Spelling suggestions: "subject:"chimiorésistance""
41 |
Étude du retournement de l'aimantation par microscopie magnéto-optique Kerr et de la magnétorésistance dans des couches minces de La0,7Sr0,3MnO3 à température ambianteFadil, Dalal 05 December 2011 (has links) (PDF)
Nous avons étudié à température ambiante le retournement de l'aimantation par microscopie magnéto-optique Kerr longitudinale de trois couches minces La0,7Sr0,3MnO3 (LSMO) déposées sur des substrats SrTiO3 vicinaux et non vicinaux. Ce matériau ferromagnétique à température ambiante présente un intérêt pour la réalisation des dispositifs magnétorésistifs non refroidis. Avant de concevoir un capteur magnétorésistif, il est indispensable de comprendre le comportement magnétique du matériau qui le constitue. Nous avons observé trois types de retournement de l'aimantation (retournement par nucléation et propagation de parois, retournement cohérent, ou mélange des ces deux types). Nous avons montré l'effet de plusieurs paramètres (orientation du champ magnétique par rapport aux marches et au courant électrique, taille du motif et épaisseur de la couche). Une dépendance temporelle du retournement de l'aimantation a été également remarquée. La magnétorésistance à très faible champ magnétique est influencée par la présence ou l'absence de parois de domaine et par l'orientation du champ par rapport au courant et marches. La mesure des différentes sensibilités magnétiques conduit à une sensibilité de 1000 %/T dans l'échantillon vicinal de petite épaisseur, ce qui est dix fois plus que dans une couche non vicinale, tout en conservant le même niveau de bruit à basse fréquence. Ces résultats ouvrent donc des perspectives intéressantes en termes d'applications.
|
42 |
Manganites à magnétorésistance colossale pour la réalisation de capteursPerna, Paolo 27 February 2008 (has links) (PDF)
La croissance de couches minces épitaxiées de La0.7Sr0.3MnO3 a été réalisée sur différents substrats, dont SrTiO3 (001), (110), vicinal et Si. La conception de bolomètres et de dispositifs spintroniques est donc envisageable. Différentes techniques de dépôt ont été utilisées: la pulvérisation cathodique, l'ablation laser pulsée, assistée ou non par RHEED (Reflection High Energy Electron Diffraction). Les échantillons ont été caractérisés par diffraction de rayon X, en étudiant particulièrement l'épitaxie et la contrainte dans les couches. Des analyses complémentaires de RHEED, de LEED (Low Energy Electron Diffraction), et de STM/AFM (Scanning Tunneling/Atomic Force Microscopies) ont été également réalisées, ainsi que des mesures de résistivité et d'aimantation en fonction de la température. L'effet de l'orientation du substrat SrTiO3 a ainsi été montré. Trois dispositifs spintroniques utilisant une couche morte, des surfaces vicinales ou l'injection de spin sont finalement présentés.
|
43 |
Microscopie à émission d'électrons balistiques : du magnétotransport d'électrons chauds à l'imagerie magnétiqueHervé, Marie 12 July 2013 (has links) (PDF)
Au cours de ces travaux de thèse, nous avons étudié par microscopie magnétique à émission d'électrons balistiques (BEMM) les propriétés de magnétotransport d'électrons chauds de la vanne de spin Fe/Au/Fe épitaxiée sur GaAs(001). Dans ces expériences, la pointe d'un microscope à effet tunnel (STM) injecte localement un courant d'électrons chauds à la surface de la vanne de spin. La mesure sous champ magnétique du courant d'électrons balistiques collecté à l'arrière de l'échantillon donne accès aux propriétés locales de magnétoconductance de l'échantillon. Nous avons dans un premier temps étudié les propriétés de magnétotransport de vannes de spin planaires. Les mesures BEMM démontrent un magnétocourant d'électrons chauds pouvant atteindre 500 % à température ambiante. Ces forts effets de magnétoconductance ne sont que très faiblement dépendants des épaisseurs des électrodes de fer et ne peuvent donc être dus à l'asymétrie en spin de la longueur d'atténuation des électrons chauds dans les couches de fer. Dans cette structure épitaxiée, la polarisation en spin du faisceau d'électrons chauds s'acquiert principalement aux interfaces via des effets de structure électronique. L'électron traversant les couches minces métalliques se propage comme un état de Bloch. Sa transmission aux différentes interfaces se fait en conservant d'une part la composante transverse k║ du vecteur d'onde électronique, et d'autre part, la symétrie de la fonction d'onde. Au-dessus de la barrière Schottky, les électrons chauds sont collectés dans la vallée Г du GaAs se projetant à l'interface dans la direction k║=0. Dans cette direction k║=0, la conservation de la symétrie de la fonction d'onde à l'interface Fe/Au conduit au filtrage des états de Bloch de symétrie Δ1 du fer. Ces états de symétrie Δ1, totalement polarisés en spin, sont responsables des forts magnétocourants d'électrons chauds observés. Cette analyse est confirmée expérimentalement par l'observation d'une corrélation entre amplitude du magnétocourant et masse effective du substrat semiconducteur. En augmentant la masse effective du semiconducteur, on ouvre le collimateur filtrant le courant d'électrons chauds autour de la direction k║=0, et le magnétocourant diminue sans modifier la vanne de spin. Dans un second temps, tirant partie de la résolution latérale du microscope et de sa sensibilité au magnétisme, des microstructures de fer préparées sous ultra-vide par évaporation à travers un masque (méthode du nanostencil) ont été étudiées. Dans ces structures, la modulation du courant collecté par la structure locale en domaines magnétiques a permis la réalisation d'images magnétiques avec une haute résolution spatiale. Les contrastes observés sur ces microstructures sont en excellent accord avec les images BEMM calculées à partir de simulations micromagnétiques ouvrant la voie à une microscopie magnétique quantitative à forte sensibilité et résolution latérale nanométrique.
|
44 |
Impact of symmetry of oxygen vacancies on electronic transport in MgO-based magnetic tunnel junctions / Effet de la symétrie des lacunes d'oxigène dans MgO sur le transport électronique polarisé en spinTaudul, Beata 12 December 2017 (has links)
En spintronique, l’étude des hétérostructures multicouches composées d'une électrode ferromagnétique et d'une couche isolante mince, c'est-à-dire des jonctions tunnel magnétiques (JTM), est particulièrement importante. Le système canonique est le Fe/MgO/Fe où les hautes valeurs du rapport de la magnétoresistance tunnel (TMR) ont été mesurées. Le facteur crucial définissant la performance de la jonction est l’imperfection structurelle dans un dispositif réel. Dans notre travail, nous nous sommes concentrés sur des lacunes d'oxygène dans MgO. Au moyen de la théorie de la fonctionnelle de densité, nous avons étudié les propriétés électroniques de l'état fondamental des lacunes d'oxygène simples et doubles dans MgO massif, appelées respectivement centres F et M. Nous avons ensuite étudié l'impact de ces lacunes sur le transport balistique dans les jonctions magnétiques. Nous avons démontré le rôle supérieur joué par les centres M et nous avons prouvé qu'un transport cohérent, préservant le spin et la symétrie des électrons, est possible en présence de centres M. / In sprintronics, the study of multilayer heterostructures composed of a ferromagnetic electrodes and a thin insulating layer, i.e. magnetic tunnel junctions (MTJs), is of special importance. The canonical systems are MTJs made of Fe/MgO/Fe where hight tunneling mangetoresistance ratio (TMR) values were measured. The crucial factor defining the junction performance is the structural imperfection appearing in a real devices. In our work we focused in particular on oxygen vacancies in MgO. By means of density functional theory we studied ground state electronic properties of single and double oxygen vacancies, referred as F and M centers, respectively, in bulk MgO. We then switched to full junctions where we investigated the impact of vacancies on the ballistic transport. We demonstrated that M centers played a superior role and proved that coherent transport, preserving electrons spin and symmetry, is possible in presence of paired vacancies.
|
45 |
Caractérisation de transport des électrons dans les transistors MOS à canal court / Characterization of Electron Transport in Short channel MOS TransistorsSubramanian, Narasimhamoorthy 29 November 2011 (has links)
La qualité du transport électronique est l’une des clés permettant de soutenir la progression des performances pour les futures générations de composants. De très nombreux facteurs, comme le choix de l’isolant et du métal de grille, le matériau de canal ou la présence de contraintes mécaniques, affectent de façon négative ou positive ces propriétés de transport. L’épaisseur du canal, qui atteint des dimensions nanométriques joue également un rôle : interactions avec les interfaces, fluctuations d’épaisseurs, effets de couplage électrostatique ou quantique entre ces interfaces. Il est probable que des mécanismes d’interaction associés à la proximité des zones surdopées de source et de drain puissent également intervenir. A ces dimensions, on s’attend à observer des phénomènes de transport hors d’équilibre, voire balistique, qui peuvent remettre en question la validité des paramètres utilisés pour caractériser le transport. Donc avec l'avancement de la technologie, il devient nécessaire de faire évoluer les modèles de transport et les paramètres afin de mieux expliquer le fonctionnement du MOSFET. Cette thèse se concentre sur la compréhension des modèles de transport existants et des méthodes d'extraction pour les noeuds technologiques actuels et futures. Les modèles de transport et les méthodes d'extraction de paramètres en régime linéaire et de saturation ont été explorés au cours de cette thèse. L'impact de la résistance série, qui est une fonction de la tension de grille, dans les MOSFET avancés est pris en compte et une nouvelle méthode d'extraction améliorée a été développée dans le régime linéaire. Des mesures à basse température ont été utilisées en régime linéaire pour l'extraction des mécanismes de diffusion en utilisant le modèle de mobilité. Une nouvelle méthode de correction pour le courant de drain dans le régime de saturation pour les MOSFET canal court est développée en utilisant les mesures à basse température. Cela permet de corriger du DIBL ainsi que des effets de « self heating ». Le modèle de saturation de vitesse et la méthode d'extraction associée sont explorés dans le régime de saturation et sont étudiés en fonction de la température et de la longueur de canal. Les modèles balistique et quasi-balistique avec le concept de la « kT layer » en régime de saturation sont également étudiés pour les noeuds sub 32 nm. Mesurer la magnétorésistance offre des perspectives prometteuses pour les dispositifs à canal court et permettant d’extraire directement la mobilité, sans la nécessité de la connaissance des dimensions du canal. Un modèle analytique pour la magnétorésistance est développé dans le cadre des noeuds technologiques sub 32 nm pour les modèles de transport balistique et quasi-balistique. La mesure de la magnétorésistance est explorée dans la région de saturation pour la première fois jusqu'à 50 nm sur les MOSFET « bulk » afin de comprendre l'applicabilité de cette méthode d'extraction à ce régime. Enfin les dispositifs bulk+ FDSON, FinFET, et GAA sont caractérisés en fonction de la température et les mécanismes de transport dans ces nouveaux dispositifs sont étudiés jusqu'à 35 nm (FinFET). En outre, le paramètre de champ effectif η est extrait pour les dispositifs sSOI. On trouve qu’il est différent du cas « bulk » comme c'était le cas pour les résultats obtenues sur bulk contraint et FDSOI. Cela est interprété par la rugosité de surface et la diffusion des phonons en raison de l'occupation préférentielle de la sous la bande fondamentale dans ces dispositifs avancés. / Electron transport is one of the key properties that need to be improved in order to sustain performance improvement for the next technological nodes. Many factors, such as the choice of gate stack materials, channel material or the presence of mechanical strain contribute to degrade or improve transport properties. Body thickness, which reaches dimensions of a few nanometers, is playing a role as well, through interface scattering, thickness fluctuations or electrostatic and quantum coupling effects between front and back interfaces. In addition, it is strongly suspected that additional scattering mechanisms are associated with the proximity of the highly doped source and drain regions. For the sake of sub 32nm technology nodes development, it is of fundamental importance that these various mechanisms be identified and studied. In this range of dimensions, electron transport is governed by out of equilibrium, or even ballistic, phenomena. Therefore along with the advancement in the technology nodes, it becomes necessary to evolve the transport models and parameters to better explain the MOSFET operation. This thesis focuses on understanding the existing transport models and extraction methods and improving the same under the context of current and future technology nodes mainly sub 32nm. The MOSFET transport models and static parameter extraction methods in linear and saturation regime have been explored during the course of this thesis. The impact of gate voltage dependent series resistance in the advanced MOSFETs is taken into account and a new improved extraction method has being developed in the linear regime. Low temperature measurement is used in linear regime for the extraction of scattering mechanisms using mobility model. A new saturation drain current correction for short channel MOSFETs is developed for taking into account both DIBL and self-heating using low temperature measurement. Velocity saturation vsats model and extraction method is explored in the saturation regime and vsats is studied against temperature and channel lengths. Ballistic and quasi ballistic model with concept of kT layer in saturation regime is also studied for the sake of sub 32nm nodes. Channel magnetoresistance measurement offers promising prospects for short channel devices as we can directly extract the channel mobility without the need for the knowledge of channel dimensions. An analytical magnetoresistance model is developed in the context of sub 32nm technology nodes for full ballistic and quasi ballistic transport models. Magnetoresistance measurement is explored in the saturation region for the first time down to 50nm on bulk MOSFETs in order to understand the applicability of this extraction method in this regime. Finally Bulk+ FDSON, FinFET, and GAA devices are characterized with temperature and studied the transport mechanism in these novel devices down to 35nm (FinFET). Also effective field parameter η is extracted for sSOI devices and found that this is significantly different from bulk value as in the case of previous results in strained bulk and FDSOI devices and this is interpreted as increased surface roughness and phonon scattering due to preferential sub band occupation in these advanced devices.
|
46 |
Spin dependent transport in antiferro and ferrimagnetic nanostructures / Transport dépendant du spin dans des nanostructures antiferro et ferrimagnétiquesMerodio Camara, Pablo 03 December 2014 (has links)
En électronique de spin, le couple de transfert de spin (STT) et la magnétorésistance tunnel (TMR) dans les jonctions tunnel magnétiques à électrodes ferromagnétiques (F) sont deux phénomènes physiques essentiels. Dans cette thèse, nous présentons une étude théorique du STT dans des jonctions tunnel antiferromagnétiques (AF), où deux électrodes non-plus F mais AF sont séparées par une barrière isolante non-magnétique. Plus concrètement, les comportements du STT et de la TMR sont étudiés dans des jonctions tunnel AF cristallines, et ce, à l´aide de calculs de liaisons fortes dans le cadre du formalisme de Keldysh. Nous avons observé une distribution spatiale de la composante perpendiculaire du STT régulière et de signe alternatif, ce qui est similaire au comportement de la composante parallèle. Ces variations spatiales de la composante perpendiculaire sont cependant spécifiques à l'utilisation d'une barrière tunnel et contrastent avec les effets observés par le passé pour le cas de couches séparatrices métalliques. De plus, contrairement aux jonctions tunnel F conventionnelles, nous avons montré que la TMR peut augmenter avec la tension appliquée et atteindre des valeurs du même ordre de grandeur que pour des vannes de spin usuelles : tout-métallique et à électrodes F.L´analyse effectuée pour des AF est ensuite étendue aux matériaux ferrimagnétiques (FI), pour lesquels les AF constituent, somme toute, des cas limites. La complexité magnétique additionnelle inhérente aux FI se traduit par un comportement spatial du STT beaucoup plus riche dans les jonctions tunnel FI. Nous observons notamment que les paramètres électroniques tels que les largeurs et les décalages de bandes ont une très forte influence sur le STT. Plus particulièrement, la différence entre les couplages d'échange inter-spin locaux des deux sous-réseaux du FI donne lieu à une distribution spatiale du STT ondulatoire qui est modulée par la densité locale de spin. Il est possible d'ajuster cet effet en jouant sur la tension appliquée aux bornes de la jonction tunnel FI. Nous trouvons de plus que la différence entre les couplages d'échange inter-spin locaux constitue un paramètre fondamental pour la quantification des longueurs caractéristiques du STT dans les FIs. Ce paramètre peut être considéré comme un champ d´échange effectif, par similitude avec le cas usuel des Fs qui présentent un champ d´échange homogène.Pour finir, nous avons sondé expérimentalement les longueurs caractéristiques du STT dans des AFs. Pour de l'Ir20Mn80 et du Fe50Mn50, nous avons déterminé les longueurs de pénétration de spin et les mécanismes d'absorption de courants de spin à température ambiante en utilisant la résonance F et le pompage de spin. Plus précisément, nous avons associé les profondeurs de pénétration critiques à deux mécanismes d'absorption distincts: du déphasage pour l´Ir20Mn80 et du retournement de spin pour le Fe50Mn50. / Spin transfer torque (STT) and tunnelling magnetoresistance (TMR) in magnetic tunnel junctions with ferromagnetic (F) leads are two essential underlying phenomena of modern spintronics. We present here a theoretical study of STT in antiferromagnet (AF) based tunnel junctions, where two AF metal electrodes are separated by a thin nonmagnetic insulating barrier. In particular, the behaviour of STT and TMR in epitaxial AF-based tunnel junctions is investigated using tight binding calculations in the framework of the Keldysh formalism. The spatial distribution of the STT out-of-plane component is found to be staggered, similar to the in-plane component. This behaviour is specific to the use of a tunnel barrier and significantly differs from the out-of-plane torques reported in previous works using a metallic spacer. Additionally, we show that unlike conventional ferromagnetic-based tunnel junctions, the TMR can increase with applied bias and reach values comparable to typical magnetoresistances found for usual spin valves.Next, the analysis carried out for AFs is extended to ferrimagnets (FI), for which AFs constitute simpler limiting cases. The additional magnetic complexity inherent to FI materials yields to a richer physics concerning the STT spatial behaviour in FI based tunnel junctions.Electronic structure parameters such as band widths and exchange splittings of the FI are shown to have a strong influence on STT. In particular, the STT spatial distribution within the leads exhibits a striking spin-modulated wave-like behaviour resulting from the interplay between the exchange splittings of the two FI sublattices. This wave-like behaviour can also be tuned via the applied voltage across the junction. Furthermore, the fundamental intrinsic parameter for quantifying STT characteristic lengths in FI metals is identified. This fundamental parameter can be considered as an effective exchange field in FIs, similar to the homogeneous exchange field in the F case.Finally, the STT characteristic lengths in AF materials are investigated experimentally. Here, room temperature critical depths and absorption mechanisms of spin currents in Ir20Mn80 and Fe50Mn50 are determined by F-resonance and spin pumping. In particular, room temperature critical depths are observed to be originated from different absorption mechanisms: dephasing for Ir20Mn80 and spin flipping for Fe50Mn50.
|
47 |
Optimisation de jonctions tunnel magnétiques pour STT-MRAM et développement d'un nouveau procédé de nanostructuration de ces jonctions / Engineering of magnetic tunnel junction stacks for improved STT-MRAM performance and development of novel and cost-effective nano-patterning techniquesChatterjee, Jyotirmoy 29 March 2018 (has links)
Le but de la thèse sera d'étudier la faisabilité d'un nouveau procédé de nanostructuration des jonctions tunnel de dimension sub-30nm récemment imaginé et breveté par Spintec et le LTM et de tester les propriétés des jonctions tunnel obtenus sur les plans structural, magnétique et des propriétés électriques. Une attention particulière sera mise sur la caractérisation des défauts générés en bord de piliers lors de la gravure des jonctions tunnels et l'impact de ces défauts sur les propriétés magnétiques et de transport. Une autre partie de la thèse concerne l'optimisation des propriétés magnétiques et de transport des empilements jonctions tunnel magnétiques en vue d'en améliorer la stabilité thermique, l'amplitude de magnétoresistance tunnel et la facilité de gravure de l'empilement.En particulier l'insertion de nouveaux matériaux réfractaires (W, ) dans les empilements a été étudiée pour améliorer la stabilité de l'empilement lors des recuits à haute température. Des améliorations ont également été apportées pour renforcer la stabilité de la couche de référence de la jonction tunnel lorsque cette dernière est située au dessus de la barrière tunnel. Par ailleurs, une nouvelle couche de couplage antiferromagnétique a été mise au point permettant de réduire significativement l'épaisseur totale de l'empilement et par là même facilitant sa gravure.Tous ces résultats ont été obtenus par des mesures magnétiques et de transport réalisées sur les couches continues et sur des piliers de taille nanométriques. / The first aim of the thesis is to study the feasibility of a new process for nanopatterning of sub-30nm diameter tunnel junctions recently patented by Spintec and LTM and to test the properties of tunnel junctions obtained, from the point of view of magnetic and electrical properties. Particular attention will be paid on the characterization of defects generated at the pillar edges when patterning the tunnel junctions and the impact of these defects on the magnetic and transport properties. Another part of the thesis is focused on improving the magnetic and transport MTJ stacks with higher thermal budget tolerance. As a part of this, new materials (W, etc) were used as cap layer or as a spacer layer in composite free layer of pMTJ stacks. Moreover, different magnetic materials combined with different non-magnetic spacer have been investigated to improve the thermal stability factor of the composite storage layers. Detailed structural characterizations were performed to demonstrate the improvements in magnetic and electrical properties. A new RKKY coupling layer was found which allowed to obtain an extremely thin pMTJ stack by reducing the SAF layer thickness to 3.8nm. Seed lees multilayers with enhanced PMA is necesssary to realize a top-pinned pMTJ stack which is necessary to configure a spin-orbit torque MRAM (SOT-MRAM)stack and double magnetic tunnel junction stacks (DMTJs). A new seed less multilyar with enhanced PMA and subsequently advanced stacks such as conventional-DMTJ, thin-DMT, SOT-MRAM stacks, Multibit memory were realized. Finally, electrical properties patterned memory devices were also studied to correlate with the magnetic properties of thin films.
|
48 |
Intégration et mesures de magnéto-transport de nano-objets magnétiques obtenus par voie chimique / Integration and magneto-transport measurements of magnetic nano-objects obtained by chemical wayDugay, Julien 13 December 2012 (has links)
L'étude du transport électronique dans des nano-objets métalliques et magnétiques issus de la chimie est un challenge en spintronique. En particulier, le manque de résultats expérimentaux révèle la difficulté à positionner ces nano-objets entre des électrodes de mesures tout en préservant leurs propriétés (magnétisme, intégrité des barrières tunnel organiques...). Ce travail de thèse vise à contourner ces difficultés et à étudier le magnétotransport dans ces systèmes. Pour cela, nous avons conçu et développé à l'intérieur d'une boîte à gants couplée à un bâti de pulvérisation cathodique des systèmes expérimentaux d'assemblages de nano-objets. Nous avons étudié les mécanismes mis en jeu lors de l'assemblage par la technique de dip coating, et réussi à déposer des monocouches de nanoparticules (NPs) de natures différentes (FeCo, Fe, Co) sur des surfaces d'Au, de SiO2 et de résine fine (40 nm). Ces résultats, couplés à une technique de nanoindentation, ont permis de mesurer quelques - voire une- NP(s). Une autre technique, la diélectrophorèse, s'est révélée simple et efficace pour piéger et orienter des nano-objets de taille, de nature, et de forme différentes entre des électrodes. Grâce à cette technique et au dépôt d'une couche protectrice d'alumine, nous avons étudié les propriétés de magnétotransport de plusieurs types de nano-objets sensibles à l'oxydation ou à la vapeur d'eau: NPs de Fe, de Co, FeCo et [Fe(H-trz)2(trz)](BF4)] (composés à transition de spin). Trois jeux de barrières tunnel organiques greffés sur des NPs de fer ont présenté de la magnétorésistance tunnel jusqu'à température ambiante. De plus, des nano-objets de [Fe(H-trz)2(trz)](BF4)] de facteurs de forme variable, ont montré une variation de la conductance liée à la transition de spin. Enfin, nous avons étudié l'influence de la longueur des ligands sur les propriétés de conductions de NPs de Cobalt, qui a validé nos méthodes d'échange de ligands et ont pu être analysées quantitativement. Nos travaux rendent désormais envisageable l'utilisation de NPs issues de la chimie dans différents domaines de la spintronique / The study of charge transport in metallic and magnetic nano-objects chemically synthesized is a challenge in spintronic. Particularly, the lack of experimental results reveals the difficulty in locating such nano-objects in between electrodes while preserving their good properties. This thesis aims to overcome these difficulties in order to study the magnetotransport in such systems. Therefore, we have designed and developed technical processes which induce the self-assembly of the nano-objects inside a glove box-sputtering system. After studying the mechanisms involved in the self-assembly obtained by dip coating, we succeeded to deposit monolayers of nanoparticles (NPs) of different materials (FeCo, Fe, Co) on gold surfaces, SiO2 and thin resin film (40 nm). These results, coupled with a nanoindentation technique allows us to measure a few or a unique NP(s). Another technique, called dielectrophoresis, has been proved to be a simple and versatile way to trap (and align) nano-objects with different (aspect ratio), size, nature, and shape in between the electrodes. Thanks to this technique and the deposit of a protective capping layer of alumina, we studied the magnetotransport properties of a large number of nano-objects sensitive to oxidation or humidity: Fe, Co, FeCo and [Fe(H-trz)2(trz)](BF4)] (spin crossover compounds). Three sets of organic tunnel barriers surrounding different Fe NPs presented tunnel magnetoresistance up to room temperature. Moreover, [Fe(H-trz)2(trz)](BF4)] nano-objects with different aspect ratio, highlighted a change in conductance connected to the spin transition. Finally, we validated our ligands exchange methods by studying the influence of the ligands length on the conduction properties of Co NPs, which have been analyzed quantitatively. Our works demonstrate the possibility to use the chemical NPs in different fields of spintronics
|
49 |
Transport polarisé en spin à travers une barrière de MgO (001) : magnétorésistance et couplage magnétique / Spin-polarized transport across a MgO(001) barrier : magnetoresistance and magnetic couplingDuluard, Amandine 12 November 2012 (has links)
Les jonctions tunnel magnétiques épitaxiées Fe/MgO/Fe(001) présentent des comportements remarquables dans la limite des faibles ou des fortes épaisseurs de MgO. Ainsi, dans le premier cas, une interaction antiferromagnétique entre les deux couches de fer est observée ; dans le second, des effets de filtrage en symétrie conduisent à l?obtention de fortes valeurs de magnétorésistance. Les expériences réalisées au cours de cette thèse visent à étudier et mettre en relation ces deux régimes de propriétés extrêmes. Des analyses en tension et en température nous permettent d?étudier les conséquences d?une modulation de la structure cristalline des électrodes et/ou de l?interface sur le transport polarisé en spin. Dans ce cadre, nous nous intéressons à trois systèmes : des jonctions hybrides Fe/MgO(001)/CoFeB, où l?électrode de CoFeB est déposée par pulvérisation cathodique puis cristallisée in situ, des jonctions Fe/MgO/Fe à texture (001), ainsi que des jonctions Fe/MgO/Fe monocristallines présentant une rugosité artificielle à l?interface barrière/électrode. Le couplage antiferromagnétique dans des systèmes Fe/MgO/Fe(001) à barrière fine est étudié grâce à des mesures de magnétométrie sur la gamme de température [5 K ; 500 K]. Nous considérons aussi l?effet de modifications structurales et/ou chimiques de l?interface par le biais de l?introduction d?une rugosité contrôlée ou d?un contaminant. Les résultats les plus originaux de cette thèse sont obtenus grâce à l?introduction d?une rugosité artificielle à l?interface Fe/MgO ; contre toute attente, ce désordre contrôlé peut en effet augmenter l?effet de magnétorésistance ou l?intensité du couplage antiferromagnétique / Epitaxial magnetic tunnel junctions Fe/MgO/Fe(001) exhibit noteworthy behaviors for both small and large MgO thicknesses. In the first case, a strong antiferromagnetic interaction between Fe layers is observed, whereas symmetry filtering effects occur for large barriers, leading to high TMR values. The aim of the experiments performed during this thesis is to study and link these two behaviors. We consider the effect of a modulation of electrodes and/or interfaces crystalline structure on spin-polarized transport, by means of temperature and voltage analyses. In this framework, we focus on three systems: Fe/MgO(001)/CoFeB hybrid junctions, where the CoFeB electrode is grown by sputtering and in situ recrystallized, textured Fe/MgO/Fe(001) junctions, and finally single crystalline (001)Fe/MgO/Fe junctions with an artificial roughness at the electrode/barrier interface. The antiferromagnetic coupling in epitaxial Fe/MgO/Fe(001) systems with a thin MgO barrier is studied by magnetometry measurements in the [5 K; 500 K] range. We also consider the effect of structural and/or chemical changes resulting from a controlled roughness or a contamination on the coupling. The most interesting results of this thesis are obtained with the introduction of an artificial roughness at the Fe/MgO interface. Unexpectedly, this controlled disorder can improve the magnetoresistance effect or the coupling intensity. In both cases, this result is attributed to a Fe-O hybridization, which emphasizes the role of oxygen in MgO based magnetic tunnel junctions for both behaviors associated with extremely thin or thick barriers
|
50 |
Etude et caractérisation de l'influence des contraintes mécaniques sur les propriétés du transport électronique dans les architectures MOS avancéesRochette, Florent 26 September 2008 (has links) (PDF)
La miniaturisation des transistors Métal-Oxyde-Semi-conducteur à effet de champ (MOSFET) ne suffit plus à satisfaire les spécifications de performances de l'International Technology Roadmap for Semiconductors (ITRS). Une solution consiste à améliorer le transport électronique dans le canal de conduction des MOSFETs : l'utilisation de l'effet piézorésistif du silicium est une option intéressante pour y parvenir.<br />Cette étude présente l'état de l'art des architectures innovantes permettant d'introduire des contraintes mécaniques dans les MOSFETs après avoir posé la problématique de la microélectronique actuelle. La physique du silicium contraint est aussi exposée. L'accent est plus particulièrement mis sur l'effet d'une contrainte mécanique sur la mobilité des porteurs, paramètre de transport fondamental de la couche d'inversion d'un MOSFET. La piézorésistivité bidimensionnelle est alors étudiée expérimentalement sur différentes architectures. La réduction de la masse effective de conduction des électrons sous contrainte uniaxiale en tension a pu être mis en évidence. Après avoir présenté les principales techniques de caractérisation électrique permettant d'extraire les paramètres de transport d'un transistor MOS, en particulier la technique avantageuse de l'extraction de la mobilité par magnétorésistance, l'origine physique du gain en mobilité est étudiée en détail sur des architectures innovantes de silicium contraint directement sur isolant (sSOI). Les dégradations de la mobilité et du gain induit par la contrainte mécanique avec la réduction des dimensions sont analysées. Les mécanismes responsables de la limitation de la mobilité dans les transistors ultracourts sont identifiés. Enfin des résultats de performances d'architectures avancées à canaux contraints par le substrat ou par le procédé de fabrication sont montrés afin d'illustrer l'intérêt du silicium contraint à des échelles déca-nanométriques. Les effets de superposition des techniques de mises sous contrainte du canal sont également abordés.
|
Page generated in 0.0741 seconds