Spelling suggestions: "subject:"lithosphere""
21 |
Boron Isotopic Composition of the Subcontinental Lithospheric MantleJanuary 2014 (has links)
abstract: Boron concentrations and isotopic composition of phlogopite mica, amphibole, and selected coexisting anhydrous phases in mantle-derived xenoliths from the Kaapvaal Craton were measured by secondary ion mass spectrometry in an effort to better understand the B isotope geochemistry of the subcontinental lithospheric mantle (SCLM) and its implications for the global geochemical cycle of B in the mantle. These samples display a wide, and previously unrecognized, range in their boron contents and isotopic compositions reflecting a complex history involving melt depletion and metasomatism by subduction- and plume-derived components, as well as late stage isotopic exchange related to kimberlite emplacements. Micas from ancient lithospheric harzburgite metasomatized by slab-derived fluids suggest extensive B-depletion during subduction, resulting in low-B, isotopically light compositions whereas kimberlite-related metasomatic products and a sample from the 2 Ga Palabora carbonatite have boron isotopic compositions similar to proposed primitive mantle. The results suggest that subduction of oceanic lithosphere plays a limited role in the B geochemistry of the convecting mantle. / Dissertation/Thesis / Masters Thesis Geological Sciences 2014
|
22 |
Heterogeneidades do manto litosférico subcontinental sob a Patagônia : influências de subducção na cunha mantélica e de interações litosfera-astenosferaGervasoni, Fernanda January 2012 (has links)
A região sul da placa Sul-Americana, hoje pertencente à região da Patagônia Argentina e Chilena, formou-se por consequência de acreções continentais desde o Proterozóico. Atualmente, a região é caracterizada por um complexo sistema de placas tectônicas, no qual as placas oceânicas de Nazca, Antártica e Scotia interagem diretamente com a placa continental Sul-Americana através dos processos de subducção e transcorrência. Entre as placas de Nazca e Antártica, ocorre a dorsal do Chile, e a subducção desta dorsal sob a placa Sul-Americana forma a Junção Tríplice do Chile, ocorrendo o soerguimento da astenosfera na região. O magmatismo Cenozóico de composição alcalina que ocorre na região da Patagônia Argentina e Chilena hospeda xenólitos mantélicos ultramáficos de classificação espinélio- e granada-peridotitos. Estes xenólitos são de extrema importância para a caracterização e identificação dos processos atuantes no manto superior abaixo dessa complexa região que hoje é a Patagônia. Estudos do sistema isotópico Re-Os nos xenólitos de Prahuaniyeu (41°20’09.4”S, 67°54’08.1”W), e Chenque (43°38’39.3”S, 68°56’22”W), na região norte da Patagônia Argentina, sugerem que a litosfera abaixo de Prahuaniyeu (TRD ~ 1.69 Ga) é mais antiga que Chenque (TRD ~ 0.71 Ga). Dados de Rb-Sr mostram que a litosfera da região norte da Patagônia possui altas razões 87Sr/86Sr (Prahuaniyeu: 0,7037 a 0,7041; Chenque: 0.7037 a 0.7086), devido fluidos relacionados a desidratação de uma placa de subducção. Através destes dados e dos dados geoquímicos, o manto litosférico subcontinental da região norte da Patagônia sofreu metassomatismo relacionado a slabs derivados de antigas placas de subducção e que proporcionou características de metassomatismo por líquidos/fluidos do tipo-OIB, e atualmente sofreu metassomatismo relacionado aos fluidos derivados da desidratação da placa de subducção atual (Nazca), caracterizados pelo enriquecimento em calcófilos. Todos os peridotitos de Laguna Timone (52°01’39” S, 70°12’53” W), no Campo Vulcânico de Pali Aike, região sul da Patagônia Chilena, também apresentam expressivo enriquecimento nos elementos calcófilos sugerindo que o manto litosférico subcontinental da região sul da Patagônia também foi metasomatisado pelos fluidos derivados da desidratação da placa de subducção atual (Antártica). Em Laguna Timone também há a ocorrência de um glimerito entre os xenólitos e a presença de flogopita e pargasita nos peridotitos classificados como gr-sp lherzolitos, sp-lherzolitos e gr-sp harzburgitos. A presença de um glimerito, de peridotitos com minerais hidratados (flogopita e pargasita) e as similaridades com peridotitos metassomatisados por líquidos astenosféricos (peridotitos do distrito de Manzaz, Argélia e do campo vulcânico Vitim, no lago de Baikal, Sibéria) com baixas razões Ba/Nb, Ba/La e U/Nb, indicam que a litosfera da região sul da Patagônia sofreu metassomatismo por fluidos astenosféricos, ocasionado devido o soerguimento da astensofera durante a passagem da Junção Tríplice do Chile pela região de Pali Aike. / The southern of the South-American plate, today is the Chile and Argentina Patagonia region, was formed as a result of continental accretions since the Proterozoic.Currently, this region is characterized for a complex tectonic plates system, in which Nazca, Antartica and Scotia oceanic plates interact directly to the South-American continental plate by subduction and transcorrent process. Between Nazca and Antartica plate occurs the Chile Ridge, and the Chile Ridge subduction under the South-American plate creates the Chile Triple Junction and the upwelling of underlying asthenospheric mantle in this region. The Cenozoic alkali magamtism that occurs in Patagonia Argentina and Chilena hosts ultramafic mantle xenoliths (spinel- and garnet-peridotites). These xenoliths are extremely important to characterization and identification of the processes that occurred in the upper mantle underneath the Patagonia region. The Re-Os isotopic studies in Prahuaniyeu (41°20’09.4”S, 67°54’08.1”W), and Chenque (43°38’39.3”S, 68°56’22”W) xenoliths, in north Patagonia Argentina, suggests the Prahuaniyeu lithosphere (TRD ~ 1.69 Ga) were formed previously to Chenque (TRD ~ 0.71 Ga). Rb-Sr data show high 87Sr/86Sr ratio (Prahuaniyeu: 0.7037 to 0.7041; Chenque: 0.7037 to 0.7086), suggesting interactions with subduction plate dehydration related fluids. Trough this data, and geochemistry data, the sucontinental lithospheric mantle underneath the north Patagonia region suffered two metasomatic events: one related to the OIB-like melt/fluids from slabs derived by ancient subductions; and another related to the fluids derived from the current subducted plate (Nazca) dehydration, characterized by the chalcophiles enrichment. Peridotites from Laguna Timone (52°01’39” S, 70°12’53” W), in the Pali Aike Volcanic Field, southern Patagonia Chilena region, also shows expressive enrichment in chalcophile elements suggesting metasomatism by fluids from currently subduction (Antartica plate). Another kind of metasomatism occurs in subcontinental lithospheric mantle underneath Pali Aike due the glimmerite occurrence, hydrated minerals (phlogopite and pargasite) in peridotites and similarities with peridotites that suffered metasomatism by asthenospheric melts (Manzaz, Argelia peridotites and Vitim Volcanic Field, Baikal, Siberia peridotites), with low Ba/Nb, Ba/La and U/Nb. All these carachteristics suggest that lithosphere suffered interactions between asthenosphere-lithosphere due upwelling of underlying asthenospheric mantle when the Chile Triple Junction was on the same latitude of Pali Aike.
|
23 |
Imagerie lithosphérique par inversion de formes d’ondes télésismiques – Application aux Alpes Occidentales / Lithospheric imaging from teleseismic full-waveform inversion – Application to the Western AlpsBeller, Stephen 24 February 2017 (has links)
Dans cette thèse, un algorithme d'inversion de formes d'ondes (FWI) est développé pour l'imagerie 3D des paramètres élastiques de la lithosphère à partir des enregistrements télésismiques dans le but d'accroître la résolution des images lithosphériques. La modélisation sismique est effectuée par un méthode hybride d'injection de champ d'ondes. Une première modélisation est effectuée dans une Terre globale avec le logiciel AxiSEM pour déterminer les champs d’ondes aux bords de la cible lithosphérique. Ces solutions sont ensuite propagées dans cette cible par une méthode aux éléments finis spectraux. Le problème inverse est résolu avec un algorithme d’optimisation locale de type quasi-Newton (l-BFGS). La sensibilité de la méthode à la configuration expérimentale (paramétrisation du milieu, modèle initial, géométrie et échantillonnage du dispositif de capteurs) est tout d’abord analysée avec un modèle synthétique réaliste des Alpes Occidentales. L’algorithme est finalement appliqué à neuf événements de la campagne CIFALPS dans les Alpes occidentales jusqu’à une fréquence de 0.2Hz. Les modèles de vitesses P et S et de densité révèlent les grandes structures lithosphériques de la chaîne alpine, en particulier le corps d’Ivrée et la géométrie des Moho européen et adriatique. Plus profondément, deux anomalies de vitesses lentes sont imagées dans le manteau et sont interprétées comme la signature d’une remontée asthénosphérique et la localisation du détachement du panneau plongeant européen. Ces résultats corroborent l’hypothèse d’une subduction continentale de la croûte européenne et d’une éventuelle déchirure du panneau plongeant européen lors de la phase de collision. / In this thesis, a full-waveform inversion (FWI) algorithm is developed with the aim to image the elastic properties (Vp, Vs and density) of 3D lithospheric models from teleseismic recordings with a spatial resolution of the order of the wavelength. Seismic modeling is performed with a wavefield injection hybrid approach. A first simulation is performed in a global radially symmetric Earth with the AxiSEM code to compute the wavefields on the borders of the lithospheric target. Then, these wavefields are propagated in the target with the spectral finite-element method. After linearization, the inverse problem is solved with a quasi-Newton (1-BFGS) optimization algorithm. The sensitivity of the teleseismic FWI to the experimental setup (subsurface parameterization, initial model, sampling and geometry of the station layout) is first assessed with a realistic synthetic model of the Western Alps. The method is finally applied to nine events of the CIFALPS experiment carried out in the Western Alps, up to a frequency of 0.2Hz. Reliable models of P and S wave speeds and density reveal with an unprecedented resolution the crustal and lithospheric structures of the Alpine Belt, in particular the geometry of the Ivrea body, and the European and Adriatic Mohos. Deeper, two slow velocity anomalies beneath the Western Alps are imaged in the mantle. The first, to the west of the chain, is interpreted as the signature of an asthenospheric upwelling, the second near the location of the Ivrea body indicates the European slab break-off. The study supports the hypothesis of the European continental crust subduction and confirms the possible tearing of the European slab.
|
24 |
A Geodynamic Investigation of Magma-Poor Rifting Processes and Melt Generation: A Case Study of the Malawi Rift and Rungwe Volcanic Province, East AfricaNjinju, Emmanuel A. 12 January 2021 (has links)
Our understanding of how magma-poor rifts accommodate strain remains limited largely due to sparse geophysical observations from these rift systems. To better understand magma-poor rifting processes, chapter 1 of this dissertation is focused on investigating the lithosphere-asthenosphere interactions beneath the Malawi Rift, a segment of the magma-poor Western Branch of the East African Rift (EAR). Chapter 2 and 3 are focused on investigating the sources of melt beneath the Rungwe Volcanic Province (RVP), an anomalous volcanic center located at the northern tip of the Malawi Rift. In chapter 1, we use the lithospheric structure of the Malawi Rift derived from the World Gravity Model 2012 to constrain three-dimensional (3D) numerical models of lithosphere-asthenosphere interactions, which indicate ~3 cm/yr asthenospheric upwelling beneath the thin lithosphere (115-125 km) of the northern Malawi Rift and the RVP from lithospheric modulated convection (LMC) that is decoupling from surface motions. We suggest that the asthenospheric upwelling may generate decompression melts which weakens the lithosphere thereby enabling extension.
The source of asthenospheric melt for the RVP is still contentious. Some studies suggest the asthenospheric melt beneath the RVP arises from thermal perturbations in the upper mantle associated with plume head materials, while others propose decompression melting from upwelling asthenosphere due to LMC where the lithosphere is thin. Chapter 2 of this dissertation is focused on testing the hypothesis that asthenospheric melt feeding the RVP can be generated from LMC using realistic constraints on the mantle potential temperature (Tp). We develop a 3D thermomechanical model of LMC beneath the RVP and the entire Malawi Rift that incorporates melt generation. We find decompression melt associated with LMC upwelling (~3 cm/yr) occurs at a maximum depth of ~150 km localized beneath the RVP.
Studies of volcanic rock samples from the RVP indicate plume signatures which are enigmatic since the RVP is highly localized, unlike the large igneous provinces in the Eastern Branch of the EAR. In chapter 3, we test the hypothesis that the melt beneath the RVP is generated from plume materials. We investigate melt generation from plume-lithosphere interactions (PLI) beneath the RVP by developing a 3D seismic tomography-based convection (TBC) model beneath the RVP. The seismic constraints indicate excess temperatures of ~250 K in the sublithospheric mantle beneath the RVP suggesting the presence of a plume. We find a relatively fast upwelling (~10 cm/yr) beneath the RVP which we interpret as a rising plume. The TBC upwelling generates decompression melt (~0.25 %) at a maximum depth of ~200 km beneath the RVP where the lithosphere is thinnest (~100 km). Our results demonstrate that an excess heat source from may be plume materials is necessary for melt generation in the sublithospheric mantle beneath the RVP because passive asthenospheric upwelling of ambient mantle will require a higher than normal Tp to generate melt.
Studies of volcanic rock samples from the RVP indicate plume signatures which are enigmatic since the RVP is highly localized, unlike the large igneous provinces in the Eastern Branch of the EAR. In chapter 3, we test the hypothesis that the melt beneath the RVP is generated from plume materials. We investigate melt generation from plume-lithosphere interactions (PLI) beneath the RVP by developing a 3D seismic tomography-based convection (TBC) model beneath the RVP. The seismic constraints indicate excess temperatures of ≈ 250K in the sublithospheric mantle beneath the RVP suggesting the presence of a plume. We find a relatively fast upwelling (≈10 cm/yr) beneath the RVP which we interpret as a rising plume. The TBC upwelling generates decompression melt (≈0.25 %) at a maximum depth of ≈200 km beneath the RVP where the lithosphere is thinnest (≈100 km). Our results demonstrate that an excess heat source from may be plume materials is necessary for melt generation in the sublithospheric mantle beneath the RVP because passive asthenospheric upwelling of ambient mantle will require a higher than normal Tp to generate melt. / Doctor of Philosophy / Studies suggest the presence of hot, melted rock deep in the continents makes them weaker and easier to break apart, however, our understanding of how continents with less melted rock break apart remains limited largely due to sparse geophysical observations from these dry areas. To better understand how continents with less melted rock break apart, chapter 1 of this dissertation is focused on investigating the interactions between the rigid part of the Earth, called lithosphere, and the underlying lower viscosity rock layer called asthenosphere beneath the Malawi Rift, a segment of the magma-poor Western Branch of the East African Rift (EAR). Chapter 2 and 3 are focused on investigating the sources of melt beneath the Rungwe Volcanic Province (RVP), an anomalous volcanic center located at the northern tip of the Malawi Rift. In chapter 1, we use the lithospheric structure of the Malawi Rift derived from gravity data to constrain three-dimensional (3-D) numerical models of lithosphere-asthenosphere interactions, which indicate ~3 cm/yr asthenospheric upwelling beneath the thin lithosphere (115-125 km) of the northern Malawi Rift and the RVP that does not seem to drive movements at the surface. We suggest that the asthenospheric upwelling may generate melted rock which weakens the lithosphere thereby enabling extension.
However, the source of asthenospheric melt for the RVP is still contentious. Some studies suggest the asthenospheric melt beneath the RVP arises from thermal perturbations in the upper mantle associated with rising mantle rocks or plume head materials, while others propose melting occurs from upwelling asthenosphere due to lithospheric modulated convection (LMC) where the lithosphere is thin. Chapter 2 of this dissertation is focused on testing the hypothesis that asthenospheric melt feeding the RVP can be generated from LMC. We develop a 3D thermomechanical model of LMC beneath the RVP and the entire Malawi Rift that incorporates melt generation. We find decompression melt associated with LMC upwelling (~3 cm/yr) occurs at a maximum depth of ~150 km localized beneath the RVP.
Studies of volcanic rock samples from the RVP indicate plume signatures which are enigmatic since the RVP is highly localized, unlike the large igneous provinces in the Eastern Branch of the EAR. In chapter 3, we investigate melt generation from plume-lithosphere interactions (PLI) beneath the RVP. We develop a 3D model of convection using information from seismology we call tomography-based convection (TBC) beneath the RVP. The seismic data indicate excess temperatures of ~250 K beneath the RVP suggesting the presence of a plume. We find a relatively fast upwelling (~10 cm/yr) beneath the RVP which we interpret as a rising plume. The TBC upwelling generates decompression melt at a maximum depth of ~200 km beneath the RVP. Our results demonstrate that an excess heat source from may be plume materials is necessary for melt generation in the sublithospheric mantle beneath the RVP because passive asthenospheric upwelling of ambient mantle will require a higher than normal mantle potential temperatures to generate melt.
|
25 |
Understanding Non-Plume Related Intraplate VolcanismMazza, Sarah Elizabeth 21 December 2016 (has links)
Intraplate volcanism is a worldwide phenomenon producing volcanoes away from active plate boundaries, a process that cannot yet be sufficiently explained by plate tectonic processes, and thus is still a missing piece in the understanding of the dynamics and evolution of our planet. Models for the formation of intraplate volcanism are dominated by mantle plumes, but alternative explanations, such as adiabatic decompression triggered by lithospheric delamination, and edge driven convection (EDC), could be responsible for magmatism. This dissertation explores intraplate volcanic locations that do not fit the mantle plume model, and presents geochemical evidence for lithospheric delamination and edge driven convection for the cause of volcanism.
I studied an Eocene volcanic swarm exposed in the Appalachian Valley and Ridge Province of Virginia and West Virginia, which are the youngest known igneous rocks along the Eastern North American Margin (ENAM). These magmas provide the only window into the most recent deep processes contributing to the post-rift evolution of this margin. This study presents the first high precision 40Ar/39Ar ages along with new geochemical data, and radiogenic isotopes that constrain the melting conditions and the timing of emplacement. Modeling of the melting conditions suggests that melting occurred under conditions slightly higher than average mantle beneath mid-ocean ridges. Asthenosphere upwelling related to localized lithospheric delamination is a possible process that can explain the intraplate signature of these magmas that lack evidence of a thermal anomaly.
The Virginia-West Virginia region of the ENAM also preserves a second post-rift magmatic event in the Late Jurassic. By studying both the Late Jurassic and Eocene magmatic events we can better understand the post-rift evolution of passive margins. This study presents a comprehensive set of geochemical data that includes new 40Ar/39Ar ages, major and trace-element compositions, and analysis of radiogenic isotopes to further constrain their magmatic history. Modeling suggests that the felsic volcanics from both the Late Jurassic and Eocene events are consistent with fractional crystallization. Lithospheric delamination is the best hypothesis for magmatism in Virginia/West Virginia, due to tectonic instabilities that are remnant from the long-term evolution of this margin, resulting in a 'passive-aggressive' margin that records multiple magmatic events long after rifting ended.
Finally, Bermuda is an intraplate volcano that has been historically classified as mantle plume related but evidence to support the plume model is lacking. Instead, geophysics have argued that EDC is the best model to explain Bermuda volcanism. This study presents the first geochemical analysis of Bermuda volcanism, and found that Bermuda was built by two different magmatic processes: melting of carbonated peridotite to produce silica under-saturated, trace element enriched volcanics and melting of an enriched upper mantle component that produced silica saturated volcanics. We attribute the cyclicity of silica under-saturated and silica saturated volcanics to EDC melting. / Ph. D. / Intraplate volcanoes are found away from active plate boundaries and cannot be explained by plate tectonics. Most introductory geology textbooks attribute intraplate volcanism to the mantle plume model, where hot material rises buoyantly through the Earth’s mantle from depths near the core-mantle boundary. The associated volcanoes are then found in a linear track, due to plate motion over the stationary mantle plume. The mantle plume model is valid for some locations, such as Hawaii, but cannot explain all intraplate volcanoes. Other localized models such as lithospheric delamination and edge driven convection are needed to explain intraplate volcanism. Lithospheric delamination is a process where the base of the lithosphere (crust and upper mantle) pulls away from the top of the lithosphere due to density contrasts. The delamination of the base of the lithosphere allows for the warmer asthenosphere (mantle beneath the lithosphere) to upwell and produce melts by decompression. Edge driven convection is a process where temperature differences in thick, cold continental crust and thin, warm oceanic crust creates a localized convecting cell in the mantle. This convecting cell is associated with down-welling beneath the continental crust and upwelling beneath the oceanic crust, and associated volcanism would be found on the oceanic crust.
In Virginia-West Virginia there are two pulses of intraplate volcanic activity. Chapter 2 of this dissertation explores the geochemistry of the youngest volcanoes of Eastern North America, which are 48 million years old. Combining the geochemistry with the regional geophysics I proposed that lithospheric delamination is a plausible mechanism for these volcanic rocks. Chapter 3 further examines these volcanoes and adds a second pulse of magmatism that occurred 152 million years ago. Lithospheric delamination can also explain the 152 million year old volcanics.
Bermuda is an extinct volcanic island found in the Atlantic Ocean, and has been historically explain by the mantle plume model. However, there has been no geochemical data to support the mantle plume model and the geophysical evidence supports edge driven convection. I present the first geochemical analysis of Bermuda’s volcanic pedestal and find that edge driven convection is a more plausible mechanism to account for volcanism.
|
26 |
How do mantle plumes help to thin and break up the lithosphere? / Comment un panache mantellique peut-il aider à diminuer la lithosphère ?Agrusta, Roberto 12 December 2012 (has links)
On propose traditionnellement que les panaches mantelliques jouent un rôle important dans l'amincissement de la lithosphère. Des données sismologiques sous Hawaïi et Cape Verde suggèrent une limite lithosphère-asthénosphère (LAB) jusqu'à 50 km plus superficielle qu'autour. Des modèles numériques ont montré, en effet, qu'une convection à petite échelle (SSC, pour small-scale convection) dans la couche à faible viscosité formée à la base de la lithosphère par l'accumulation de la matière des panaches peut être un mécanisme efficace d'érosion du manteau lithosphérique. Cependant, ces modèles montrent que, si la plaque se déplace, l'érosion thermo-mécanique de la lithosphère ne dépasse pas 30 km. Afin de mieux étudier les interactions panache/lithosphère, et d'ainsi caractériser les paramètres contrôlant cette érosion, nous avons effectué des simulations numériques en 2D qui utilisent un modèle pétro-thermomécanique basé sur des approches en différences finies associées à des marqueurs actifs. Nous avons focalisé sur : (1) la dynamique de la SSC dans la couche à faible viscosité formée par étalement du panache à la base de la lithosphère et (2) l'effet de la fusion partielle sur cette dynamique. La plaque lithosphérique et le manteau sous-jacent sont caractérisés par une composition péridotitique homogène à viscosité newtonienne dépendante de la température et de la pression. Une vitesse constante, comprise entre 5 et 12,5 cm/an, est imposée au sommet de la plaque. Les panaches sont créés en imposant une anomalie thermique de 150 à 350 K en base du modèle (700 km de profondeur). La fusion partielle est calculée à partir d'un paramétrization des solidus et liquidus pour la fusion anhydre des péridotites. Nous modélisons la déplétion de la péridotite et son effet sur la fusion partielle en supposant que le degré de fusion ne peut qu'augmenter au cours du temps. Le liquide est accumulé jusqu'à un seuil et la masse fondue en excès est extraite instantanément. La rhéologie de la péridotite partiellement fondue est déterminée utilisant une constitutive relation basée sur un modèle de contiguïté, qui permet de prendre en compte les effets de la distribution de matière liquide à l'échelle de grain. La densité varie en fonction du degré de fusion partielle et de la déplétion du résidu solide. Nous analysons la cinématique du panache lors de son interaction avec une plaque mobile, la dynamique de la convection à petite-échelle (SSC) et le rajeunissement thermique de la lithosphère qui en résulte. Le temps de démarrage et la vigueur de la SSC et, par conséquent, le nouvel état d'équilibre thermique de la lithosphère à l'aplomb du panache dépendent du nombre de Rayleigh (Ra) dans la couche instable à la base de la lithosphère, qui est contrôlé par l'anomalie de température et la rhéologie dans cette couche. Pour des panaches chauds et vigoureux, le démarrage de la SSC ne dépend pas de la vitesse de la plaque. Pour des panaches plus faibles, le temps de démarrage diminue avec l'augmentation de la vitesse de la plaque. Ce comportement est expliqué par une différence dans la structure thermique de la lithosphère, due à des échanges diffusifs à la base lithosphère plus efficaces pour des panaches lents. La diminution de la viscosité associée à la présence de magma et la diminution de la densité du résidu solide accélèrent le démarrage et accroissent la vigueur de la SSC, entraînant une érosion plus efficace et plus proche du point d'impact de panache sous la lithosphère. / Mantle plumes are traditionally proposed to play an important role in thinning the lithosphere. Seismic images beneath Hawaii and Cape Verde, for instance, show a lithosphere-asthenosphere boundary (LAB) up to 50 km shallower than the surroundings. However, previous numerical modeling of plume-lithosphere interaction implies that unless the plate is stationary the thermo-mechanical erosion of the lithosphere does not exceed 30 km. We used 2D petrological-thermo-mechanical numerical models based on a finite-difference method on a staggered grid and marker in cell method to further study the plume-lithosphere interaction. We focused on: (1) analyzing the dynamics of the small-scale convection (SSC) in the plume wake as a function of the plume vigor and plate velocity and (2) quantifying the effect of partial melting on this SSC. A homogeneous peridotite composition with a Newtonian temperature- and pressure-dependent viscosity is used to simulate both the plate and the convective mantle. A constant velocity, ranging from 5 to 12.5 cm/yr, is imposed at the top of the plate. Plumes are created by imposing a thermal anomaly of 150 to 350 K on a 50 km wide domain at the base of the model (700 km depth); the plate right above the thermal anomaly is 40 Myr old. Partial melting is modeled using the batch-melting solidus and liquidus in anhydrous conditions. We model the progressive depletion of peridotite and its effect on partial melting by assuming that the melting degree only strictly increases through time. Melt is accumulated until a porosity threshold is reached and the excess melt is instantaneously extracted. The rheology of the partially molten peridotite is determined using a viscous constitutive relationship based on a contiguity model, which enables to take into account the effects of grain-scale melt distribution. The density varies as a function of the melt fraction and of the depletion of the residue. We analyze the kinematics of the plume as it impacts a moving plate, the dynamics of time-dependent small-scale convection (SSC) instabilities developing in the low-viscosity layer formed by spreading of hot plume material at the lithosphere base, and the resulting thermal rejuvenation of the lithosphere. The onset time and the vigor of SSC and, hence, the new equilibrium thermal state of the lithosphere atop the plume wake depends on the Rayleigh number (Ra) in the unstable layer at the base of the lithosphere, which is controlled by the temperature anomaly and rheology in the plume-fed layer. For vigorous, hot plumes, SSC onset times do not depend on plate velocity. For more sluggish plumes, SSC onset times decrease with increasing plate velocity. This behavior is explained by differences in the thermal structure of the lithosphere, due to variations in the spreading behavior of the plume material at the lithosphere base. Reduction of the viscosity in partial molten domains and decrease in density of the depleted residuum accelerate and enhance the vigor of small-scale convection in the plume-fed low-viscosity layer at the lithosphere base. It also reduces SSC onset times, leading to more effective erosion closer to the plume-lithosphere impact.
|
27 |
Evolução química do manto litosférico subcontinental no nordeste da Província Borborema com base em geoquímica elementar e isotópica / not availableNgonge, Emmanuel Donald 03 February 2016 (has links)
Essa tese de Doutorado tem por objetivo apresentar uma discussão sobre a evolução do manto litosférico subcontinental na região nordeste da Província Borborema, desde o Mesozóico até Cenozóico. Para isso foram obtidos dados de geoquímica elementar e isotópica de dois importantes eventos magmáticos expostos na região: (i) o enxame de diques toleíticos Ceará-Mirim (Cretáceo Inferior) e (ii) o vulcanismo alcalino Macau representado por plugs, necks e lavas com idades distribuídas desde o Oligoceno ao Mioceno.O enxame de diques de Ceará Mirim é composto de (i) olivina toleítos de alto-Ti, (ii) toleítos evoluídos de alto-Ti (TiO2>1,5 wt.%; Ti/Y>360), e (iii) toleítos de baixo-Ti (TiO2<1,5wt%; Ti/Y<360), todos com forte enriquecimento em elementos incompatíveis relativo ao manto primitivo. Os olivina toleitos exibem teores em Nb-Ta semelhante àqueles de magmas do tipo OIB. Ao contrário, os toleitos evoluídos de alto-Ti e os toleítos a baixo-Ti mostram anomalias negativas em Nb-Ta, as quais são mais pronunciadas nos basaltos de baixo-Ti. Os olivina toleítos mostram a razões iniciais 87 Sr/86Sr uniformes (0,7034-0,7037), enquanto que as composições isotópicas de Nd e Pb são variáveis, parte delas moderadamente radiogênicas(0,512518- 0,512699; 19,13-19,25). As composições isotópicas de Pb sugerem a contribuição de um componente FOZO na gênese desses olivina toleitos. Os outros toleítos apresentam valores muito mais variáveis, com 87Sr/86Sr radiogênicas (em comparação ao BSEt=127) e valores subcondríticos para Nd (<0,512442 ou \'épsilon\'Nd< -0,6). Quando combinadas com razões 206Pb/204Pb entre 17,08 e 18,41, os toleitos evoluídos de alto-Ti e os toleitos de baixo-Ti mostram afinidade com o componente EMI, sendo as características enriquecidas dos toleitos de baixo-Ti mais acentuadas devido a contaminação crustal durante ascensão. As similaridades com EMI, as anomalia de Nb e idades modelo TDM> 1 Ga, são evidências composicionais para atribuir a origem dos toleítos evoluídos de altoe baixo-Ti à fusão do manto litosférico subcontinental proterozóico, metasomatizado por um componente de subducção. Os dados de termometria aliados aos padrões fracionados de elementos terras raras indicam que a fusão deve ter acontecido a ~60 km,na região de transição granada-espinélio assumindo uma litosfera afinada durante o Cretáceo. Os olivina toleitos, por sua vez, teriam fundido em profundidades de ~75 km a partir da astenosfera tipo-FOZO, passivamente soerguida em decorrência de afinamento litosférico relacionado a esforços distensivos duranteo Cretáceo. O vulcanismo cenozóico Macau é representado por alcali-basaltos, basanitos e nefelinitos. Basaltos toleíticos são menos comuns. Em geral, os basaltos Macau guardam alguma semelhança com os olivina toleitos cretáceos. São enriquecidos em elementos incompatíveis e 6 em Nb-Ta, mas com características mais primitivas como10<MgO<15wt.% e 200<Ni<500ppm. Todos experimentaram fracionamento de olivina e clinopiroxênio, enquanto plagioclásio contribuiu em menor importância. O modelamento feito a partir de razões entre elementos terras raras combinado a dados termométricos indicam que os basanitos e alcali-basaltos teriam fundido a partir de lherzolitos a profundidade entre 80-90 km, na região de transição espinéliogranada, enquanto que os nefelinitos seriam produto da fusão (<0,1%) mais profunda,a ~120 km de profundidade (~1470ºC). As composições isotópicas Sr-Nd-Pb são semelhantes a magmas OIB gerados pela mistura de dois reservatórios, odelados como FOZO e EM. A identificação de FOZO no Cenozóico da Província Borborema aliada à ausência de um cenário tectônico compatível com afinamento litosférico/ascensão passiva da astenosfera e/ou presença de plumas,nos leva a propor que a astenosfera tipo-FOZO teria se re-equilibrado termalmente com o manto litosférico subcontinental desde o Cretáceo. Ao contrário, o componente EM nos basaltos Macau não pode ser correlacionado ao mesmo manto litosférico enriquecido identificado nos toleitos. Embora ainda não muito clara, sua origem é por ora atribuída a metassomatismo potássico provavelmente relacionado ao impacto da pluma de Fernando de Noronha sob o continente. As similaridades isotópicas entre esses basaltos oceânicos e os basaltos continentais sugerem que alguma ligação genética deve ser considerada. Por fim, composições isotópicas de Os e idades modelo TRD obtidos de xenólitos peridotíticos nos basaltos cenozóicos, registram a recorrência de múltiplos eventos de extração de magmas (1,3 a 0,1 Ga) e metassomatismo, confirmando a evolução química complexa experimentada pelo manto litosférico subcontinental no extremo nordeste da Província Borborema. / The objective of this doctoral thesis is to present a discussion on the evolution of the subcontinental lithospheric mantle in the northeast of the Borborema Province from the Mesozoic to the Cenozoic. For this reason, element and isotope geochemical data were obtained from two important magmatic events in the region: (i) the Lower Cretaceous Ceará-Mirim dyke swarm and (ii) the Macau alkaline volcanism characterized by plugs, necks and flows of Oligocene to Miocene ages. The Ceará-Mirim dyke swarm is composed of (i) high-Ti olivine tholeiites, (ii) evolved high-Ti tholeiites (TiO2>1.5 wt.%; Ti/Y>360), and (iii) low-Ti tholeiites (TiO2<1.5 wt.%; Ti/Y<360), all exhibiting strong enrichment in incompatible elements relative to the primitive mantle. The Nb-Ta abundance in the olivine tholeiites is of OIB affinity, while the evolved high-Ti and the low-Ti tholeiites demonstrate Nb-Ta negative anomalies, more accentuated in the low-Ti basalts. Initial 87Sr/86Sr ratios in the olivine tholeiites are less variable (0.7034-0.7037), but have variable Nd and Pb isotopic compositions with some moderately radiogenic (0.512518-0.512699; 19.13-19.25). The Pb isotopic compositions suggest the contribution of a FOZO component in the genesis of the olivine tholeiites. The other tholeiites exhibit more variable values, with radiogenic 87Sr/86Sr (relative to BSEt=127) and subchondritic Nd <;0.512442 or \'èpsilon\'Nd < -0.6). When combined with the 206Pb/204Pb ratios of 17.08 to 18.41, the evolve high-Ti tholeiites demonstrate EM1 affinity, with the enriched nature of the low-Ti tholeiites more enhanced due to crustal assimilation during ascent. The similarities with EM1, the Nb anomaly and the TDM model age> 1 Ga, are compositional evidence that suggest the magmas of the evolved high-Ti and low-Ti tholeiites were generated from the melting of the Proterozoic subcontinental lithospheric mantle, metasomatized by a subduction component. A combination of the inferred temperature data with the fractionated rare earth element patterns indicate that melting might have occurred at ~60km, at the garnet-spinel lherzolites transition zone in a thinned lithosphere during the Cretaceous. On the other hand, the olivine tholeiite magma might have been generated at ~75 km depth, in a FOZO-type asthenosphere that passively welled up due to the lithospheric extension and thinning in the Cretaceous. The Macau volcanism is composed of alkali basalts, basanites and nephelinites, and rare tholeiitic basalts. Generally, the Macau basalts and the Cretaceous olivine tholeiites share some similarities. They are enriched in incompatible elements and in Nb-Ta, but with more primitive characteristics like 10<MgO<15 wt.% and 200<Ni<500 ppm. All experienced fractionation of olivine and clinopyroxene, but less important for plagioclase. Rare earth element modeling and inferred temperature data indicate that the basanitic and the alkaline basaltic magmas melted from lherzolites at 80-90 km depth, at the spinel-garnet transition, while the nephelinitic magmas were generated from melting (<0.1%) at deeper levels, at ~120 km of depth (~1470°C). The Sr-Nd-Pb isotopic compositions have affinity to OIB magmas generated from the mixing of two reservoirs, modeled as FOZO and EM. The identification of FOZO in the Borborema Province in the Cenozoic with the absence of a compatible tectonic scenario such as lithospheric thinning/passive asthenospheric upwelling and/or the presence of plumes, make us to propose that a FOZO-type asthenosphere might have thermally re-equilibrated as a subcontinental lithospheric mantle since the Cretaceous. On the other hand, the EM component in the Macau basalts cannot be linked to the same enriched lithospheric mantle identified with the tholeiites. However, their origin, though not very clear, is attributed to potassic metasomatism probably linked to the impact of the Fernando de Noronha plume on the continent. The similarities in isotopic signatures between the oceanic and continental basalts suggest a genetic link between both. Lastly, the Os isotopic compositions and TRD model ages contrained from the peridotite xenoliths in the Cenozoic basalts, record the occurrence of multiple magma extraction (1.3 to 0.1 Ga) and metasomatism events, confirming a complex chemical evolution in the subcontinental lithosphere in the far northeast of the Borborema Province.
|
28 |
Les marges passives volcaniques : origine, structure et développement / Volcanic passive margins : origin, structure and developmentGuan, Huixin 12 July 2018 (has links)
Une marge passive est une zone de transition non-active entre lithosphère continentale et lithosphère océanique. De nombreuses marges passives présentent un fort développement magmatique (>50%). Ces marges passives volcaniques (MPVs) marquent la rupture lithosphérique au-dessus d’un manteau en fusion (partielle) et sont typiquement caractérisées par l’intrusion et l’extrusion d’un volume significatif de produits magmatiques dans la croûte lors des périodes ante-rift, syn-rift et post-rift. A partir d’une compilation bibliographique, de données sismiques (profils de sismique réflexion ION-GXT, sismique 3D) et d’observations réalisées sur le terrain à l’Est et à l’Ouest du Groenland, les objectifs de cette thèse étaient : (1) de mieux caractériser les modes tectoniques d’accommodation des flexures de la croûte supérieure sous les SDRs (seaward dipping reflectors) et l’interprétation des SDRs externes et, (2), de placer la rupture magmatique à l’échelle de la fragmentation d’un supercontinent. Les principaux résultats obtenus sont: 1) La rupture d’un supercontinent est toujours synmagmatique. Cette rupture se propage ensuite de manière non-magmatique (article en préparation); 2) Les SDRs externes sont découplés tectoniquement d’une croûte inférieure d’origine continentale exhumée. Du matériel d’origine continental pourrait exister en profondeur de manière continue au niveau de rides asismiques transverses (comme GIFR) (article soumis); 3) La flexure crustale est aussi accommodée par du magma qui circule dans les failles de détachement sous SDRs. Un découplage existe à l’extrados des flexures accommodé par des injections de magma syn-tectoniques sous forme de laccolithes à la base des SDRs internes. / A passive margin is a non-active transition zone between the continental lithosphere and the oceanic lithosphere. Most of passive margins (>50%) show a strong magmatic development. These volcanic passive margins (VPMs) mark the lithospheric breakup over a melted mantle and they are typically characterized by a huge volume of intrusive and extrusive magmatism into the crust during ante-rift, syn-rift, and post-rift periods.Based on bibliographies, seismic data (IONGXT seismic reflection profiles, 3D seismic) and observations and results gained from fieldtrips on East and West Greenland coast, the objectives of this thesis were: (1) to better characterize the tectonic accommodation of the flexure of the upper crust which beneath inner SDRs and the signification of outer SDRs, and (3) to place the magmatic breakup on the scale of the fragmentation of a supercontinent.The main results obtained are: 1) the breakup of a supercontinent is always syn-magmatic. This breakup then propagates in a non-magmatic way (paper in preparation); 2) the outer SDRs are tectonically decoupled from an exhumed continental lower crust.The material of continental origin could exist deeply continuously across a transverse aseismic ridge such as the GIFR (paper submitted); 3) The crustal flexure is also accommodated by the magma that circulate in detachment faults beneath the inner SDRs. There is a decoupling at the extrados zone of the flexure which is accommodated by syn-tectonic magma injections in the form of laccoliths between inner SDRs and upper crust.
|
29 |
Evolução geoquímica do manto litosférico subcontinental do Vulcão Agua Poca, Província Basáltica Andino-Cuyana, Centro-Oeste da ArgentinaJalowitzki, Tiago Luis Reis January 2010 (has links)
O campo vulcânico Patagônico é composto pelo vulcanismo datado do Quaternário ao Cretáceo e está amplamente distribuído no ambiente geotectônico de extra back-arc continental. Onze vulcões associados à ocorrência de xenólitos mantélicos estão situados dos 36°13’S aos 44°52’S. Estes vulcões são dominantemente compostos por basanitos e a basaltos alcalinos, que são divididos em dois grupos com base em aspectos petrográficos, geoquímicos e isotópicos. (Grupos I e II). Estes Grupos estão relacionados a fontes mantélicas similares, mas foram submetidos a diferentes processos metassomáticos. Os Grupos I e I foram gerados a partir de baixas taxas de fusão a partir de uma fonte mantélica do tipo OIB na zona de estabilidade da granada, mas o Grupo II tem características de manto enriquecido (EMII) possivelmente herdadas de um agente metassomático relacionado à zona de subducção, enquanto que o Grupo I demonstra assinatura geoquímica de magmas tipo OIB relacionados a fontes mantélicas ricas em flogopita. Os basaltos alcalinos do vulcão Agua Poca (37º01’S - 68º07’W) pertencem ao Grupo II e são traquibasaltos. O vulcão Agua Poca é definido é piroclástico monogenético, é composto por intercalações de camadas de spatter e cinder, hospeda xenólitos mantélicos e está localizado a oeste da Província de La Pampa, no extremo norte da Argentina. As amostras de xenólitos mostram textura protogranular, protogranular a porfiroclástica, porfiroclástica e porfiroclástica a equigranular e são compostos por olivina (fosterita), ortopiroxênio (enstatita), clinopiroxênio (diopsídio) e espinélio (sp). Os xenólitos estudados são peridotitos da fácies espinélio e piroxenitos anidros em basaltos alcalinos do Pleistoceno com #Mg em rocha total de 89 a 91. As assinaturas geoquímicas desses xenólitos mostram correlação negativa entre os principais óxidos quando dispostos contra o #Mg e estão empobrecidos em elementos incompatíveis em relação ao manto primitivo (MP). Os xenólitos do vulcão Agua Poca são caracterizados pelo empobrecimento de ETRP e ETRM normalizados para o MP e pelo fracionamento de ETRL em relação aos ETRP (CeN/YbN = 0,15-0,5), com exceção da amostra HAP10 (1,46). Esse comportamento indica que os xenólitos do terreno Cuyania são o resultado de 1 a 10% de fusão do DMM (Manto Depletado) ou de 8 a 17% do MP (Manto Primitivo). Em geral, os peridotitos mostram anomalias positivas de Ba, U, Ta, Pb, Zr e Ti; e anomalias negativas de Rb, Th, Nb, La e Y, enquanto que os piroxenitos mostram anomalias positivas de Ba, U, Ta e Pb; e anomalias negativas de Th, Nb, La, Zr, Hf, Ti e Y. Curvas de mistura calculadas para o resíduo de fusão do MP/DMM com a composição de fluídos/sedimentos derivados de ambientes de subducção indicam interação do manto com até 3% de fluídos/sedimentos. As razões 87Sr/86Sr (0,702874 - 0,704999, com média de 0,704035) são muito similares àquelas definidas para peridotitos com fonte tipo OIB. Agua Poca tem razões 87Sr/86Sr, que estão abaixo daquelas definidas para peridotitos metassomatizados (usualmente >0,705). As razões de Nb/Ta sugerem a presença de um reservatório eclogítico refratário subductado fusão parcial gerando líquidos alcalinos com razões Nb/Ta supercondríticas. / The Patagonian Volcanic Field composed of late Cretaceous to Quaternary volcanism is widely distributed in a continental extra back-arc geotectonic environment. Eleven monogenetic volcanoes accompanied with ultramafic xenoliths are situated from 36°13′S to 44°52′S. These volcanoes are dominantly composed of basanite to alkaline basalt, which are divided into two groups, based on mineralogy, geochemical and isotope compositions (Groups I and II). These Groups are originated from the similar subcontinental mantle sources, but were undergone to different metasomatism processes. Groups I and II were generated from low melting degrees of an OIB-like garnet peridotite, but the Group II has enriched mantle (EMII) characteristics possibly inherited from on-going subduction related metasomatism, while Group I demonstrates the OIB-like signature, which might result from phlogopite-bearing in the subcontinental lithosphere. The alkaline basalts from Agua Poca volcano (37º01’S - 68º07’W) belong to the Group II and are trachybasalts. The Agua Poca volcano is a monogenetic pyroclastic volcano composed by intercalation of spatter and cinder layers, host ultramafic mantle xenoliths and is located in the West of the La Pampa Province, Northernmost of Argentine Patagonia. The xenoliths show protogranular, protogranular to porphyroclastic, porphyroclastic and porphyroclastic to equigranular textures, and are composed of olivine (fosterite), orthopyroxene (enstatite), clinopyroxene (diopside) and spinel (sp). The studied xenoliths are anhydrous spinel-bearing peridotite and pyroxenite xenoliths in Pleistocene alkali basalts with whole rock Mg# from 88 to 91. Geochemical signatures of the mantle xenoliths show negative correlation between main oxides against Mg# and depletion in incompatible elements compared to primitive mantle (PM). Agua Poca mantle xenoliths are characterized by flat Sun & McDonough (1989) primitive mantle (PM) normalized HREE and MREE patterns, and depletion of LREE compared to HREE (CeN/YbN = 0.15-0.5), with exception of the HAP10 (1.46) sample. These characteristics suggest that partial melting event is the main process responsible for the generation of these xenoliths. Model calculations suggest that the xenoliths are the result of 1 to 10% of DMM (Depleted Mantle MORB) or 8 to 17% of PM partial melting. Peridotite samples show positive anomalies of Ba, U, Ta, Pb, Zr and Ti; and negative anomalies of Rb, Th, Nb, La and Y, while the pyroxenite samples show positive anomalies of Ba, U, Ta and Pb; and negative anomalies of Th, Nb, La, Zr, Hf, Ti and Y. Mixing curves calculated to mixtures of melting residue of PM/DMM and fluid or sediment compositions related to subduction tectonic setting end members suggest up to 3% of interaction of the fluid sediment on the depleted mantle residue. 87Sr/86Sr ratios (0.702874 - 0.704999, with average of 0.704035) are similar to those defined to peridotites with OIB source (87Sr/86Sr = 0.70244 to 0.70502), being close to Depleted Mantle (DM; 87Sr/86Sr = 0.7023 to 0.7032) values. Nb/Ta ratios suggest that Agua Poca xenoliths were undergone to partial melting processes that generated alkaline magmas with superchondritic Nb/Ta ratios.
|
30 |
Evolução geoquímica do manto litosférico subcontinental do Vulcão Agua Poca, Província Basáltica Andino-Cuyana, Centro-Oeste da ArgentinaJalowitzki, Tiago Luis Reis January 2010 (has links)
O campo vulcânico Patagônico é composto pelo vulcanismo datado do Quaternário ao Cretáceo e está amplamente distribuído no ambiente geotectônico de extra back-arc continental. Onze vulcões associados à ocorrência de xenólitos mantélicos estão situados dos 36°13’S aos 44°52’S. Estes vulcões são dominantemente compostos por basanitos e a basaltos alcalinos, que são divididos em dois grupos com base em aspectos petrográficos, geoquímicos e isotópicos. (Grupos I e II). Estes Grupos estão relacionados a fontes mantélicas similares, mas foram submetidos a diferentes processos metassomáticos. Os Grupos I e I foram gerados a partir de baixas taxas de fusão a partir de uma fonte mantélica do tipo OIB na zona de estabilidade da granada, mas o Grupo II tem características de manto enriquecido (EMII) possivelmente herdadas de um agente metassomático relacionado à zona de subducção, enquanto que o Grupo I demonstra assinatura geoquímica de magmas tipo OIB relacionados a fontes mantélicas ricas em flogopita. Os basaltos alcalinos do vulcão Agua Poca (37º01’S - 68º07’W) pertencem ao Grupo II e são traquibasaltos. O vulcão Agua Poca é definido é piroclástico monogenético, é composto por intercalações de camadas de spatter e cinder, hospeda xenólitos mantélicos e está localizado a oeste da Província de La Pampa, no extremo norte da Argentina. As amostras de xenólitos mostram textura protogranular, protogranular a porfiroclástica, porfiroclástica e porfiroclástica a equigranular e são compostos por olivina (fosterita), ortopiroxênio (enstatita), clinopiroxênio (diopsídio) e espinélio (sp). Os xenólitos estudados são peridotitos da fácies espinélio e piroxenitos anidros em basaltos alcalinos do Pleistoceno com #Mg em rocha total de 89 a 91. As assinaturas geoquímicas desses xenólitos mostram correlação negativa entre os principais óxidos quando dispostos contra o #Mg e estão empobrecidos em elementos incompatíveis em relação ao manto primitivo (MP). Os xenólitos do vulcão Agua Poca são caracterizados pelo empobrecimento de ETRP e ETRM normalizados para o MP e pelo fracionamento de ETRL em relação aos ETRP (CeN/YbN = 0,15-0,5), com exceção da amostra HAP10 (1,46). Esse comportamento indica que os xenólitos do terreno Cuyania são o resultado de 1 a 10% de fusão do DMM (Manto Depletado) ou de 8 a 17% do MP (Manto Primitivo). Em geral, os peridotitos mostram anomalias positivas de Ba, U, Ta, Pb, Zr e Ti; e anomalias negativas de Rb, Th, Nb, La e Y, enquanto que os piroxenitos mostram anomalias positivas de Ba, U, Ta e Pb; e anomalias negativas de Th, Nb, La, Zr, Hf, Ti e Y. Curvas de mistura calculadas para o resíduo de fusão do MP/DMM com a composição de fluídos/sedimentos derivados de ambientes de subducção indicam interação do manto com até 3% de fluídos/sedimentos. As razões 87Sr/86Sr (0,702874 - 0,704999, com média de 0,704035) são muito similares àquelas definidas para peridotitos com fonte tipo OIB. Agua Poca tem razões 87Sr/86Sr, que estão abaixo daquelas definidas para peridotitos metassomatizados (usualmente >0,705). As razões de Nb/Ta sugerem a presença de um reservatório eclogítico refratário subductado fusão parcial gerando líquidos alcalinos com razões Nb/Ta supercondríticas. / The Patagonian Volcanic Field composed of late Cretaceous to Quaternary volcanism is widely distributed in a continental extra back-arc geotectonic environment. Eleven monogenetic volcanoes accompanied with ultramafic xenoliths are situated from 36°13′S to 44°52′S. These volcanoes are dominantly composed of basanite to alkaline basalt, which are divided into two groups, based on mineralogy, geochemical and isotope compositions (Groups I and II). These Groups are originated from the similar subcontinental mantle sources, but were undergone to different metasomatism processes. Groups I and II were generated from low melting degrees of an OIB-like garnet peridotite, but the Group II has enriched mantle (EMII) characteristics possibly inherited from on-going subduction related metasomatism, while Group I demonstrates the OIB-like signature, which might result from phlogopite-bearing in the subcontinental lithosphere. The alkaline basalts from Agua Poca volcano (37º01’S - 68º07’W) belong to the Group II and are trachybasalts. The Agua Poca volcano is a monogenetic pyroclastic volcano composed by intercalation of spatter and cinder layers, host ultramafic mantle xenoliths and is located in the West of the La Pampa Province, Northernmost of Argentine Patagonia. The xenoliths show protogranular, protogranular to porphyroclastic, porphyroclastic and porphyroclastic to equigranular textures, and are composed of olivine (fosterite), orthopyroxene (enstatite), clinopyroxene (diopside) and spinel (sp). The studied xenoliths are anhydrous spinel-bearing peridotite and pyroxenite xenoliths in Pleistocene alkali basalts with whole rock Mg# from 88 to 91. Geochemical signatures of the mantle xenoliths show negative correlation between main oxides against Mg# and depletion in incompatible elements compared to primitive mantle (PM). Agua Poca mantle xenoliths are characterized by flat Sun & McDonough (1989) primitive mantle (PM) normalized HREE and MREE patterns, and depletion of LREE compared to HREE (CeN/YbN = 0.15-0.5), with exception of the HAP10 (1.46) sample. These characteristics suggest that partial melting event is the main process responsible for the generation of these xenoliths. Model calculations suggest that the xenoliths are the result of 1 to 10% of DMM (Depleted Mantle MORB) or 8 to 17% of PM partial melting. Peridotite samples show positive anomalies of Ba, U, Ta, Pb, Zr and Ti; and negative anomalies of Rb, Th, Nb, La and Y, while the pyroxenite samples show positive anomalies of Ba, U, Ta and Pb; and negative anomalies of Th, Nb, La, Zr, Hf, Ti and Y. Mixing curves calculated to mixtures of melting residue of PM/DMM and fluid or sediment compositions related to subduction tectonic setting end members suggest up to 3% of interaction of the fluid sediment on the depleted mantle residue. 87Sr/86Sr ratios (0.702874 - 0.704999, with average of 0.704035) are similar to those defined to peridotites with OIB source (87Sr/86Sr = 0.70244 to 0.70502), being close to Depleted Mantle (DM; 87Sr/86Sr = 0.7023 to 0.7032) values. Nb/Ta ratios suggest that Agua Poca xenoliths were undergone to partial melting processes that generated alkaline magmas with superchondritic Nb/Ta ratios.
|
Page generated in 0.0623 seconds