• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 8
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Study on Burning of Crude Oil in Ice Cavities

Farmahini Farahani, Hamed 29 April 2014 (has links)
In situ burning (ISB) is a practical method of oil spill cleanup in icy conditions. This study investigates one example of a likely oil spill scenario; burning oil in an ice cavity. In this situation, unique and unexplored physical processes come into play compared with the classical problem of confined pool fires in vessels. The icy walls of the cavity create a significant heat sink causing notable lateral heat losses especially for small cavity sizes (5-10 cm). Melting of ice because of the heat from the flame causes the geometry of cavity to change. Specifically, the diameter of the pool fire increases as the burning advances. This widening causes the fuel to stretch laterally thereby reducing its thickness at a faster rate. The melted ice water causes the oil layer to rise which causes the ullage height to decrease. The decrease in ullage and increase in diameter counteract the reduction in thickness because of widening or stretching of the fuel layer. There thus exists a strong coupling between the burning rate and the geometry change of the pool and cavity. To explore the problem, experiments were performed in circular ice cavities of varying diameters (5 - 25 cm). The change in shape of the ice cavity and the oil layer thickness are recorded using a combination of visual images, mass loss, and temperature data along the centerline and edge of the cavity. The average burning rate of crude oil in a cavity is greater than the corresponding burning rate in a vessel of equal diameter, yet the burning efficiency (% of fuel consumed during combustion) is lower. For example, the average mass loss rate in a 10 cm ice cavity is 50% higher than a steel vessel of similar size. However, the burning efficiency is lower by 50%. Widening of cavity (170%) contributes to the increase in the average mass burning rate. At the same time heat losses through fuel layer increase because of decrease in fuel thickness by widening of the fuel layer. This coupling is analyzed using a mathematical model which can predict burning rate and efficiency of crude oil in an ice cavity for the range of cavity diameters examined. Extension of the model to larger sizes comparable to realistic situations in the Arctic is discussed.
2

A Study of Spreading and In Situ Burning of Oil in an Ice Channel

Bellino, Peter William 25 April 2012 (has links)
The potential for oil exploration on the Arctic Outer Continental Shelf warrants determination of an efficient method to clean up an oil spill. Traditional spill response equipment may not be practical in an Arctic environment; the presence of ice which may prevent proper deployment of equipment. The remoteness of the areas proposed for oil exploration lack the infrastructure and support networks necessary to stage a response to a large oil spill. These difficulties make it necessary to explore alternative means of oil spill cleanup. In situ burning is one method that may be particularly well-suited for arctic and sub-arctic environments due to the minimal amount of equipment required to achieve an efficient burn, i.e. high mass loss. The Arctic and sub- Arctic environments add an additional level of complexity by introducing a spill medium (ice) that is highly unstable at elevated temperatures. Our experiments sought to calculate the mass loss rate of oil mixtures to determine the efficiency with which they burn within ice channels of varying widths. Since fuel layer thickness is a critical factor in determining the effectiveness of an in situ burn the spread rate of oil along an ice channel was studied. Burning of oil in an ice channel yields low efficiencies (10%) primarily due to the geometric changes of the melting ice channel. The spreading was modeled as a constant flux rectilinear buoyancy-inertia governed flow. The melting causes an increase in the surface area and results in the critical thickness of the oil to be reached sooner. Based on the current bench- scale testing, losses due to ice melting cause the efficiencies of the burning process to be excessively low and not viable to full scale clean up. The results warrant future research to understand how varying other parameters, including starting mass of fuel, influence efficiencies.
3

The Research on Credit Risk Premium and Default Rate of Banking's

Chung, Kwang 25 June 2005 (has links)
none
4

An approach for improving performance of aggregate voice-over-IP traffic

Al-Najjar, Camelia 30 October 2006 (has links)
The emerging popularity and interest in Voice-over-IP (VoIP) has been accompanied by customer concerns about voice quality over these networks. The lack of an appropriate real-time capable infrastructure in packet networks along with the threats of denial-of service (DoS) attacks can deteriorate the service that these voice calls receive. And these conditions contribute to the decline in call quality in VoIP applications; therefore, error-correcting/concealing techniques remain the only alternative to provide a reasonable protection for VoIP calls against packet losses. Traditionally, each voice call employs its own end-to-end forward-error-correction (FEC) mechanisms. In this paper, we show that when VoIP calls are aggregated over a provider's link, with a suitable linear-time encoding for the aggregated voice traffic, considerable quality improvement can be achieved with little redundancy. We show that it is possible to achieve rates closer to channel capacity as more calls are combined with very small output loss rates even in the presence of significant packet loss rates in the network. The advantages of the proposed scheme far exceed similar or other coding techniques applied to individual voice calls.
5

PERFORMANCE LOSS RATE ANALYSIS OF 1100 PHOTOVOLTAIC POWER PLANTS

Xin, Arthur S. 07 September 2020 (has links)
No description available.
6

Secure VoIP performance measurement

Saad, Amna January 2013 (has links)
This project presents a mechanism for instrumentation of secure VoIP calls. The experiments were run under different network conditions and security systems. VoIP services such as Google Talk, Express Talk and Skype were under test. The project allowed analysis of the voice quality of the VoIP services based on the Mean Opinion Score (MOS) values generated by Perceptual valuation of Speech Quality (PESQ). The quality of the audio streams produced were subjected to end-to-end delay, jitter, packet loss and extra processing in the networking hardware and end devices due to Internetworking Layer security or Transport Layer security implementations. The MOS values were mapped to Perceptual Evaluation of Speech Quality for wideband (PESQ-WB) scores. From these PESQ-WB scores, the graphs of the mean of 10 runs and box and whisker plots for each parameter were drawn. Analysis on the graphs was performed in order to deduce the quality of each VoIP service. The E-model was used to predict the network readiness and Common vulnerability Scoring System (CVSS) was used to predict the network vulnerabilities. The project also provided the mechanism to measure the throughput for each test case. The overall performance of each VoIP service was determined by PESQ-WB scores, CVSS scores and the throughput. The experiment demonstrated the relationship among VoIP performance, VoIP security and VoIP service type. The experiment also suggested that, when compared to an unsecure IPIP tunnel, Internetworking Layer security like IPSec ESP or Transport Layer security like OpenVPN TLS would improve a VoIP security by reducing the vulnerabilities of the media part of the VoIP signal. Morever, adding a security layer has little impact on the VoIP voice quality.
7

Flow Control of Real Time Multimedia Applications Using Model Predictive Control with a Feed Forward Term

Duong, Thien Chi 2010 December 1900 (has links)
Multimedia applications over the Internet are getting more and more popular. While non-real-time streaming services, such as YouTube and Megavideo, are attracting millions of visiting per day, real-time conferencing applications, of which some instances are Skype and Yahoo Voice Chat, provide an interesting experience of communication. Together, they make the fancy Internet world become more and more amusing. Undoubtedly, multimedia flows will eventually dominate the computer network in the future. As the population of multimedia flows increases gradually on the Internet, quality of their service (QoS) is more of a concern. At the moment, the Internet does not have any guarantee on the quality of multimedia services. To completely surpass this limitation, modifications to the network structure is a must. However, it will take years and billions of dollars in investment to achieve this goal. Meanwhile, it is essential to find alternative ways to improve the quality of multimedia services over the Internet. In the past few years, many endeavors have been carried on to solve the problem. One interesting approach focuses on the development of end-to-end congestion control strategies for UDP multimedia flows. Traditionally, packet losses and delays have been commonly used to develop many known control schemes. Each of them only characterizes some different aspects of network congestion; hence, they are not ideal as feedback signals alone. In this research, the flow accumulation is the signal used in feedback for flow control. It has the advantage of reflecting both packet losses and delays; therefore, it is a better choice. Using network simulations, the accumulations of real-time audio applications are collected to construct adaptive flow controllers. The reason for choosing these applications is that they introduce more control challenges than non-real-time services. One promising flow control strategy was proposed by Bhattacharya and it was based on Model Predictive Control (MPC). The controller was constructed from an ARX predictor. It was demonstrated that this control scheme delivers a good QoS while reducing bandwidth use in the controlled flows by 31 percent to 44 percent. However, the controller sometime shows erratic response and bandwidth usage jumps frequently between lowest and highest values. This is not desirable. For an ideal controller, the controlled bandwidth should vary near its mean. To eliminate the deficiency in the strategy proposed by Bhattacharya, it is proposed to introduce a feed forward term into the MPC formulation, in addition to the feedback terms. Simulations show that the modified MPC strategy maintains the benefits of the Bhattacharya strategy. Furthermore, it increases the probability of bandwidth savings from 58 percent for the case of Bhattacharya model to about 99 percent for this work.
8

Performance Analysis of Secondary Link with Cross-Layer Design and Cooperative Relay in Cognitive Radio Networks

Ma, Hao 06 1900 (has links)
In this thesis, we investigate two different system infrastructures in underlay cognitive radio network, in which two popular techniques, cross-layer design and cooperative communication, are considered, respectively. In particular, we introduce the Aggressive Adaptive Modulation and Coding (A-AMC) into the cross-layer design and achieve the optimal boundary points in closed form to choose the AMC and A-AMC transmission modes by taking into account the Channel State Information (CSI) from the secondary transmitter to both the primary receiver and the secondary receiver. What’s more, for the cooperative communication design, we consider three different relay selection schemes: Partial Relay Selection, Opportunistic Relay Selection and Threshold Relay Selection. The Probability Density Functions (PDFs) of the Signal-to- Noise Ratio (SNR) in each hop for different selection schemes are provided, and then the exact closed-form expressions for the end-to-end packet loss rate in the secondary link considering the cooperation of the Decode-and-Forward (DF) relay for different relay selection schemes are derived.
9

Statistical Uncertainty of the Ignition Time, Burning Rate, and Extinction Characteristics of Engineered Timber Products

David, Jacob 01 June 2023 (has links) (PDF)
The characterization of flammability parameters such as time to ignition, mass loss rate (MLR), and extinction criteria is critical for understanding ignition and burning behavior of timber products. These parameters, often determined with bench scale experiments, have previously been presented in literature. However, standard test methods generally use relatively low trial quantities (e.g., n=3) which can potentially cause large variation in reported values. This study investigates the influence of trial quantity on observed statistical variation in key flammability metrics for timber products (e.g., ignition time, peak MLR, MLR at extinction). Using a conical heater, 100 repeat trials were conducted at incident heat exposures of 20 kW/m2, 40 kW/m2, and 50 kW/m2 on 12.7 mm thick ACX cross laminated plywood samples. Ignition time data was found to exhibit significant positive skew and 20-30 trials were required for the reduction in uncertainty with each additional trial to fall below 0.1s at each heat flux. The normalized uncertainty in ignition time was greatest at 50 kW/m2 and was 20-70% than at 20 kW/m2 and 40 kW/m2. Significant variability was observed in the extinction characteristics of samples exposed to 40 kW/m2 where 39 samples experienced self-extinction while the remainder sustained combustion until burnout. Uncertainty in MLR at extinction for these trials was nearly double that of trials exposed to 20 kW/m2. These results exhibit the significance of large trial quantities when determining flammability characteristics.
10

Lokalisering av skidor i lössnö : Självständigt arbete i Teknisk Fysik / Positioning of skis in powder snow : Independent Project in Engineering Physics

Trella, Fredrik January 2011 (has links)
This report studies the possibility of using some sort of radio sender and transmitter in order to position skis lost in powder snow. It is concluded that a RF-solution on the 433 MHz frequency should be the most efficient. Different forms of directional antennas are examined and studies show that in theory the best suited is the so called “Yagi-Uda antenna”. A solution based on using a Receive Signal Strength Indicator value together with the above mentioned directional antenna is developed. To control these different components microprocessors from Atmel is used. These are programmed in C and compiled with Atmel’s own compiler AVR Studio. Despite all efforts it is proven that the prototype does not perform in an adequate way. An alternative solution based on “byte-loss-rate” is then developed and the results are slightly improved. Nevertheless, the directional properties of the antenna are still too poor why other alternatives are discussed. No fully functioning prototype is achieved but good grounds for further development of the prototype into something that fulfills the specifications are produced.

Page generated in 0.0641 seconds