• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 377
  • 118
  • 76
  • 50
  • 22
  • 6
  • 6
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 850
  • 152
  • 126
  • 115
  • 90
  • 79
  • 68
  • 65
  • 64
  • 61
  • 55
  • 49
  • 49
  • 49
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Influence de la protéine découplante mitochondriale UCP2 sur la signalisation et le métabolisme des macrophages

Emre, Yalin 10 October 2007 (has links) (PDF)
La protéine UCP2 (UnCoupling Protein 2) appartient à la famille des transporteurs de la membrane interne de la mitochondrie. Son expression est restreinte à certains tissus comme la rate, l'estomac ou l'intestin. Au niveau cellulaire, UCP2 est particulièrement présente dans les macrophages où elle régule la production de radicaux libres (ROS). L'analyse des souris Ucp2-KO a montré qu'elles survivent mieux à une infection par le parasite Toxoplasma gondii que les animaux sauvages grâce à des macrophages superactifs en terme de production de ROS. Par ailleurs, dans le modèle murin de l'athérosclérose humaine, les souris Ucp2-KO développent des plaques athéromateuses plus instables et plus larges, présentant une forte accumulation de macrophages et des dégats importants liés au monoxyde d'azote (NO). <br />Au cours de ma thèse, nous avons cherché à approfondir les connaissances sur le rôle physiologique d'UCP2 ainsi que sur son activité biochimique.<br />Nous avons démontré que la diminution rapide d'UCP2 en réponse au LPS potentialise l'activation des MAPK dans les macrophages. La mitochondrie via UCP2 est ainsi au coeur d'une boucle d'amplification du signal impliquant la modulation des ROS mitochondriaux. Par conséquent, la signalisation et la vitesse d'activation des macrophages Ucp2-KO est accélérée, conduisant à une production accrue de NO et de cytokines.<br />La pertinance de ces résultats a ensuite été testée in vivo avec un volet infection et un volet auto-immunité. L'infection des souris par la bactérie Listeria monocytogenes a révélé une meilleure résistance des souris Ucp2-KO. Une production accrue de cytokines pro-inflammatoires chez les souris Ucp2-KO ainsi qu'un recrutement plus important de phagocytes au niveau de leur rate soulignent le rôle régulateur d'UCP2 sur l'immunité innée. En ce qui concerne, l'auto-immunité, l'induction expérimentale d'un diabète de type 1 est nettement accélérée chez les souris Ucp2-KO. L'analyse de ces souris montrent un rôle capital des macrophages dans le développement de la maladie grâce à leur forte capacité de production de cytokines et de NO.<br />L'activité biochimique d'UCP2, c'est-à-dire son activité de transport, a également été abordée. La glutamine est un inducteur spécifique de l'expression d'UCP2. Par conséquent, la comparaison du métabolisme de la glutamine dans les macrophages Ucp2-KO et Ucp2-WT a démontré que l'expression d'UCP2 est requise pour une oxydation correcte de la glutamine.<br />Enfin, grâce à la disponibilité de génomes complets de nombreuses espèces, l'étude phylogénomique des UCP a permis de tracer une histoire de l'évolution des UCP de mammifères et aviaire.<br />Nos études ont mis en évidence la participation d'UCP2 au métabolisme des macrophages. L'altération de celui-ci influe sur la signalisation et l'activité des cellules. Une meilleure compréhension de la fonction d'UCP2 et du métabolisme des cellules immunitaires pourrait ouvrir de nouvelles perspectives thérapeutiques.
422

Formation and Characterization of Polymerized Supported Phospholipid Bilayers and the in vitro Interactions of Macrophages and Fibroblasts.

Page, Jonathan Michael 01 August 2010 (has links)
Planar supported, polymerized phospholipid bilayers (PPBs) composed of 1,2-bis[10-(2’,4’-hexadienoyloxy)decanoyl]-sn-glycero-3-phosphocholine (bis-SorbPC or BSPC) were generated by a redox polymerization method. The PPBs were supported by a silicon substrate. The PPBs were characterized and tested for uniformity and stability under physiological conditions. The PPBs were analyzed in vitro with murine derived cells that are pertinent to the host response. Cellular attachment and phenotypic changes in RAW 264.7 macrophages and NIH 3T3 fibroblasts were investigated on PPBs and compared to bare silicon controls. Fluorescent and SEM images were used to observe cellular attachment and changes in cellular behavior. The PPBs showed much lower cellular adhesion for both cell lines than bare silicon controls. Of the cells that attached to the PPBs, a very low percentage showed the same morphological expressions as seen on the controls. The hypothesis generated from this work is that defects in the PPBs mediated the cellular attachment and morphological changes that were observed. Finally, a layer-by-layer (LbL) deposition of a poly(acrylic acid) (PAA) and poly(N-vinylpyrrolidone) (PNVP) alternating bilayer was attempted as a proof of concept for future modification of this system.
423

Macrophage Migration Inhibitory Factor Polymorphisms and Invasive Streptoccus Pneumoniae Infections

Doernberg, Sarah Beth 03 November 2006 (has links)
Streptococcus pneumoniae[italicized everytime] (S. pneumoniae) causes a spectrum of disease severity, and human host factors likely play a role in this variation. One candidate factor is macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine and upstream regulator of innate immunity. The MIF[italicized when not in parenthesis] promoter contains two functional polymorphisms, a tetranucleotide (CATT) repeat such that MIF expression increases with repeat number from 5-8 and a single nucleotide polymorphism (SNP) leading to a G-to-C transition, which results in increased MIF expression in cell line reporter assays. Emerging data suggest an association between high-expression MIF alleles and inflammatory disease. This study comprised two parts. For the in vitro portion, we hypothesized that peripheral blood monocytic cells (pBMCs) cultured from healthy individuals with low-expressing MIF genotypes (5-CATT alleles or SNP-GG) would have lower MIF content and release than those from individuals with high-expressing MIF genotypes (7-CATT or SNP-C alleles). For the in vivo study, we hypothesized that individuals with low-expressing MIF genotypes would have less severe systemic inflammatory responses than individuals with high-expressing MIF genotypes in response to S. pneumoniae infection. Blood samples and chart findings were collected prospectively at three Connecticut hospitals from 30 inpatients with documented invasive S. pneumoniae infections. Genomic DNA was isolated from host blood, amplified, and genotyped using fragment analysis (CATT repeat) and allelic discrimination (SNP) methods. Fishers exact tests were used to compare genotypes and disease severity. For the in vitro experiments, there were no differences observed in serum MIF levels or MIF content or release from pBMCs based on MIF genotype. In the cohort of patients infected with S. pneumoniae, serum MIF levels among enrolled subjects were significantly higher than the reported normal values, but levels did not vary with genotype or disease severity. The SNP genotype was not correlated with disease severity or occurrence of meningitis. The CATT genotype did not correlate significantly with disease severity or occurrence of meningitis, although there was a trend suggesting an association between the 7-CATT allele and meningitis (p = 0.1188, 8% without meningitis had a 7-CATT allele vs. 40% with meningitis). More patient samples will need to be analyzed in order to definitively elucidate the role of MIF genetics in infection with S. pneumoniae
424

The role of perforin and chemokines in the pathogenesis of chronic corneal inflammation induced by herpes simplex virus type-1 infection /

Chang, Eddie, January 2003 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 2003. / "May 2003." Typescript. Vita. Includes bibliographical references (leaves 139-154).
425

Interactions of neurons, astrocytes and microglia with HUCB cell populations in stroke models : migration, neuroprotection and inflammation /

Jiang, Lixian. January 2008 (has links)
Dissertation (Ph.D.)--University of South Florida, 2008. / Includes vita. Includes bibliographical references. Also available online.
426

Development and application of optical imaging techniques in diagnosing cardiovascular disease

Wang, Tianyi, 1982- 11 October 2012 (has links)
Atherosclerosis and specifically rupture of vulnerable plaques account for 23% of all deaths worldwide, far surpassing both infectious diseases and cancer. Plaque-based macrophages, often associated with lipid deposits, contribute to atherogenesis from initiation through progression, plaque rupture and ultimately, thrombosis. Therefore, the macrophage is an important early cellular marker related to vulnerability of atherosclerotic plaques. The objective of my research is to assess the ability of multiple optical imaging modalities to detect, and further characterize the distribution of macrophages (having taken up plasmonic gold nanoparticles as a contrast agent) and lipid deposits in atherosclerotic plaques. Tissue phantoms and macrophage cell cultures were used to investigate the capability of nanorose as an imaging contrast agent to target macrophages. Ex vivo aorta segments from a rabbit model of atherosclerosis after intravenous nanorose injection were imaged by optical coherence tomography (OCT), photothermal imaging (PTW) and two-photon luminescence microscopy (TPLM), respectively. OCT images depicted detailed surface structure of atherosclerotic plaques. PTW images identified nanorose-loaded macrophages (confirmed by co-registration of a TPLM image and corresponding RAM-11 stain on a histological section) associated with lipid deposits at multiple depths. TPLM images showed three-dimensional distribution of nanorose-loaded macrophages with a high spatial resolution. Imaging results suggest that superficial nanorose-loaded macrophages are distributed at shoulders on the upstream side of atherosclerotic plaques at the edges of lipid deposits. Combination of OCT with PTW or TPLM can simultaneously reveal plaque structure and composition, permitting assessment of plaque vulnerability during cardiovascular interventions. / text
427

The innate immune response of Atlantic salmon head kidney macrophages to Infectious Pancreatic Necrosis Virus (IPNV)

McKinley, Gavin January 2007 (has links)
Infectious pancreatic necrosis virus (IPNV) is the aetiological agent of infectious pancreatic necrosis (IPN), a disease associated with serious economic loss in Atlantic salmon (Salmo salar). The interaction between IPNV and the host is poorly characterised. IPNV has been detected within macrophages in natural and experimental infections. The macrophage is an important component of the host immune system, participating in innate and adaptive immune responses. The overarching objective of this project was to study aspects of the interaction between IPNV and innate immune responses in the Atlantic salmon macrophage. Methods were developed for the isolation and in vitro culture of Atlantic salmon macrophages. These cells were isolated from head kidney using percoll gradients and subsequently cultured in 24 well plates using Leibovitz L-15 medium containing penicillin, streptomycin and foetal calf serum. This procedure enabled the in vitro culture of macrophages for 9 days post isolation. Real time RT-PCR assays were developed to quantitate the expression of IPNV, Interferon (IFN), Mx, and Elongation factor 1 (ELF-1) in IPNV-infected macrophages and uninfected controls. ELF-1 is utilised as a control gene for relative quantitation in RT-PCR studies. The RT-PCR assays utilised targetspecific primers, and MGB probes. Assay efficiencies varied from 0.85 to 0.99, these were suitable for quantitative RT-PCR analyses. IPNV was demonstrated to replicate in macrophages cultured in vitro as assessed by quantitative RT-PCR. IPNV levels in macrophages were greatest at the early stages of infection. Virus was detected in infected macrophages throughout the nine day period of investigation. Quantitative RT-PCR analyses of the expression of the immune response genes IFN and Mx suggested that IPNV blocks IFN production, as opposed to blocking IFN signalling. The ability of three immunostimulants, Lipopolysaccharide (LPS), macrophage activating factor (MAF), and glucan to up regulate immune responses in IPNV-infected macrophages was also investigated. None of these immunostimulants were able to enhance expression of IFN and Mx, suggesting that these substances may not represent useful therapeutic means of mitigating IPN in Atlantic salmon.
428

SIV envelope glycoprotein determinants of macrophage tropism and their relationship to neutralization sensitivity and CD4-independent cell-to-cell transmission

Yen, Po-Jen 15 October 2013 (has links)
Macrophages are target cells for human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infection that serve as viral reservoirs in brain, lung, gut, and other tissues, and play important roles in disease pathogenesis, particularly HIV/SIV-associated neurological disease. Macrophages express low levels of the HIV/SIV receptor CD4, but mechanisms by which macrophage-tropic viruses use low CD4 to mediate spreading infections are poorly understood. One mechanism involves enhanced envelope glycoprotein (Env) interaction with CD4 or CCR5, but this phenotype is frequently associated with increased neutralization sensitivity to antibodies targeting CD4/CCR5 binding sites. Moreover, this mechanism does not explain how these neutralization-sensitive viruses evade immune responses while establishing spreading infections. In this dissertation, we sought to identify SIV Env determinants for macrophage tropism and characterize mechanisms by which they enhance virus replication in macrophages. To identify viral variants capable of inducing macrophage-associated pathogenesis, we cloned Env sequences from SIV-infected macaques at early and late stage infection, and identified an early variant in blood that shares >98% sequence identity with the consensus sequence of late variants in brain from macaques with neurological disease. SIV clones encoding this Env variant mediated high levels of fusion, replicated efficiently in rhesus PBMC and macrophages, and induced multinucleated giant cell formation upon infection of macrophage cultures. We identified an N-linked glycosylation site, N173 in the V2 region, as a determinant of macrophage tropism. Loss of N173 enhanced SIVmac239 macrophage tropism, while restoration of N173 in SIVmac251 reduced macrophage tropism, but enhanced neutralization resistance to CD4/CCR5 binding site antibodies. SIVmac239 N173Q, which lacks the N173 glycosylation site, mediated CD4-independent fusion and cell-to-cell transmission with CCR5-expressing cells, but could not infect CD4-negative cells in single-round infections. Thus, CD4-independent phenotypes were detected only in the context of cell-cell contact. The N173Q mutation had no effect on SIVmac239 gp120 binding to CD4 in BIACORE and co-immunoprecipitation assays. These findings suggest that loss of the N173 glycosylation site increases SIVmac239 replication in macrophages by enhancing CD4-independent cell-to-cell transmission through CCR5-mediated fusion. This mechanism may facilitate escape of macrophage-tropic viruses from neutralizing antibodies, while promoting spreading infections by these viruses in vivo.
429

TNF gene expression in macrophage activation and endotoxin tolerance

Chow, Nancy Ann-Marie 04 August 2014 (has links)
TNF is an inflammatory cytokine that plays a critical role in the acute phase response to infection, and its dysregulation has been implicated in the pathology of several inflammatory and autoimmune disorders. TNF gene expression is regulated in a cell type- and inducer-specific manner that involves chromatin alterations at both the TNF promoter and distal DNase I hypersensitive (DH) sites within the TNF/LT locus. While the mechanisms underlying TNF gene activation in monocytes/macrophages and T cells have been studied intensively, the mechanisms of enhanced, repressed, and restored TNF gene expression in the context of classical macrophage activation and endotoxin tolerance remain largely unknown. We set out to understand how TNF gene expression is modulated during these biological processes by characterizing the chromatin environment of the TNF/LT locus.
430

Mesenchymal stromal cells of human umbilical cord Wharton's jelly accelerate wound healing by paracrine mechanisms

Ueda, Minoru, Kikkawa, Fumitaka, Hibi, Hideharu, Iwase, Akira, Takikawa, Sachiko, Yamamoto, Akihito, Shohara, Ryutaro 09 1900 (has links)
名古屋大学博士学位論文 学位の種類 : 博士(医学)(課程) 学位授与年月日:平成25年1月31日 匠原龍太郎氏の博士論文として提出された

Page generated in 0.0776 seconds