351 |
Variable structure control of robot manipulators (the example of the SPRINTA)Nigrowsky, Pierre January 2000 (has links)
The subject of this thesis is the design and practical application of a model-based controller with variable structure control (VSC). Robot manipulators are highly non-linear systems, however they form a specific class in the non-linear group. Exact mathematical descriptions of the robot dynamics can be achieved and further, robot manipulators have specific useful properties that can be used for the design of advanced controllers. The inclusion of the inverse dynamic description of the robot manipulator as a feedforward term of the controller (model-based controller) is used to transform two non-linear systems i.e. the controller and the robot, into one linear system. The limitation of this technique arises from the accuracy of the inverse dynamic model. The linearisation only takes place if the model is known exactly. To deal with the uncertainties that arise in the model, a control methodology based on variable structure control is proposed. The design of the controller is based on a Lyapunov approach and engineering considerations of the robot. A candidate Lyapunov function of a pseudo-energy form is selected to start the controller design. The general form of the controller is selected to satisfy the negative definiteness of the Lyapunov function. The initial uncertainties between the actual robot dynamics and the model used in the controller are dealt with using a classical VSC regulator. The deficiencies of this approach are evident however because of the chattering phenomenum. The model uncertainties are examined from an engineering point of view and adjustable bounds are then devised for the VSC regulator, and simulations confirm a reduction in the chattering. Implementation on the SPRINTA robot reveals further limitations in the proposed methodology and the bound adjustment is enhanced to take into account the position of the robot and the tracking errors. Two controllers based on the same principle are then obtained and their performances are compared to a PID controller, for three types of trajectory. Tests reveal the superiority of the devised control methodology over the classic PID controller. The devised controller demonstrates that the inclusion of the robot dynamics and properties in the controller design with adequate engineering considerations lead to improved robot responses.
|
352 |
Detection of signals in chaos.Li, Xiao Bo. Haykin, Simon. Unknown Date (has links)
Thesis (Ph.D.)--McMaster University (Canada), 1996. / Source: Dissertation Abstracts International, Volume: 57-10, Section: B, page: 6457. Adviser: S. Haykin.
|
353 |
Nonlinear dynamical systems and control for large-scale, hybrid, and network systemsHui, Qing January 2008 (has links)
Thesis (Ph.D.)--Aerospace Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Haddad, Wassim; Committee Member: Feron, Eric; Committee Member: JVR, Prasad; Committee Member: Taylor, David; Committee Member: Tsiotras, Panagiotis
|
354 |
Box-counting dimension and beyond /Archer, Kassie. January 2009 (has links)
Thesis (Honors)--College of William and Mary, 2009. / Includes bibliographical references (leaves 56-57). Also available via the World Wide Web.
|
355 |
A study of the nonlinear dynamics nature of ECG signals using Chaos theoryTang, Man, January 2005 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2006. / Title proper from title frame. Also available in printed format.
|
356 |
Ανάλυση και έλεγχος γραμμικών και μη γραμμικών συστημάτων με περιορισμούς μέσω πολυεδρικών συναρτήσεων LyapunovΑθανασόπουλος, Νικόλαος 05 January 2011 (has links)
Το αντικείμενο της διατριβής αφορά την ανάλυση και τον έλεγχο δυναμικών συστημάτων με περιορισμούς στο διάνυσμα της εισόδου ή/ και στις μεταβλητές κατάστασης. Τα θεωρητικά εργαλεία που χρησιμοποιήθηκαν για την εξαγωγή των αποτελεσμάτων προέρχονται από τη θεωρία ευστάθειας Lyapunov, την αρχή σύγκρισης συστημάτων και τη θεωρία συνόλων, και οδήγησαν στην εδραίωση συνθηκών ευστάθειας και την ανάπτυξη συστηματικών μεθόδων εύρεσης λύσης στο πρόβλημα ελέγχου συγκεκριμένων κατηγοριών δυναμικών συστημάτων με περιορισμούς.
Πιο συγκεκριμένα, για την κατηγορία των γραμμικών συστημάτων συνεχούς και διακριτού χρόνου, προτάθηκε μια νέα μέθοδος επίλυσης του προβλήματος ευσταθειοποίησης συνόλου αρχικών συνθηκών και του υπολογισμού του μέγιστου θετικά αμετάβλητου ή αμετάβλητου με έλεγχο συνόλου παρουσία περιορισμών στις εισόδους ή/και στις καταστάσεις. Τα αποτελέσματα επεκτάθηκαν και στην κατηγορία των γραμμικών συστημάτων με πολυτοπικη αβεβαιότητα.
Επίσης, μελετήθηκε η κατηγορία των αυτοανάδρομων μοντέλων κινούμενου μέσου όρου (ARMA models). Αρχικά εδραιώθηκαν συνθήκες που εγγυώνται ευστάθεια για ένα συγκεκριμένο σύνολο αρχικών συνθηκών παρουσία περιορισμών. Τα αποτελέσματα αυτά εφαρμόστηκαν στην κατηγορία των δικτυωμένων συστημάτων ελέγχου (NCS), όπου υπολογίστηκε ένας κοινός γραμμικός νόμος ελέγχου ανατροφοδότησης κατάστασης για όλο το εύρος της καθυστέρησης της εισόδου.
Τέλος, μελετήθηκε η κατηγορία των διγραμμικών συστημάτων συνεχούς και διακριτού χρόνου. Αρχικά διατυπώθηκαν ικανές συνθήκες ύπαρξης πολυεδρικών συναρτήσεων Lyapunov για αυτήν την κατηγορία συστημάτων. Το πρόβλημα που μελετήθηκε είναι η ευσταθειοποίηση μιας συγκεκριμένης περιοχής του χώρου κατάστασης παρουσία περιορισμών στις εισόδους και τις καταστάσεις και προτάθηκε μια υποβέλτιστη λύση που οδηγεί στον υπολογισμό γραμμικού νόμου ελέγχου ανατροφοδότησης κατάστασης.
Όλα τα αποτελέσματα προκύπτουν από την επιλογή πολυεδρικών συναρτήσεων Lyapunov οι οποίες οδηγούν στο χαρακτηρισμό πολυεδρικών εκτιμήσεων της περιοχής ελκτικότητας και θετικά αμετάβλητων συνόλων. Τα κυριότερα οφέλη της επιλογής τέτοιων συναρτήσεων είναι η μη συντηρητική εκτίμησης της περιοχή ευστάθειας και η εδράιωση συνθηκών που οδηγούν σε συστηματικές μεθόδους επίλυσης των προβλημάτων ανάλυσης και ελέγχου, η λύση των οποίων προκύπτει από τη λύση γραμμικών προβλημάτων βελτιστοποίησης. / This dissertation considers the problem of stability analysis and control of dynamical systems under constraints in the input and/or state vector. The theoretical tools used arise from Lyapunov stability theory, comparison systems theory and set theoretic methods and lead to the determination of stability conditions and development of systematic methods that solve the control problem of constrained systems of particular type.
In specific, for linear discrete or continuous time systems, a novel method that leads to the solution of the initial condition set stabilization problem as well as the maximal controlled invariant set computation problem is presented. These results have been extended for the case of linear systems with polytopic uncertainty.
Also, the category of auto regressive moving average (ARMA) models is investigated. First, conditions that guarantee stability for a preassigned initial conditions set for constrained ARMA models are established. These results are applied to the category of networked control systems (NCS), were a single linear state feedback control law is computed for the whole range of the input delay.
Finally, the category of bilinear discrete-time or continuous-time systems is investigated. Initially, sufficient conditions which guarantee existence of polyhedral Lyapunov functions are presented. The problem studied here is the stabilization of an initial condition set in the presence of input and state constraints. The solution proposed is suboptimal and leads to the determination of a linear state feedback control law.
The choice of Lyapunov functions leads to the determination of a polyhedral approximation of the domain of attraction as well as polyhedral positively invariant sets. The main benefits of choosing this type of functions is the nonconservative estimation of the domain of attraction and the establishment of stability conditions that lead to systematic control design methods through the solution of linear programming problems.
|
357 |
Estabilidade assintótica de uma classe de sistemas não linearesPavan, Jucilene de Fátima [UNESP] 19 February 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:55Z (GMT). No. of bitstreams: 0
Previous issue date: 2010-02-19Bitstream added on 2014-06-13T18:06:55Z : No. of bitstreams: 1
pavan_jf_me_sjrp.pdf: 525723 bytes, checksum: 14295e01658745f42b4e6dd2b22c1791 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / No presente trabalho consideramos o sistema de equações diferenciais ordinároas x1 = afλ 1 (x1)+ bfµ 2 (x2) ˙ x2 = cfη 1 (x1)+ dfζ 2 (x2) (I) onde a,b,c e d são coeficientes constantes, λ, ,η e ζ são números racionais positivos numeradores e denominadores ímpares, as funções fi :(−h,h) → R, h> 0, são contínuas e satisfazem as condições fi(0)=0,i =1, 2e xifi(xi) > 0,para xi =0,i =1, 2. Associado ao sistema(I) consideramos a seguinte função V = α Z x1 0 fξ 1 (τ )dτ + Z x2 0 fθ 2 (τ )dτ, (II) onde ξ e θ são número racionais numeradores e denominadores ímpares. Nosso objetivo principal é encontar é encontrar sob quais condições dos parâmetros a,b,c,d e α> 0 a função V definidaem(II) é uma função de Liapunov estita para a solução nula dos sitema (I), o que leva a concluir a estabilidade assintótica da solução nula. / In this work we consider the system of ordinary differential equations x1 = afλ 1 (x1)+ bfµ 2 (x2) ˙ x2 = cfη 1 (x1)+ dfζ 2 (x2) (I) where a,b,c and d are constantco efficients, λ, ,η and ζ a repositive rational numbers with odd numerators and denominators ,and the functions fi :(−h,h) → R, h> 0,are continuous and satisfy the conditions fi(0)=0,i =1, 2and xifi(xi) > 0,for xi =0,i = 1, 2. Associated to the system(I) we consider the following function V = α Z x1 0 fξ 1 (τ )dτ + Z x2 0 fθ 2 (τ )dτ, (II) where ξ and θ are positive rational numbers with odd numerators and denominators and α is a positive constant. Our main goal is find under what conditions the parameters a,b,c,d and α> 0 the function V defined in(II) is a strict Liapunov function for the zero solution of the system (I), which leads us to conclude the asymptotic stability of zero solution.
|
358 |
Estabilidade de equações diferenciais ordinárias através de funções dicotômicasFerracini, Evelize Aparecida dos Santos [UNESP] 09 December 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:09Z (GMT). No. of bitstreams: 0
Previous issue date: 2011-12-09Bitstream added on 2014-06-13T20:08:10Z : No. of bitstreams: 1
ferracini_eas_me_rcla.pdf: 410350 bytes, checksum: c3d18941dab120874c42b2bbec91afc7 (MD5) / Neste trabalho apresentamos um estudo sobre estabilidade do equilíbrio nulo de equações diferenciais ordinárias autônomas através do Segundo Método de Liapunov e do Método das Funções Dicotômicas, que é uma extensão do Segundo Método de Liapunov / This work presents a study about stability of the null equilibrium of autonomous ordinary differential equations by Liapunov’s Second Method and Method of Dichotomic Maps, which is an extension of the Liapunov’s Second Method
|
359 |
Teoria de estabilidade de equações diferenciais ordinárias e aplicações: modelos presa-predador e competição entre espéciesBessa, Gislene Ramos [UNESP] 05 December 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:10Z (GMT). No. of bitstreams: 0
Previous issue date: 2011-12-05Bitstream added on 2014-06-13T20:47:42Z : No. of bitstreams: 1
bessa_gr_me_rcla.pdf: 2788750 bytes, checksum: 41a5d233962d44c675477d006f215922 (MD5) / O objetivo principal deste trabalho é o estudo da teoria qualitativa de sistemas de equações diferenciais ordinárias visando sua aplicação na análise de dois modelos clássicos de Dinâmica Populacional: presa-predador e competição entre duas espécies. Analisamos também duas variações para modelo predador-presa / The main objective of this work is to study the qualitative theory for systems of ordinary di erential equations in order to use in the analysis of two classical models of Population Dynamics: predator-prey and competition between two species. We also analyse two variations for predator-prey model
|
360 |
Caracterização de estados no espaço de parâmetros de sistemas contínuosCorreia, Marcos João 16 July 2010 (has links)
Made available in DSpace on 2016-12-12T20:15:53Z (GMT). No. of bitstreams: 1
parte_inicial.pdf: 36972 bytes, checksum: fcde327b6a915f3ce92b07386ef90965 (MD5)
Previous issue date: 2010-07-16 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nesta dissertação propomos um método numérico capaz de caracterizar estados no espaço de parâmetros de sistemas dinâmicos contínuos, modelados por um sistema de equações diferenciais ordinárias autônomas de primeira ordem. O método baseia-se na investigação do espaço de parâmetros construído utilizando todos os expoentes de Lyapunov do sistema. Propomos ainda nesta dissertação dois novos sistemas dinâmicos contınuos de quatro dimensões, um deles construído a partir do conhecido sistema de Lorenz. Nos dois sistemas, foram realizados estudo analítico e numérico. O estudo analítico não somente calculou a divergência e os pontos de equilíbrio dos sistemas, mas também analisou a estabilidade dos pontos encontrados. Por meio desta análise foi possível concluir que ambos os sistemas podem ser dissipativos, e podem apresentar caos, para valores adequados dos parâmetros. No estudo numérico dos dois sistemas aplicamos o método por nós proposto e algumas técnicas conhecidas, como a construção de diagramas de bifurcação e diagramas no espaço de fase. A partir disso, observamos que dependendo dos valores dos parâmetros, os sistemas podem apresentar caos, hipercaos, quase periodicidade e periodicidade.
|
Page generated in 0.037 seconds