• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 260
  • 257
  • 226
  • 76
  • 37
  • 13
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 4
  • 4
  • Tagged with
  • 1076
  • 248
  • 173
  • 167
  • 149
  • 130
  • 128
  • 108
  • 107
  • 104
  • 98
  • 86
  • 85
  • 82
  • 81
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
711

Rough Cutting Of Germanium With Polycrystalline Diamond Tools

Yergok, Caglar 01 July 2010 (has links) (PDF)
Germanium is a brittle semi-metal, used for lenses and windows in Thermal Imaging Systems since it transmits infrared energy in the 2 &micro / m - 12 &micro / m wavelength range at peak. In this thesis study, polycrystalline diamond is used as cutting tool material to machine germanium. Diamond is the hardest, most abrasion-resistant material and polycrystalline diamond is produced by compacting small diamond particles under high pressure and temperature conditions, which results more homogeneous, improved strength and a durable material. However, slightly reduced hardness is obtained when compared with natural diamond. Different from finish cutting, rough cutting, performed before finishing, is used to remove most of the work-piece material. During rough cutting, surface roughness is still an important concern, since it affects the finishing operations. Roughness of the surface of product is affected by a number of factors such as cutting speed, depth of cut, feed rate as cutting parameters, and also rake angle as tool geometry parameter. In the thesis, the optimum cutting and tool geometry parameters are investigated by experimental studies for rough cutting of germanium with polycrystalline diamond tools. Single Point Diamond Turning Machine is used for rough cutting, and the roughness values of the optical surfaces are measured by White Light Interferometer. Experiments are designed by making use of &ldquo / Full Factorial&rdquo / and &ldquo / Box-Behnken&rdquo / design methods at different levels considering cutting parameters as cutting speed, depth of cut, feed rate and tool geometry parameter as rake angle.
712

Web Based Automatic Tool Path Planning Strategy for Complex Sculptured Surfaces

Patel, Kandarp 07 June 2010 (has links)
Over the past few years, manufacturing companies have had to deal with an increasing demand for feature-rich products at low costs. The pressures exerted on their existing manufacturing processes have lead manufacturers to investigate internet-based solutions, in order to cope with growing competition. Today, the availability of powerful and low cost 3D tools, along with web-based technologies, provides interesting opportunities to the manufacturing community, with solutions directly implementable at the core of their businesses and organizations. The wooden sign is custom i.e. each sign is completely different from each other. Mass Customization is a paradigm that produces custom products in masses. A wooden sign is custom in nature, and each sign must be completely different from another. Although process planning for mass customized products is same, the tool path required to CNC machine the custom feature varies from part to part. If the tool path is created manually the economics of mass production are challenged. The only viable option is to generate the tool path automatically; furthermore, any time savings in the tool path lead to better profit margins. This thesis presents the automatic web-based tool path planning method for machining sculptured wooden sign on 3 axis Computer Numerical Controlling (CNC) Machines using optimal and cost-effective milling cutters. The web-based tool path planning strategy is integrate with web-based CAD system to automatically generate tool paths for the CAD model using optimal cutter within desired tolerances. The tool path planning method is divided into two parts: foot print (path along which cutter moves) and cutter positioning. The tool path foot print is developed during design stage from the CAD model based on the type of surface to be machined. The foot print varies from part to part which facilitates the mass customization of wooden sign. After designing foot print, the foot print is discretized into points and the gouge-free cutter position at each of these points is found using "Dropping Method". The Dropping Method where cutter is dropped over the work piece surface, and the highest depth at which cutter can go without gouging the surface is calculated. This is repeated for all the position along the foot print. This tool path planning strategy is developed for ball nose, flat-end and radiused end milling cutter for machining wooden sign. The tool path generated using this method is optimized for machining time, tool path generation time and final surface finish. The bucketing technique is developed to optimize tool path generation time, by isolating the triangles which has possibility of intersection at particular position. The bucketing Technique reduced the tool path computation by 75 %, and made tool path generation faster. The optimal cutter selection algorithm is developed which selects best cutter for machining the surface based on the scallop height and volume removal results. The radiused end milling cutter results in highest volume removal which results in lower machining time compared to ball nose end milling cutters, but the scallop heights is higher. However, the scallop height in the radiused end milling cutter is higher only in few regions which reduces the final surface finish. For a sign, it was found around the boundary of logo, outline of lettering, interface of border and background. Thus, in order to achieve higher surface finish and lower machining time, a separate tool path is developed using "Pencil Milling Technique" which will remove the scallops from the regions that was inaccessible by radiused end mills. This tool path with the smaller cutter will move around the boundary of logo and lettering, and clean-up all the scallops left on the surface. The designed tool path for all the three cutters were tested on maple wood and verified against the actual Computer Aided Design model for scallop height and surface finish. The numerical testing of tool path was carried out on a Custom Simulator, ToolSim and was later confirmed by actually machining on a 3 axis CNC machine. The same sign was machined with variety of milling cutters and the best cutter was selected based on the minimum scallop and maximum volume removal. The results of the experimental verification show the method to be accurate for machining sculptured sign. The average scallop height in a machined using 1/8 th inch radiused end milling cuter and using Pencil tool path on the machined surface is found to be 0.03989 mm (1.5708 thou).
713

NUMERICAL INVESTIGATION AND PARALLEL COMPUTING FOR THERMAL TRANSPORT MECHANISM DURING NANOMACHINING

Kumar, Ravi R. 01 January 2007 (has links)
Nano-scale machining, or Nanomachining is a hybrid process in which the total thermal energy necessary to remove atoms from a work-piece surface is applied from external sources. In the current study, the total thermal energy necessary to remove atoms from a work-piece surface is applied from two sources: (1) localized energy from a laser beam focused to a micron-scale spot to preheat the work-piece, and (2) a high-precision electron-beam emitted from the tips of carbon nano-tubes to remove material via evaporation/sublimation. Macro-to-nano scale heat transfer models are discussed for understanding their capability to capture and its application to predict the transient heat transfer mechanism required for nano-machining. In this case, thermal transport mechanism during nano-scale machining involves both phonons (lattice vibrations) and electrons; it is modeled using a parabolic two-step (PTS) model, which accounts for the time lag between these energy carriers. A numerical algorithm is developed for the solution of the PTS model based on explicit and implicit finite-difference methods. Since numerical solution for simulation of nanomachining involves high computational cost in terms of wall clock time consumed, performance comparison over a wide range of numerical techniques has been done to devise an efficient numerical solution procedure. Gauss-Seidel (GS), successive over relaxation (SOR), conjugate gradient (CG), d -form Douglas-Gunn time splitting, and other methods have been used to compare the computational cost involved in these methods. Use of the Douglas-Gunn time splitting in the solution of 3D time-dependent heat transport equations appears to be optimal especially as problem size (number of spatial grid points and/or required number of time steps) becomes large. Parallel computing is implemented to further reduce the wall clock time required for the complete simulation of nanomachining process. Domain decomposition with inter-processor communication using Message Passing Interface (MPI) libraries is adapted for parallel computing. Performance tuning has been implemented for efficient parallelization by overlapping communication with computation. Numerical solution for laser source and electron-beam source with different Gaussian distribution are presented. Performance of the parallel code is tested on four distinct computer cluster architecture. Results obtained for laser source agree well with available experimental data in the literature. The results for electron-beam source are self-consistent; nevertheless, they need to be validated experimentally.
714

ACHIEVING ULTRAFINE GRAINS IN Mg AZ31B-O ALLOY BY CRYOGENIC FRICTION STIR PROCESSING AND MACHINING

Mohammed, Anwaruddin 01 January 2011 (has links)
This thesis presents results from the application of cryogenic cooling on multiple-pass friction stir processing and the subsequent orthogonal machining on friction stir processed and as-received Mg AZ31B-O disks, and shows their combined effects on microstructure and microhardness values. A simple friction stir tool, a specially designed fixture and liquid nitrogen are used to perform multiple-pass friction stir processing experiments on Mg AZ31B-O alloy. The friction stir processed and as-received sheets are then made into disks for the orthogonal machining experiments. This study analyzes the microhardness, microstructure changes by cryogenic friction stir processing and the effect of machining conditions such as dry, MQL and cryogenic and cutting parameters on the Mg AZ31B-O alloy. Four different speeds and three different feed rates are used for the orthogonal machining experiments. The effects of stirring parameters such as the translational feed, rotational speed, cooling conditions and the machining parameters are studied. The resulting microstructure and microhardness from these processes hold a key to the mechanical properties of the alloy. This analysis would help to understand and evaluate the specific aspects of grain size and microhardness that influence the fatigue life of a component.
715

Microcapteurs de hautes fréquences pour des mesures en aéroacoustique

Zhou, Zhijian 21 January 2013 (has links) (PDF)
L'aéroacoustique est une filière de l'acoustique qui étudie la génération de bruit par un mouvement fluidique turbulent ou par les forces aérodynamiques qui interagissent avec les surfaces. Ce secteur en pleine croissance a attiré des intérêts récents en raison de l'évolution de la transportation aérienne, terrestre et spatiale. Les microphones avec une bande passante de plusieurs centaines de kHz et une plage dynamique couvrant de 40Pa à 4 kPa sont nécessaires pour les mesures aéroacoustiques. Dans cette thèse, deux microphones MEMS de type piézorésistif à base de silicium polycristallin (poly-Si) latéralement cristallisé par l'induction métallique (MILC) sont conçus et fabriqués en utilisant respectivement les techniques de microfabrication de surface et de volume. Ces microphones sont calibrés à l'aide d'une source d'onde de choc (N-wave) générée par une étincelle électrique. Pour l'échantillon fabriqué par le micro-usinage de surface, la sensibilité statique mesurée est 0.4μV/V/Pa, la sensibilité dynamique est 0.033μV/V/Pa et la plage fréquentielle couvre à partir de 100 kHz avec une fréquence du premier mode de résonance à 400kHz. Pour l'échantillon fabriqué par le micro-usinage de volume, la sensibilité statique mesurée est 0.28μV/V/Pa, la sensibilité dynamique est 0.33μV/V/Pa et la plage fréquentielle couvre à partir de 6 kHz avec une fréquence du premier mode de résonance à 715kHz.
716

Development of near net shaped Si3N4/SiC composites with optimised grain boundary phase for industrial wood machining

Strehler, Claudia 17 August 2011 (has links) (PDF)
The introduction of ceramics into the market of wood cutting tools has failed so far due to the generally low toughness of ceramics which is causing brittle failure of the cutting edge. A feasibility study showed that Si3N4/SiC composites with fine elongated β-Si3N4 grains are a promising material for industrial wood machining and outperform commercial standard tungsten carbide tools in terms of lifetime. However, they were produced by hot pressing followed by very costly diamond cutting and grinding. The costs associated with the above production route are too high for an industrial viability. In this thesis Si3N4/SiC composites suitable for industrial wood milling are produced by a near net shape processing route including gas pressure sintering. These newly developed tools show less abrasive wear and consequently twice as long lifecycles than commercial standard tungsten carbide tools. Microscopic properties determine the performance of the Si3N4/SiC cutting tools. Therefore, an adequate selection of sintering additives is crucial. 12 wt% sintering additives are included in the composite as a combination of Al2O3 and the refractory oxides La2O3 and Y2O3. Important for the production of effective Si3N4/SiC wood cutting tools is the formation of a partly crystalline silicate phase within the multiple grain junctions during the final treatment by hot isostatic pressing. The use of MgO as a sintering additive for facilitating the densification of the Si3N4 ceramics inhibits the formation of the favourable silicate phase and must be avoided for the production of these wood cutting tools.
717

On the development of a dynamic cutting force model with application to regenerative chatter in turning

Cardi, Adam A. 06 April 2009 (has links)
Turning is one of the most widely used processes in machining and is characterized by a cutting tool moving along the axis of a rotating workpiece as it removes material. A detrimental phenomenon to productivity in turning operations is unstable cutting or chatter. This can reduce the life of tooling, dimensional accuracy, and the quality of a part's surface finish because of severe levels of vibration. Ideally, cutting conditions are chosen such that material removal is performed in a stable manner. However, it is sometimes unavoidable because of the geometry of the cutting tool or workpiece. This work seeks to develop a dynamic cutting force model that can be used to predict both the point of chatter instability as well as its amplitude growth over time. Previous chatter models fail to capture the physics of the process from a first-principles point of view because they are oversimplified and rely on various "cutting force coefficients" that must be tuned in order to get a desired correlation with experimental results. The proposed approach models the process in a geometrically rigorous fashion, also giving treatment to the strain, strain rate, and temperature effects encountered in machining. It derives the forces encountered during a turning operation from two sources: forces due to chip formation and forces due to plowing and flank interference. This study consists of a detailed derivation of two new cutting force models. One relies on careful approximations in order to obtain a closed-form solution; the other is more explicit and obtains a solution through numerical methods. The models are validated experimentally by comparing their prediction of the point of instability, the magnitude of vibration in the time and frequency domains, as well as the machined surface topography during chatter.
718

An Analysis of Machining System Capability and Its Link with Machined Component Quality

Österlind, Tomas January 2013 (has links)
Machining components out of tolerances is of no use in competitiveproduction. The machining system sets the limitations of dimensionalaccuracy and surface quality of a machined component. The capabilityof the machining system describes these limits in terms of specifiedvalues. This thesis deals with machining system capability analysismainly focused on machine tool static and dynamic stiffness.The influence of stiffness and flexibility on machining systemcapability is analytically and experimentally investigated. Theexperimental work presented in the thesis complies with the theoriesand shows the relation between machine tool capability and theoutcome on the machine component.The concept of capability analysis by elastic linked system andthe currently available tools for such an evaluation is presented anddiscussed. The basis of elastic linked system analysis is the use ofmeasurements under loaded condition. The machine tool is loadedwith a known force creating a test condition closer to real machining,compared to current methods of unloaded machine tools. Twomeasurement tools for elastic linked system capability analysis areexplained in the thesis: Loaded Double Ball Bar and ContactlessExcitation and Response System.The thesis consists of an analytical base and an experimental casestudy on spiral bevel gear face milling. The experiments are discussedand compiled with the given theories. / <p>QC 20130513</p>
719

Innovative cutting materials for finish shoulder milling Ti-6A1-4V aero-engine alloys

Oosthuizen, G. A. 03 1900 (has links)
Thesis (MScEng (Industrial Engineering))--University of Stellenbosch, 2009. / The titanium alloys have found wide application in the aerospace, biomedical and automotive industries. Soaring fuel prices and environmental concerns are the fundamental drivers that intensify the demand situation for titanium. From a machining viewpoint, one of the challenges companies face, is achieving high material removal rates while maintaining the form and function of the part. The ultimate aim for a machining business remains to make parts quickly. Conventional cutting speeds range from 30 to 100 m/min in the machining of Ti-6Al-4V. Milling this alloy faster however is challenging. Although titanium is becoming a material of choice, many of the same qualities that enhance titanium‟s appeal for most applications also contribute to its being one of the most difficult materials to machine. The author explored the potential for Polycrystalline diamond (PCD) inserts in high speed milling of Ti-6Al-4V, by trying to understand the fundamental causes of tool failure. The objective was to achieve an order of magnitude increase in tool life, while machining at high speed, simply by reducing some of the failure mechanisms through different cutting strategies. Tool wear is described as a thermo-mechanical high-cycle fatigue phenomenon. The capability of a higher material removal per tool life is achieved in the case of PCD inserts compared to Tungsten carbide (WC). The average surface roughness produced was relatively low. The collected chips were also analyzed. The work demonstrated progress over the performance reported in current literature. The work confirms that there is a region where a sufficiently high temperature in the cutting zone may contribute to extended tool life, provided that the tool material can withstand these extreme conditions.
720

The development of a robotic coarse-to-fine positioning system

Read, Sebastian E. A. 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: There is a need for a coarse-to-fine positioning system as per a case study presented by the project collaboration partner, the Technical University of Chemnitz. The case study involves the picking and placing of piezo-ceramic micro parts into milled micro cavities. The focus of the project is the creation and development of a systematic approach for the design and the implementation of a coarse-to-fine positioning system for micro material handling. A second focus is to determine the applicability of the system for highly accurate and repeatable micro drilling and micro-milling. A systematic approach entails combining innovation management (assists in overall project structure), systems engineering (assists in specific design steps and tools) and research questions. Micro-milling was achieved, however the system proved unsuitable for highly accurate and repeatable micro drilling. The coarse-to-fine positioning system was successfully designed, built, and tested for accurate micro material handling. / AFRIKAANSE OPSOMMING: Daar bestaan ’n behoefte aan ’n grof-tot-fyn-posisioneringstelsel - soos blyk uit die gevallestudie uiteengesit deur die samewerkende projekvennoot, die Tegniese Universiteit van Chemnitz. Die gevallestudie behels die uitsoek en plasing van piezo-keramiek partikels in gefreesde mikroholtes. Hierdie projek het gefokus op die skepping en ontwikkeling van ’n stelselmatige benadering tot die ontwerp en implementering van ’n grof-tot-fyn-posisioneringstelsel vir mikromateriaalhantering en mikromasjienering. ’n Stelselmatige benadering behels dat innovasiebestuur (hulp met die algehele projekstruktuur), stelselingenieurswese (hulp met spesifieke ontwerpstappe en -hulpmiddels) en navorsingsdoelwitte gekombineer word. Die geïmplementeerde stelsel is eksperimenteel getoets en daar is bevind dat dit aan die spesifikasies en vereistes voldoen.

Page generated in 0.0528 seconds