rate through the battery pack. By increasing the airflow rate, the battery pack is able to operate at a higher continuous current without exceeding the temperature limit. / Master of Science / In a bid to reduce vehicular emissions, automobile manufacturers are moving towards electric and hybrid vehicles. Most hybrid vehicles have an energy storage system in addition to the conventional Internal Combustion (I.C.) engine. Lithium-ion batteries are used as energy storage systems in most hybrid vehicles due to their high energy density, long life and low self discharge rate. Lithium-ion batteries can be operated efficiently only in a narrow range of temperature. Operating these batteries outside of this temperature range results in their faster degradation which results in lower performance of hybrid vehicle. Due to this limi- tation, prevention of overheating in Lithium-ion batteries is extremely important. To keep the operation of Lithium-ion batteries within specified temperature limits, most batteries in hybrid vehicles are equipped with battery management systems (BMS). The BMS monitors cell voltage, cell temperature and applied current and keeps the temperature of cells within allowable limits. BMS of the battery pack used in this work has fan system for air-cooling the individual cells, and can lower the temperature rise of the cells by varying the fan speed. This BMS has limited temperature sensors that can predict surface temperature of few cells of the battery pack. Additional temperature information can be used to improve thermal control of the battery pack. This work presents a simplified thermal model that can be used in controller of a BMS to improve thermal control of cells and keep the temperature of cells within specified limits.
52

Stratégies de charge rapide de batteries lithium-ion prenant en compte un modèle de vieillissement / Fast charging strategies of a lithium-ion battery using aging model

Mohajer, Sara 05 March 2019 (has links)
Un modèle décrivant les phénomènes physiques internes de batteries lithium-ion est développé pour une détection précise de leur état, avec application au domaine de l'industrie automobile. Pour pouvoir utiliser le modèle à des fins de contrôle de charge rapide, un observateur de vieillissement est tout d'abord conçu et intégré au modèle de batterie. Dans un second temps, une stratégie de contrôle de charge rapide robuste est conçue. Elle est basée sur un contrôleur Crone capable de gérer les grandes incertitudes paramétriques du modèle de batterie tout en atteignant l'objectif de charge rapide. Enfin, quelques simplifications du modèle de batterie, de la technique d'optimisation et de la définition des profils de charge rapide sont proposées et évaluées afin de rendre l'ensemble de la stratégie de recharge rapide applicable à un système embarqué de gestion de batterie. / A physics-based battery model is developed for an accurate state-detection of batteries in the automotive industry. In order to use the model for the purpose of fast charging control an aging observer is designed and integrated to the battery model. In a subsequent step a robust fast charging control is introduced to design a controller able to deal with large parametric uncertainties of the battery model while achieving the fast charging target. Finally some simplifications in the battery model structure, in the optimization technique and in the definition of fast charging profiles are proposed and evaluated to make the whole model applicable for an onboard battery management system.
53

Electrochemical-thermal modeling and microscale phase change for passive internal thermal management of lithium ion batteries

Bandhauer, Todd Matthew 14 November 2011 (has links)
Energy-storing electrochemical batteries are the most critical components of high energy density storage systems for stationary and mobile applications. Lithium-ion batteries have received considerable interest for hybrid electric vehicles (HEV) because of their high specific energy, but face inherent thermal management challenges that have not been adequately addressed. In the present investigation, a fully coupled electrochemical and thermal model for lithium-ion batteries is developed to investigate the impact of different thermal management strategies on battery performance. This work represents the first ever study of these coupled electrochemical-thermal phenomena in batteries from the electrochemical heat generation all the way to the dynamic heat removal in actual HEV drive cycles. In contrast to previous modeling efforts focused either exclusively on particle electrochemistry on the one hand or overall vehicle simulations on the other, the present work predicts local electrochemical reaction rates using temperature-dependent data on commercially available batteries designed for high rates (C/LiFePO4) in a computationally efficient manner. Simulation results show that conventional external cooling systems for these batteries, which have a low composite thermal conductivity (~1 W/m-K), cause either large temperature rises or internal temperature gradients. Thus, a novel, passive internal cooling system that uses heat removal through liquid-vapor phase change is developed. Although there have been prior investigations of phase change at the microscales, fluid flow at the conditions expected here is not well understood. A first-principles based cooling system performance model is developed and validated experimentally, and is integrated into the coupled electrochemical-thermal model for assessment of performance improvement relative to conventional thermal management strategies. The proposed cooling system passively removes heat almost isothermally with negligible thermal resistances between the heat source and cooling fluid. Thus, the minimization of peak temperatures and gradients within batteries allow increased power and energy densities unencumbered by thermal limitations.
54

Nanotubes de carbone décorés par CVD en lit fluidisé : application en batterie lithium-ion / Carbon nanotubes decorated by fluidized bed CVD : Application in lithium-ion battery

Coppey, Nicolas 09 July 2013 (has links)
La technologie lithium-ion est largement utilisée pour le stockage de l’énergie électrique. Le graphite, fréquemment utilisé comme matériau d’anode, peut être avantageusement remplacé par des nanomatériaux hybrides, alliant la forte densité d’énergie du silicium aux nanotubes de carbone qui possèdent des propriétés électriques et mécaniques remarquables. Le procédé de Dépôt Chimique à partir d’une phase Vapeur (CVD) en lit fluidisé est particulièrement performant pour revêtir de façon uniforme des poudres, y compris des micro- et nano-poudres, par des matériaux divers. Des expériences de dépôt de silicium par CVD en lit fluidisé à partir de silane SiH4 ont été menées sur des nanotubes de carbone multiparois enchevêtrés en pelotes de 450 µm de diamètre médian (ARKEMA Graphistrength C100), couvrant la gamme de 10 à 70 % en masse de silicium déposé. Le silicium est déposé uniformément du bord jusqu’au cœur des pelotes, sous forme de nanoparticules réparties régulièrement sur les nanotubes, et dont la taille augmente avec la durée du dépôt. L’étude du comportement hydrodynamique du lit fluidisé révèle que les nanotubes de carbone fluidisent de façon homogène et avec une forte expansion, pour des vitesse de gaz modérées. Ainsi, les transferts de matière entre la phase solide et la phase gaz durant la fluidisation sont très élevés. Enfin, la capacité de cyclage charge-décharge des électrodes nanotubes de carbone - nanoparticules de silicium a été vérifiée en demi-pile au lithium. / Lithium-ion technology is widely used for electrical energy storage. Graphite, frequently used as anode material, could be usefully replaced by hybrid nanomaterials adding the great energy density of silicon to carbon nanotubes, who have remarkable electrical and mechanical properties. The Chemical Vapor Deposition (CVD) in fluidized bed process is specially performant in uniformly coating powders, including micro and nano powders, with various materials. Fluidized bed CVD of silicon experiments, from silane SiH4, have been conducted on multiwalled carbon nanotubes, entangled in pellets, 450 µm in median diameter (ARKEMA Graphistrength C100), covering a range from 10 to 70 % in total mass of deposited silicon. Silicon is uniformly deposited from shell to core of the pellets, forming nanoparticules regularly deposited on nanotubes and size-dependant to the CVD run duration. The study of hydrodynamic behavior of fluidized bed shows that carbon nanotubes fluidize homogeneously and with a wide expansion, for moderated gas velocity. Thus, mass transport between solid and gas phase during the fluidization are very high. Finally, the charge-discharge cycling capacity of carbon nanotubes - silicon nanoparticles electrodes has been checked in lithium half-cell.
55

Clés de progrés technico-économiques des batteries lithium-ion pour la traction automobile / Technical and economic analysis of lithium-ion batteries for electric vehicles

Patry, Gaëtan 16 December 2014 (has links)
Les véhicules électriques et hybrides présentent des avantages considérables qui les rendent attrayants, mais ont un coût élevé limitant leur succès. Ce travail a pour but de contribuer à la baisse du coût des batteries lithium-ion, inducteur majeur du prix des véhicules électriques, en proposant et en évaluant des pistes d'optimisation. Pour cela, une visibilité fiable et détaillée de la structure de coût de ces batteries est un prérequis. C'est pourquoi une méthodologie de modélisation des coûts des batteries lithium-ion en lien avec la conception technique, ainsi que des référentiels économiques sur le procédé de fabrication et les matières ont été mis au point. La modélisation présentant une part d'incertitude, une méthode innovante d'évaluation de celle-ci a aussi été développée. L'utilisation de ce modèle de coût a permis la détection et l'évaluation de piste de progrès. Ainsi, une piste de progrès notable soulevée dans cette thèse porte sur un paramètre de conception négligé dans la littérature : l'épaisseur d'enduction de l'électrode. Ce modèle a aussi permis de confirmer un point déjà remarqué dans plusieurs publications : le poids considérable des matériaux actifs dans le coût total. Pour comprendre les raisons de ce fait, un modèle de coût de ces composés a été développé et a permis de mettre en lumière des voies de réduction. In fine, ce travail propose pour la première fois une modélisation détaillée jusqu'aux précurseurs des matériaux actifs de la structure de coût des batteries lithium-ion et indique des leviers de réduction. Ceci constitue un résultat remarquable, offrant de nouvelles clés pour l'optimisation technico-économique des batteries lithium-ion pour la traction automobile. / Electric and hybrid vehicles are particularly attractive. They offer several advantages, but at a high cost, which explains their current limited success. The purpose of this work is to contribute to the cost reduction of lithium-ion batteries, the main cost factor in electric vehicles. For the evaluation of cost reduction solutions, a clear and detailed comprehension of the structure of the battery cost is required. A complete environment for the cost modelling of cells for lithium ion batteries has also been developed: two cost models and two databases. This environment is made in order to precisely calculate the cost of a battery using the design parameters. Since there are uncertainties surrounding the cost modelling, an innovative method for the assessment of this uncertainty has also been developed. Using the cost model, several ways of improvement for lithium-ion batteries have been detected and quantified. Thus, a way to reduce the cost evaluated in this work is concerned with a design parameter neglected in the literature: the electrode coating thickness. This model has also confirmed a point already suggested on several papers: the preponderance of active materials on overall cost of lithium-ion batteries. To understand the reasons behind this fact, a cost model for active materials has been developed. New ways of cost reduction have been highlighted with this model. Finally, this work proposes for the first time a complete modelling of cells for lithium-ion batteries, detailed up to materials precursors. It also indicates several ways to reduce the cost of these batteries. This work gives to the community a comprehensive view on the cost structure, essential for the optimization of lithium-ion batteries.
56

Preparation and characterization of iron oxide electrode materials for lithium-ion batteries by electrochemical and spectroscopic (XPS, ToF-SIMS) methods / Préparation et caractérisation des matériaux d'électrode en oxyde de fer pour les batteries lithium-ion par méthodes électrochimiques et spectroscopiques (XPS, ToF-SIMS)

Tian, Bingbing 10 July 2014 (has links)
Les batteries lithium-ion sont largement utilisées comme source d'énergie pour les appareils électroniques portables. L'oxyde de fer (principalement α-Fe2O3), l'un des oxydes de métal de transition les plus important, a suscité l’intérêt scientifique depuis qu'il a été reporté comme matériau d'anode pour les batteries lithium-ion en raison de sa capacité théorique élevée (1007 mAh g-1), de son respect de l'environnement, de son abondance et de son faible coût. Dans cette thèse, une électrode modèle en couche mince d'oxyde de fer a été préparée par simple oxydation thermique à 300 °C dans l'air d'un substrat de fer métallique pur, utilisé aussi comme collecteur de courant. Une variété de techniques d'analyse, électrochimiques (CV, EIS et cyclage galvanostatique), spectroscopiques (XPS, ToF-SIMS) et microscopiques (MEB et AFM), ont été mises en oeuvre pour étudier les mécanismes réactionnels et la chimie de surface de l'oxyde de fer à différents stades de lithiation/délithiation et cyclage. / Lithium-ion batteries (LIBs) are widely used as power sources for portable electronic devices. Iron oxide (mainly α-Fe2O3), as one of the most important transition metal oxide, has attracted attention due to its high theoretical capacity (1007 mAh g-1), environmental friendliness, abundance and low cost since reported as anode material for LIBs. In this thesis, an iron oxide thin film model electrode was prepared by simple thermal oxidation of pure metallic iron substrate at 300 oC in air, also used as a current collector. Electrochemical methods (CV, EIS and galvanostatic cycling) were combined with surface (XPS, ToF-SIMS) and microscopic (SEM, AFM) analytical techniques to investigate the reaction mechanisms and the surface chemistry of the iron oxide thin film at different stages of lithiation/delithiation and upon cycling.
57

Exploration of new sulfate-based cathode materials for lithium ion batteries / Exploration de nouveaux matériaux à base de sulfates pour des batteries lithium ion

Lander, Laura 04 November 2016 (has links)
Ces vingt dernières années, les batteries lithium-ion sont devenues dominantes parmi les technologies de stockage d’énergie électrique. Selon les applications, ces batteries (ou les matériaux qui la constituent) doivent présenter différentes spécificités: notamment une grande densité d’énergie, un bas coût, des contraintes de sécurité et de durabilité. Dans ce but, le développement de nouveaux matériaux d’électrode est indispensable. Nous nous sommes engagés, dans cette thèse, dans la synthèse des nouveaux composés polyanioniques à base de sulfates et fluorosulfates comme matériaux d’électrodes positives. Au cours de notre étude, nous avons synthétisé un nouveau polymorphe de KFeSO4F, de symétrie monoclinique, dont nous avons déterminé la structure en combinant la diffraction des rayons X et des neutrons sur poudre. Il est possible d’extraire électrochimiquement K+ de KFeSO4F et de réinsérer Li+ dans cette nouvelle matrice «FeSO4F» à un potentiel moyen de 3.7 V vs. Li+/Li0. Ensuite, nous nous sommes penchés vers des matériaux dépourvus de fluor et nous avons découvert une nouvelle phase Li2Fe(SO4)2 orthorhombique, qui présente des propriétés électrochimiques intéressantes avec un potentiel de 3.73 et 3.85 V vs. Li+/Li0 et une bonne cyclabilité. Nous avons également étudié le composé langbeinite K2Fe2(SO4)3 pour son aptitude à intercaler Li+ une fois le K+ extrait, avec cependant peu de succès. Néanmoins, en examinant d’autres phases langbeinites K2M2(SO4)3 avec M=métaux de transition 3d, nous avons découvert un nouveau composé K2Cu2(SO4)3, qui cristallise dans une structure différente de celle des langbeinites. Enfin, nous n’avons pas seulement étudié ces nouveaux matériaux pour leurs propriétés électrochimiques mais nous avons été également capables de révéler d’autres caractéristiques physiques intéressantes, notamment magnétiques. Les composés Li2Fe(SO4)2 orthorhombique et KFeSO4F monoclinique s’ordonnent antiferromagnétiquement à longue distance et leur structure magnétique autorise un couplage magnéto-électrique. / Lithium-ion batteries (LIBs) have become the dominating electrical energy storage technology in the last two decades. However, depending on their applications, LIBs need to fulfill several requirements such as high energy density, low-cost, safety and sustainability. This calls for the development of new electrode materials. Focusing on the cathode side, we embarked on the synthesis of novel sulfate- and fluorosulfate-based polyanionic compounds. During the course of our study, we discovered a monoclinic KFeSO4F polymorph, whose structure was determined via combined X-ray and neutron powder diffraction. We could electrochemically extract K+ and reinsert Li+ into this new polymorphic “FeSO4F” matrix at an average potential of 3.7 V vs. Li+/Li0. We then turned towards fluorine-free materials and synthesized a new orthorhombic Li2Fe(SO4)2 phase, which presents appealing electrochemical properties in terms of working potential (3.73 and 3.85 V vs. Li+/Li0) and cycling stability. In a next step, we tested langbeinite K2Fe2(SO4)3 for its aptitude to intercalate Li+ once K+ is extracted, with however little success. Nevertheless, exploring other langbeinite K2M2(SO4)3 phases (M=3d transition metal), we discovered a new K2Cu2(SO4)3 compound, which crystallizes in an orthorhombic structure distinct from the langbeinite one. Finally, we investigated these compounds not only for their electrochemistry, but we were also able to demonstrate other interesting physical properties, namely magnetic features. Orthorhombic Li2Fe(SO4)2 and monoclinic KFeSO4F both present a long-range antiferromagnetic spin ordering whose symmetry allows a magnetoelectric effect.
58

Les phosphates de structure olivine LiMPO4 (M=Fe, Mn) comme matériau actif d’électrode positive des accumulateurs Li-ion / The lithium metal phosphates LiMPO4 olivine structure (M = Fe, Mn) as the active material of the positive electrode of Li-ion

Perea, Alexis 21 October 2011 (has links)
Ce mémoire est consacré à la recherche de matériaux d'électrode positive pour batteries Li-ion et plus particulièrement aux phases de type olivine : LiFePO4, LiFe1-yMnyPO4, LiFe1-yCoyPO4 et LiMnyCo1-yPO4 obtenues par voie céramique. Une étude des propriétés physico-chimiques et structurales de ces composés a été réalisée par les techniques classiques de la Chimie du Solide et de la Science des Matériaux : spectrométrie Mössbauer de 57Fe, microscopie MEB et diffraction des rayons X. L'objectif de cette étude est d'identifier et de comprendre les mécanismes de réaction lors du cyclage de la batterie qui peuvent améliorer ou limiter les performances de la batterie.Cette étude a permis de montrer la complémentarité de la spectrométrie Mössbauer et de la diffraction des rayons X pour l'analyse des mécanismes d'oxydo-réduction mis en jeu dans les réactions électrochimiques. A partir du mécanisme biphasé bien connu de LiFePO4, des mécanismes électrochimiques en trois étapes et les phases formées lors du cyclage ont été identifiés pour les phases substituées au manganèse. L'aptitude de ces composés à fonctionner comme matériaux d'électrode positive de batteries Li-Ion de puissance a été démontrée par des cyclages à longue durée à différentes températures et vitesses de cyclage. / This thesis is devoted to finding positive electrode materials for Li-ion batteries and more particularlycompounds of olivine type: LiFePO4, LiFe1-yMnyPO4, LiFe1-yCoyPO4 and LiMnyCo1-yPO4. An in-depth study of their physicochemical and structural properties was done combining Solid State Chemistry and Material Sciences techniques: Mössbauer spectrometry of 57Fe, microscopy SEM and X-ray diffraction. The aim of this study is to identify and understand the electrochemical mechanism during the cycling of the battery that can enhance or limit the battery performance. This study has shown the complementarity of Mössbauer spectrometry and X-ray diffraction to analyze the redox mechanisms involved into the electrochemical reactions. From the well-known two-phase mechanism of LiFePO4, electrochemical mechanisms in three steps and phases formed during cycling have been identified for phase substituted manganese. The ability of these compounds to be used as positive electrode materials for powerful Li-Ion batteries was demonstrated by long-term cycling at different temperatures and rates of cycling.
59

Formulation et procédé d'élaboration sans solvant d'électrodes de batteries Lithium-ion / Novel route of battery Li-ion electrode preparation requiring no solvant

Belaid, Sofiane 10 March 2014 (has links)
Ces travaux de recherche ouvrent une nouvelle voie d’élaboration par voie sèche (sans utilisation de solvants organiques) d’électrodes pour batterie lithium-ion. Le procédé consiste en l’extrusion des différents constituants de l’électrode (liant, matière active et agent conducteur) en présence d’un polymère sacrificiel. Une première étude a porté sur le choix de l’agent conducteur et la nature du revêtement du substrat collecteur afin d’optimiser les propriétés électriques de l’électrode. Ensuite, afin d’une part justifier la cohésion des charges malgré un faible taux de liant et d’autre part expliquer certaines pertes de performances notamment en terme de conductivité électrique et ionique, nous avons étudié les interactions charges-polymère et mis en évidence la présence de polymère adsorbé/greffé à la surface des charge, connu sous le terme de « bound rubber ». Dans une dernière étude, nous avons enfin montré qu’il était possible de contrôler le taux de porosité de l’électrode permettant ainsi de formuler sans solvant une électrode répondant totalement au cahier des charges initial. En effet, des électrodes avec un taux de matière active supérieur à 80 %m (taux de charges global supérieur à 80 %vol), un taux de porosité de 40 %, une épaisseur inférieure à 100 μm, électriquement conductrices, et enfin de capacité initiale de 145 mA.h/g ont été réalisées / This study aims to find a new way of lithium-ion battery electrodes production using dry process. The production procedure consists on the extrusion of different compounds of the electrode (binder, active material and conductive agent) with a sacrificial polymer. First, a study was established to choose optimal conductive agent and coating material of the collector substrat in order to optimize electrical properties of the electrode. Then the interaction between charges and polymer was studied to justify charges cohesion despite the low amount of the binder and to explain some performances loss mainly in terms of ionic and electrical conductivity. This study revealed the presence of adsorbed / grafted polymer on the surface of charges, known as "bound rubber". Finally, we showed that electrode porosity could be controlled. In addition it was proved that it is possible to perform a dry electrode responding to initial specifications. In fact, electrodes with active material content greater than 80 wt% ( rate of global fillers greater than 80 vol % ), a rate of porosity of 40 vol % , a thickness less than 100 μm, high electrically conductive and finally a specific capacity of 145 mA.h/g were performed
60

Études des phénomènes de mouillabilité et des cinétiques d’imprégnation des électrodes positives par l’électrolyte : application aux batteries Lithium-Ion / Study of wetting and impregnation phenomena of the positive electrodes by the electrolyte : application to Lithium-Ion batteries

Lacassagne, Elodie 16 July 2014 (has links)
Le contact entre l'électrode et l'électrolyte est primordial pour le bon fonctionnement d'une batterie Lithium-Ion. L'imprégnation de l'électrode positive par un électrolyte liquide a toujours été considérée comme totale, cependant les phénomènes ne sont pas exactement connus. Ainsi, ces travaux s'intéressent à l'influence de la composition de l'électrode positive (matière active et agent conducteur) sur cette imprégnation. Après une première étude des propriétés conductrices, électrochimiques et morphologiques d'électrodes présentant des formulations plus ou moins éloignées des formulations industrielles, une méthode utilisant l'équation de Washburn a été développée afin d'étudier l'imprégnation des pores modélisés par un ensemble de tubes capillaires. L'utilisation de l'hexadecane, considéré comme un liquide parfaitement mouillant, a permis de déterminer la taille effective des pores indépendamment de l'électrolyte, et celle-ci a pu être comparée à des résultats obtenus grâce à la méthode de thermoporosimétrie. Puis, les régimes de Washburn obtenus lors de la diffusion de l'électrolyte ont mis en évidence les cinétiques d'ascension. Par la suite, la méthode de Washburn a été utilisée afin de caractériser les propriétés d'imprégnation d'électrodes élaborées avec un nouveau liant et selon un procédé innovant s'affranchissant de l'utilisation de solvant. L'utilisation d'un additif permettant la création de porosité d'une part, et la réticulation du liant d'autre part permettent d'obtenir une imprégnation de l'électrolyte comparable à celle observée pour les électrodes fabriquées par voie solvant / The contact between the electrode and the electrolyte is essential for a Lithium-Ion battery functioning. The impregnation of a positive electrode by the electrolyte has always been considered as total; however the phenomena are not exactly known. Thus, in this work, the influence of the positive electrode composition (active material, conductive agent and binder) on the impregnation has been investigated. After a first study focusing on the conductive, electrochemical and morphological properties of the electrodes, with different types of formulation, a method using Washburn equation has been developed in order to study the impregnation of the electrode’s pores, which were modeled as capillary tubes. With the use of hexadecane, considered as a perfectly wetting liquid, the effective pore size has been determined and then compared to the results given by the thermoporosimetry method. Then, the kinetics of ascension have been identified with the Washburn regimes obtained with the diffusion of the electrolyte in the cathodes. Afterwards, Washburn method has been used in order to characterize the impregnation properties of electrodes elaborated with an innovative process without solvent. Thanks to the use of an additive allowing the creation of porosity in one hand and the reticulation of the binder in the other hand, an impregnation of these new electrode by the electrolyte has been considered as comparable to the one observed for the cathodes made with solvent

Page generated in 0.049 seconds