• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 13
  • 11
  • 4
  • Tagged with
  • 64
  • 64
  • 27
  • 24
  • 19
  • 18
  • 16
  • 15
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Mathematics of HSV-2 Dynamics

Podder, Chandra Nath 26 August 2010 (has links)
The thesis is based on using dynamical systems theories and techniques to study the qualitative dynamics of herpes simplex virus type 2 (HSV-2), a sexually-transmitted disease of major public health significance. A deterministic model for the interaction of the virus with the immune system in the body of an infected individual (in vivo) is designed first of all. It is shown, using Lyapunov function and LaSalle's Invariance Principle, that the virus-free equilibrium of the model is globally-asymptotically stable whenever a certain biological threshold, known as the reproduction number, is less than unity. Furthermore, the model has at least one virus-present equilibrium when the threshold quantity exceeds unity. Using persistence theory, it is shown that the virus will always be present in vivo whenever the reproduction threshold exceeds unity. The analyses (theoretical and numerical) of this model show that a future HSV-2 vaccine that enhances cell-mediated immune response will be effective in curtailling HSV-2 burden in vivo. A new single-group model for the spread of HSV-2 in a homogenously-mixed sexually-active population is also designed. The disease-free equilibrium of the model is globally-asymptotically stable when its associated reproduction number is less than unity. The model has a unique endemic equilibrium, which is shown to be globally-stable for a special case, when the reproduction number exceeds unity. The model is extended to incorporate an imperfect vaccine with some therapeutic benefits. Using centre manifold theory, it is shown that the resulting vaccination model undergoes a vaccine-induced backward bifurcation (the epidemiological importance of the phenomenon of backward bifurcation is that the classical requirement of having the reproduction threshold less than unity is, although necessary, no longer sufficient for disease elimination. In such a case, disease elimination depends upon the initial sizes of the sub-populations of the model). Furthermore, it is shown that the use of such an imperfect vaccine could lead to a positive or detrimental population-level impact (depending on the sign of a certain threshold quantity). The model is extended to incorporate the effect of variability in HSV-2 susceptibility due to gender differences. The resulting two-group (sex-structured) model is shown to have essentially the same qualitative dynamics as the single-group model. Furthermore, it is shown that adding periodicity to the corresponding autonomous two-group model does not alter the dynamics of the autonomous two-group model (with respect to the elimination of the disease). The model is used to evaluate the impact of various anti-HSV control strategies. Finally, the two-group model is further extended to address the effect of risk structure (i.e., risk of acquiring or transmitting HSV-2). Unlike the two-group model described above, it is shown that the risk-structured model undergoes backward bifurcation under certain conditions (the backward bifurcation property can be removed if the susceptible population is not stratified according to the risk of acquiring infection). Thus, one of the main findings of this thesis is that risk structure can induce the phenomenon of backward bifurcation in the transmission dynamics of HSV-2 in a population.
32

Stochastic Modeling of Network-Centric Epidemiological Processes

Wanduku, Divine 01 January 2012 (has links)
The technological changes and educational expansion have created the heterogeneity in the human species. Clearly, this heterogeneity generates a structure in the population dynamics, namely: citizen, permanent resident, visitor, and etc. Furthermore, as the heterogeneity in the population increases, the human mobility between meta-populations patches also increases. Depending on spatial scales, a meta-population patch can be decomposed into sub-patches, for examples: homes, neighborhoods, towns, etc. The dynamics of human mobility in a heterogeneous and scaled structured population is still its infancy level. We develop and investigate (1) an algorithmic two scale human mobility dynamic model for a meta-population. Moreover,the two scale human mobility dynamic model can be extended to multi-scales by applying the algorithm. The subregions and regions are interlinked via intra-and inter regional transport network systems. Under various types of growth order assumptions on the intra and interregional residence times of the residents of a sub region, different patterns of static behavior of the mobility process are studied. Furthermore, the human mobility dynamic model is applied to a two-scale population dynamic exhibiting a special real life human transportation network pattern. The static evolution of all categories of residents of a given site ( homesite, visiting sites within the region, and visiting sites in other regions) over continuous changes in the intra and inter-regional visiting times is also analyzed. The development of the two scale human mobility dynamic model provides a suitable approach to undertake the study of the non-uniform global spread of emergent infectious diseases of humans in a systematic and unified way. In view of this, we derive (2) a SIRS stochastic epidemic dynamic process in a two scale structured population. By defining a positively self invariant set for the dynamic model the stochastic asymptotic stability results of the disease free equilibrium are developed(2). Furthermore, the significance of the stability results are illustrated in a simple real life scenario that is under controlled quarantine disease strategy. In addition, the epidemic dynamic model (2) is applied to a SIR influenza epidemic in a two scale population that is under the influence of a special real life human mobility pattern. The simulated trajectories for the different states (susceptible, Infective, Removal) with respect to current location in the two-scale population structure are presented. The simulated findings reveal comparative evolution patterns for the different states and current locations over time. The SIRS stochastic epidemic dynamic model (2) is extended to a SIR delayed stochastic epidemic dynamic model(3). The delay effects in the dynamic model (3) is temporary and account for natural or infection acquired immunity conferred by the disease after disease recovery. Again, we justify the model validation as a prerequisite for the dynamic modeling. Moreover, we also exhibit the real life scenario under controlled quarantine disease strategy.In addition, the developed delayed SIR dynamic model is also applied to SIR influenza epidemic with temporary immunity to an influenza disease strain. The simulated results reveal an oscillatory effect in the trajectory of the naturally immune population. Moreover, the oscillations are more significant at the homesite. We further extended the stochastic temporary delayed epidemic dynamic model (3) into a stochastic delayed epidemic dynamic model with varying immunity period(4). The varying immunity period accounts for the varying time lengths of natural immunity against the infectious agent exhibited within the naturally immune population. Obviously, the stochastic dynamic model with varying immunity period generalizes the SIR temporary delayed dynamic.
33

Mathematics of HSV-2 Dynamics

Podder, Chandra Nath 26 August 2010 (has links)
The thesis is based on using dynamical systems theories and techniques to study the qualitative dynamics of herpes simplex virus type 2 (HSV-2), a sexually-transmitted disease of major public health significance. A deterministic model for the interaction of the virus with the immune system in the body of an infected individual (in vivo) is designed first of all. It is shown, using Lyapunov function and LaSalle's Invariance Principle, that the virus-free equilibrium of the model is globally-asymptotically stable whenever a certain biological threshold, known as the reproduction number, is less than unity. Furthermore, the model has at least one virus-present equilibrium when the threshold quantity exceeds unity. Using persistence theory, it is shown that the virus will always be present in vivo whenever the reproduction threshold exceeds unity. The analyses (theoretical and numerical) of this model show that a future HSV-2 vaccine that enhances cell-mediated immune response will be effective in curtailling HSV-2 burden in vivo. A new single-group model for the spread of HSV-2 in a homogenously-mixed sexually-active population is also designed. The disease-free equilibrium of the model is globally-asymptotically stable when its associated reproduction number is less than unity. The model has a unique endemic equilibrium, which is shown to be globally-stable for a special case, when the reproduction number exceeds unity. The model is extended to incorporate an imperfect vaccine with some therapeutic benefits. Using centre manifold theory, it is shown that the resulting vaccination model undergoes a vaccine-induced backward bifurcation (the epidemiological importance of the phenomenon of backward bifurcation is that the classical requirement of having the reproduction threshold less than unity is, although necessary, no longer sufficient for disease elimination. In such a case, disease elimination depends upon the initial sizes of the sub-populations of the model). Furthermore, it is shown that the use of such an imperfect vaccine could lead to a positive or detrimental population-level impact (depending on the sign of a certain threshold quantity). The model is extended to incorporate the effect of variability in HSV-2 susceptibility due to gender differences. The resulting two-group (sex-structured) model is shown to have essentially the same qualitative dynamics as the single-group model. Furthermore, it is shown that adding periodicity to the corresponding autonomous two-group model does not alter the dynamics of the autonomous two-group model (with respect to the elimination of the disease). The model is used to evaluate the impact of various anti-HSV control strategies. Finally, the two-group model is further extended to address the effect of risk structure (i.e., risk of acquiring or transmitting HSV-2). Unlike the two-group model described above, it is shown that the risk-structured model undergoes backward bifurcation under certain conditions (the backward bifurcation property can be removed if the susceptible population is not stratified according to the risk of acquiring infection). Thus, one of the main findings of this thesis is that risk structure can induce the phenomenon of backward bifurcation in the transmission dynamics of HSV-2 in a population.
34

Formations and Obstacle Avoidance in Mobile Robot Control

Ögren, Petter January 2003 (has links)
This thesis consists of four independent papers concerningthe control of mobile robots in the context of obstacleavoidance and formation keeping. The first paper describes a new theoreticallyv erifiableapproach to obstacle avoidance. It merges the ideas of twoprevious methods, with complementaryprop erties, byusing acombined control Lyapunov function (CLF) and model predictivecontrol (MPC) framework. The second paper investigates the problem of moving a fixedformation of vehicles through a partiallykno wn environmentwith obstacles. Using an input to state (ISS) formulation theconcept of configuration space obstacles is generalized toleader follower formations. This generalization then makes itpossible to convert the problem into a standard single vehicleobstacle avoidance problem, such as the one considered in thefirst paper. The properties of goal convergence and safetyth uscarries over to the formation obstacle avoidance case. In the third paper, coordination along trajectories of anonhomogenuos set of vehicles is considered. Byusing a controlLyapunov function approach, properties such as boundedformation error and finite completion time is shown. Finally, the fourth paper applies a generalized version ofthe control in the third paper to translate,rotate and expanda formation. It is furthermore shown how a partial decouplingof formation keeping and formation mission can be achieved. Theapproach is then applied to a scenario of underwater vehiclesclimbing gradients in search for specific thermal/biologicalregions of interest. The sensor data fusion problem fordifferent formation configurations is investigated and anoptimal formation geometryis proposed. Keywords:Mobile Robots, Robot Control, ObstacleAvoidance, Multirobot System, Formation Control, NavigationFunction, Lyapunov Function, Model Predictive Control, RecedingHorizon Control, Gradient Climbing, Gradient Estimation. / QC 20111121
35

Existência da função de Lyapunov

Prado, Eder Flávio [UNESP] 19 February 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:56Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-02-19Bitstream added on 2014-06-13T18:47:53Z : No. of bitstreams: 1 prado_ef_me_sjrp.pdf: 346611 bytes, checksum: 28c34647c269c1cbaea17d3787faa4cf (MD5) / Neste trabalho vamos estudar equações diferenciais ordinárias e analisar seu comportamento ao longo de suas trajetórias, com o principal objetivo de encontar, caso possível, uma função de Lyapunov apropriada para o sistema, isto é, dar condição suficiente e necessária para a existência dessa função. / In this work we study ordinary differential equations and analyse the behavior along of trajectories. The main goal is to find Lyapunov functions for the system when possibel: i e, we want to find necessary and sufficient conditions for the existence of those.
36

Stability analysis and Tikhonov approximation for linear singularly perturbed hyperbolic systems / Stabilité et approximation de Tikhonov pour des systèmes hyperboliques linéaires singulièrement perturbés

Tang, Ying 18 September 2015 (has links)
Les dynamiques des systèmes modélisés par des équations aux dérivées partielles (EDPs) en dimension infinie sont largement liées aux réseaux physiques. La synthèse de la commande et l'analyse de la stabilité de ces systèmes sont étudiées dans cette thèse. Les systèmes singulièrement perturbés, contenant des échelles de temps multiples sont naturels dans les systèmes physiques avec des petits paramètres parasitaires, généralement de petites constantes de temps, les masses, les inductances, les moments d'inertie. La théorie des perturbations singulières a été introduite pour le contrôle à la fin des années $1960$, son assimilation dans la théorie du contrôle s'est rapidement développée et est devenue un outil majeur pour l'analyse et la synthèse de la commande des systèmes. Les perturbations singulières sont une façon de négliger la transition rapide, en la considérant dans une échelle de temps rapide séparée. Ce travail de thèse se concentre sur les systèmes hyperboliques linéaires avec des échelles de temps multiples modélisées par un petit paramètre de perturbation. Tout d'abord, nous étudions une classe de systèmes hyperboliques linéaires singulièrement perturbés. Comme le système contient deux échelles de temps, en mettant le paramètre de la perturbation à zéro, deux sous-systèmes, le système réduit et la couche limite, sont formellement calculés. La stabilité du système complet de lois de conservation implique la stabilité des deux sous-systèmes. En revanche un contre-exemple est utilisé pour illustrer que la stabilité des deux sous-systèmes ne suffit pas à garantir la stabilité du système complet. Cela montre une grande différence avec ce qui est bien connu pour les systèmes linéaires en dimension finie modélisés par des équations aux dérivées ordinaires (EDO). De plus, sous certaines conditions, l'approximation de Tikhonov est obtenue pour tels systèmes par la méthode de Lyapunov. Plus précisément, la solution de la dynamique lente du système complet est approchée par la solution du système réduit lorsque le paramètre de la perturbation est suffisamment petit. Deuxièmement, le théorème de Tikhonov est établi pour les systèmes hyperboliques linéaires singulièrement perturbés de lois d'équilibre où les vitesses de transport et les termes sources sont à la fois dépendant du paramètre de la perturbation ainsi que les conditions aux bords. Sous des hypothèses sur la continuité de ces termes et sous la condition de la stabilité, l'estimation de l'erreur entre la dynamique lente du système complet et le système réduit est obtenue en fonction de l'ordre du paramètre de la perturbation. Troisièmement, nous considérons des systèmes EDO-EDP couplés singulièrement perturbés. La stabilité des deux sous-systèmes implique la stabilité du système complet où le paramètre de la perturbation est introduit dans la dynamique de l'EDP. D'autre part, cela n'est pas valable pour le système où le paramètre de la perturbation est présent dans l'EDO. Le théorème Tikhonov pour ces systèmes EDO-EDP couplés est prouvé par la technique de Lyapunov. Enfin, la synthèse de la commande aux bords est abordée en exploitant la méthode des perturbations singulières. Le système réduit converge en temps fini. La synthèse du contrôle aux bords est mise en œuvre pour deux applications différentes afin d'illustrer les résultats principaux de ce travail. / Systems modeled by partial differential equations (PDEs) with infinite dimensional dynamics are relevant for a wide range of physical networks. The control and stability analysis of such systems become a challenge area. Singularly perturbed systems, containing multiple time scales, often occur naturally in physical systems due to the presence of small parasitic parameters, typically small time constants, masses, inductances, moments of inertia. Singular perturbation was introduced in control engineering in late $1960$s, its assimilation in control theory has rapidly developed and has become a tool for analysis and design of control systems. Singular perturbation is a way of neglecting the fast transition and considering them in a separate fast time scale. The present thesis is concerned with a class of linear hyperbolic systems with multiple time scales modeled by a small perturbation parameter. Firstly we study a class of singularly perturbed linear hyperbolic systems of conservation laws. Since the system contains two time scales, by setting the perturbation parameter to zero, the two subsystems, namely the reduced subsystem and the boundary-layer subsystem, are formally computed. The stability of the full system implies the stability of both subsystems. However a counterexample is used to illustrate that the stability of the two subsystems is not enough to guarantee the full system's stability. This shows a major difference with what is well known for linear finite dimensional systems. Moreover, under certain conditions, the Tikhonov approximation for such system is achieved by Lyapunov method. Precisely, the solution of the slow dynamics of the full system is approximated by the solution of the reduced subsystem for sufficiently small perturbation parameter. Secondly the Tikhonov theorem is established for singularly perturbed linear hyperbolic systems of balance laws where the transport velocities and source terms are both dependent on the perturbation parameter as well as the boundary conditions. Under the assumptions on the continuity for such terms and under the stability condition, the estimate of the error between the slow dynamics of the full system and the reduced subsystem is the order of the perturbation parameter. Thirdly, we consider singularly perturbed coupled ordinary differential equation ODE-PDE systems. The stability of both subsystems implies that of the full system where the perturbation parameter is introduced into the dynamics of the PDE system. On the other hand, this is not true for system where the perturbation parameter is presented to the ODE. The Tikhonov theorem for such coupled ODE-PDE systems is proved by Lyapunov technique. Finally, the boundary control synthesis is achieved based on singular perturbation method. The reduced subsystem is convergent in finite time. Boundary control design to different applications are used to illustrate the main results of this work.
37

Existência da função de Lyapunov /

Prado, Eder Flávio. January 2010 (has links)
Orientador: Vanderlei Minori Horita / Banca: Isabel Lugão Rios / Banca: Claudio Aguinaldo Buzzi / Resumo: Neste trabalho vamos estudar equações diferenciais ordinárias e analisar seu comportamento ao longo de suas trajetórias, com o principal objetivo de encontar, caso possível, uma função de Lyapunov apropriada para o sistema, isto é, dar condição suficiente e necessária para a existência dessa função. / Abstract: In this work we study ordinary differential equations and analyse the behavior along of trajectories. The main goal is to find Lyapunov functions for the system when possibel: i e, we want to find necessary and sufficient conditions for the existence of those. / Mestre
38

Fonctions de Lyapunov : une approche KAM faible / Lyapunov functions : a weak KAM approach

Pageault, Pierre 17 November 2011 (has links)
Cette thèse est divisée en trois parties. Dans une première partie, on donne une description nouvelle des points récurrents par chaînes d'un système dynamique comme ensemble d'Aubry projeté d'une barrière ultramétrique. Cette approche permet de munir l'ensemble des composantes transitives par chaînes d'une structure d'espace ultramétrique expliquant leur topologie totalement discontinue, et de retrouver un théorème célèbre de Charles Conley concernant l'existence de fonctions de Lyapunov décroissant strictement le long des orbites non-récurrentes par chaînes. Dans une deuxième partie, on développe une théorie d'Aubry-Mather pour les homéomorphismes d'un espace métrique compact. On introduit dans ce cadre un ensemble d'Aubry métrique, puis topologique, ainsi qu'un ensemble de Mañé. Ces notions, plus fines que la récurrence par chaînes, permettent de mieux comprendre les fonctions de Lyapunov d'un tel système dynamique. Dans une dernière partie, on montre un résultat général de densité de certains contre-exemples au théorème de Sard pour lesquels l'ensemble des points critiques est un arc topologique et on donne des applications dynamiques de ce résultat. Celles-ci sont liées à des problèmes d'unicité, à constantes près, des solutions KAM faibles (ou solutions de viscosité) de certaines équations d'Hamilton-Jacobi. / This thesis is divided into three parts. In the first part, we give a new description of chain-recurrence using an ultrametric barrier. This barrier allows to endow the space of chain-transitive components with an ultrametric structure, explaining its topology and leading to the famous result of Charles Conley about Lyapunov function decreasing along non chain-recurrent orbits. Most of the results, first given in the setting of a continuous map on a compact metric space are then generalised to multivalued map on arbitrary separable metric spaces. In the second part, we develop an Aubry-Mather theory for a homeomorphism on a compact metric space. In this setting, we introduce metric and topological Aubry set and Mañé set, allowing a better understanding of Lyapunov functions arising in such a dynamical system. In the last part, we prove a general density result for some counterexamples of Sard's theorem for which the set of critical points is a topological arc and we give applications to dynamics.
39

Controle à estrutura variável com múltiplas entradas - múltiplas saídas, aplicado a um veículo robótico submarino

Cardoso, Reginaldo January 2018 (has links)
Orientador: Prof. Dr. Magno Enrique Mendoza Meza / Coorientadora: Profª. Drª. Silvia Lenyra Meirelles Campos Titotto / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Engenharia Mecânica, Santo André, 2018.
40

Controle preditivo para sistemas lineares discretos variantes no tempo usando funções de Lyapunov dependentes de caminho / Model predictive control for time-varying discrete-time linear systems using path-dependent Lyapunov functions

Caun, Rodrigo da Ponte 12 May 2008 (has links)
Orientadores: Pedro Luis Dias Peres, Ricardo Coração de Leão Fontoura de Oliveira / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-12T15:25:55Z (GMT). No. of bitstreams: 1 Caun_RodrigodaPonte_M.pdf: 4443460 bytes, checksum: 6ac15ef9d40ddc0d477ba44ec10f9182 (MD5) Previous issue date: 2008 / Resumo: A principal contribuição dessa dissertação é propor um método de síntese de controle preditivo por realimentação de estados para sistemas lineares discretos com parâmetros variantes no tempo e pertencentes a um politopo. As condições de síntese são formuladas usando-se funções de Lyapunov dependentes de caminho, isto é, a matriz de Lyapunov depende de maneira multi-afim dos parâmetros em seus instantes sucessivos de tempo até um instante máximo (tamanho do caminho). Essa classe de função generaliza as funções quadráticas e dependentes de maneira afim nos parâmetros. Os testes numéricos s¿ao formulados em termos de problemas de otimização baseados em desigualdades matriciais lineares, parametrizados em função do tamanho do caminho da matriz de Lyapunov, arbitrado a priori. À medida que o tamanho do caminho cresce, índices de desempenho menos conservadores são obtidos ao preço de um maior esforço computacional. Exemplos numéricos são apresentados ilustrando a eficiência do método proposto em termos do índice de desempenho e do esforço computacional demandado quando comparados com outros métodos existentes na literatura. / Abstract: The main contribution of this thesis is to propose a state-feedback model predictive control design method for discrete-time systems with time-varying parameters belonging to a polytope. The synthesis conditions are formulated using path-dependent Lyapunov functions, i.e. the Lyapunov matrix depends multi-affinely on the parameters at successive instants of time until a maximum instant (path size). This class of function generalizes quadratic and affinely parameter dependent functions. The numerical tests are provided in terms of optimization problems based on linear matrix inequalities, parametrized as a function of the path size of the Lyapunov matrix, given a priori. As the path size increases, less conservative performance indices are obtained at the price of a higher computational effort. Numerical examples are presented, illustrating the efficiency of the approach in terms of the performance index and the computational burden demanded when compared to other existing methods in the literature. / Mestrado / Automação / Mestre em Engenharia Elétrica

Page generated in 0.0732 seconds