• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 145
  • 44
  • 21
  • 20
  • Tagged with
  • 230
  • 165
  • 150
  • 98
  • 73
  • 73
  • 73
  • 45
  • 36
  • 31
  • 30
  • 30
  • 28
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Einfluß der magnetischen Ordnung auf Supraleitung und Kristallstruktur in Seltenerd-Nickel-Borkarbid-Verbindungen / Influence of the magnetic order on superconductivity and crystal structure in rare earth nickel borocarbides

Kreyßig, Andreas 05 September 2001 (has links) (PDF)
Rare-earth nickel borocarbids RNi2B2C are particularly suitable for investigations on one of the most interesting problems in modern solid-state physics: these compounds display competition and coexistence of superconductivity and magnetism. Depending on the R3+ ion, the transition temperatures are in an experimentally easy accessible range of 1 K to 25 K. This thesis presents experimental studies on the interplay of both ordering phenomena. Neutron diffraction is used to determine the magnetic order and the resulting changes of the crystal structure. Experiments are performed on polycrystalline and single crystal samples in dependence on temperature and external magnetic fields. The Ni-B stoichiometry of the tetragonal RNi2B2C compounds is systematically varied and the magnetic R3+ ions are partially substituted by other magnetic or nonmagnetic R?3+ ions. The experimental results are compared with macroscopic magnetic and electrical properties. For HoNi2B2C three different magnetic structures are found in a narrow temperature range. While for two magnetic structures the Ho3+ moments are modulated along the c axis, a third magnetic structure with a modulation in a direction is observed. Both, partial substitution of Ho3+ ions and variation of the Ni-B stoichiometry, strongly modify the formation of these different types of magnetic order. The comparison with the concomitant changes of the superconducting properties yields the following scenario for HoNi2B2C-based compounds: superconductivity coexists with both magnetic structures with modulations in c direction. However, the onset of magnetic order weakens the superconductivity. For the magnetic structure with modulation along the a axis, components of the magnetic moments arise in c direction. The resulting local magnetic fields on Ni sites yield a strong suppression of the superconductivity. The observed competition between superconductivity and the magnetic structure with modulation along the a axis strongly suggests that the modification of the electronic structure due to the superconducting state influences the magnetic ordering. As a further impact of the magnetism in RNi2B2C compounds with R = Ho, Dy, Tb and Er changes of the crystal structure are investigated. Using high-resolution neutron diffraction, tetragonal-to-orthorhombic lattice distortions are found. They are induced by those magnetic structures with either parallel or anti-parallel alignement of R3+ magnetic moments. The direction of the lattice distortions, the dependence of their size on the square of the effective ordered magnetic moment and on the type of the R3+ ions indicate that the magneto-elastic interactions are determined by crystal-field effects. This fact also facilitates the elucidation of the magnetic phase diagrams by neutron diffraction experiments in external magnetic fields. For a given phase, absence or presence of magneto-elastic lattice distortions restrict the set of possible magnetic structures. For HoNi2B2C the magnetic phases reported in literature are confirmed. The experimental results for DyNi2B2C are interpreted using a simple model to determine the magnetic structures. Based on mean field calculations, the differences in the magnetic structures for increasing and decreasing magnetic fields can be understood as very strong hysteresis effects in connection with first-order phase transitions. / Seltenerd-Nickel-Borkarbid-Verbindungen RNi2B2C sind bestens zur Untersuchung eines der interessantesten Probleme der modernen Festkörperphysik geeignet: Diese Substanzen weisen Konkurrenz und Koexistenz von Supraleitung und Magnetismus auf, wobei die vom R3+-Ion abhängigen Übergangstemperaturen in einem experimentell gut zugänglichen Bereich von 1 K bis 25 K liegen. Die vorliegende Dissertation stellt experimentelle Arbeiten zum Wechselspiel der beiden Ordnungsphänomene vor. Für poly- und einkristalline Proben werden die magnetischen Ordnungen und resultierende Veränderungen der Kristallstruktur mittels Neutronendiffraktion in Abhängigkeit von der Temperatur und vom äußeren Magnetfeld bestimmt und mit den makroskopischen magnetischen und elektrischen Eigenschaften verglichen. Hierbei werden die tetragonalen RNi2B2C-Verbindungen gezielt in ihrer Ni-B-Stöchiometrie variiert sowie die magnetischen R3+-Ionen partiell durch andere magnetische als auch unmagnetische R?3+-Ionen substituiert. Für HoNi2B2C werden in einem engen Temperaturbereich drei verschiedene magnetische Strukturen nachgewiesen. Während in zwei magnetischen Ordnungen die Ho3+-Momente entlang der c-Achse moduliert sind, wird für die dritte magnetische Ordnung eine Modulation in a-Richtung beobachtet. Sowohl durch die partielle Substitution der Ho3+-Ionen als auch durch die Ni-B-Stöchiometrievariation wird die Ausprägung der magnetischen Strukturen stark modifiziert. Der Vergleich mit den ebenfalls veränderten supraleitenden Eigenschaften ergibt das folgende Bild für die HoNi2B2C-Verbindungen: Die Supraleitung koexistiert mit den beiden c-Achsen-modulierten magnetischen Strukturen, das Einsetzen der magnetischen Ordnung führt jedoch zu einer Schwächung der Supraleitung. Die a-Achsen-modulierte magnetische Struktur weist Momentkomponenten in c-Richtung auf, die auf Grund der resultierenden lokalen Magnetfelder an den Ni-Plätzen eine starke Unterdrückung der Supraleitung bewirken. Die beobachtete Konkurrenz zwischen der Supraleitung und der a-Achsen-modulierten magnetischen Struktur gibt andererseits einen starken Hinweis darauf, daß die Modifizierung der elektronischen Struktur im supraleitenden Zustand auf das magnetische System rückwirkt. Als weitere Auswirkung des Magnetismus kommt es in RNi2B2C-Verbindungen mit R = Ho, Dy, Tb und Er zu Veränderungen der Kristallstruktur. Mittels hochauflösender Neutronendiffraktion werden magnetisch induzierte, tetragonal-zu-orthorhombische Gitterverzerrungen für diejenigen magnetischen Ordnungen nachgewiesen, bei denen die magnetischen Momente der R3+-Ionen parallel bzw. antiparallel ausgerichtet sind. Die Richtung der Gitterverzerrung, die Abhängigkeit ihrer Größe vom Quadrat des geordneten magnetischen Momentes als auch von der Art der R3+-Ionen deuten darauf hin, daß die magneto-elastischen Wechselwirkungen durch Kristallfeldeffekte bestimmt werden. Diese Einsicht unterstützt auch die Aufklärung der magnetischen Phasendiagramme mittels magnetfeldabhängiger Neutronenbeugungsexperimente. Für eine magnetische Phase schränkt das Auftreten bzw. Fehlen der magneto-elastischen Effekte die Vielfalt der möglichen magnetischen Strukturen ein. Die aus der Literatur bekannten magnetischen Phasen von HoNi2B2C werden bestätigt. Für DyNi2B2C werden die experimentellen Ergebnisse unter Nutzung eines einfachen Modelles interpretiert und die magnetischen Strukturen bestimmt. Anhand von Molekularfeldrechnungen können die Unterschiede in den magnetischen Strukturen für ansteigendes und für abnehmendes Magnetfeld als sehr starke Hystereseeffekte in Zusammenhang mit Phasenübergängen erster Ordnung gedeutet werden.
222

Magnetische Hybridschichten - Magnetische Eigenschaften lokal austauschgekoppelter NiFe/IrMn-Schichten

Hamann, Christine 26 January 2011 (has links) (PDF)
Durch die laterale Modifizierung der magnetischen Eigenschaften von austauschgekoppelten NiFe/IrMn-Schichten wurden weichmagnetische Schichten geschaffen, die sowohl neue statische als auch dynamische hybride Eigenschaften zeigen. Als laterale Strukturierungsmethoden wurden hierbei die lokale Oxidation sowie Ionenimplantation verwendet. Mit Hilfe dieser Verfahren ist es gelungen spezifische magnetische Domänenkonfigurationen mit Streifenstrukturen nominell antiparalleler Magnetisierungsausrichtung in die Schichten einzuprägen. In Abhängigkeit der Strukturorientierung sowie Streifenperiode konnte direkt das Ummagnetisierungsverhalten sowie die magnetische Resonanzfrequenz und Dämpfung der Schichten modifiziert werden. Die neuen dynamischen Eigenschaften wie z.B. eine hybride Resonanzfrequenz werden hierbei im Rahmen der Kopplung über dynamische Ladungen und die direkte Beeinflussung des effektiven Feldes des künstlich eingebrachten Domänenzustandes diskutiert. Die vorgestellten Ergebnisse belegen somit das große Potential der lateralen Magneto-Strukturierung zur Einstellung spezifischer statischer wie auch dynamischer Eigenschaften magnetisch dünner Schichten.
223

Thermodynamic and spectral properties of quantum many-particle systems / Thermodynamische und spektrale Eigenschaften quantenmechanischer Vielteilchensysteme

Fuchs, Sebastian 21 January 2011 (has links)
No description available.
224

Nízkoteplotní rastrovací tunelová mikroskopie / Low temperature scanning tunneling microscopy

Sojka, Antonín January 2017 (has links)
The diploma thesis is divided into two main parts. The first part describes the production of chrome and cobalt tips for SP-STM with subsequent testing of chrome tips on the Fe-Ir system (111). Furthermore, the first results from the growth studies of niobium on iridium(111) are presented. In the second part is described in detail the experimental LT-STM microscope of the Faculty of Physical Engineering. The chapter deals with the development of the microscope and its testing on a HOPG sample under atmospheric and vacuum conditions. The chapter describes the biggest problems which were solved when the microscope was puting into operation state. The second part also introduces the design of a new vacuum transport system, which consists of a tip and sample transport pallet. At the end of the second part is described the testing of cooling systems for LT-STM and the design of their modifications.
225

Magnetische Hybridschichten - Magnetische Eigenschaften lokal austauschgekoppelter NiFe/IrMn-Schichten

Hamann, Christine 15 December 2010 (has links)
Durch die laterale Modifizierung der magnetischen Eigenschaften von austauschgekoppelten NiFe/IrMn-Schichten wurden weichmagnetische Schichten geschaffen, die sowohl neue statische als auch dynamische hybride Eigenschaften zeigen. Als laterale Strukturierungsmethoden wurden hierbei die lokale Oxidation sowie Ionenimplantation verwendet. Mit Hilfe dieser Verfahren ist es gelungen spezifische magnetische Domänenkonfigurationen mit Streifenstrukturen nominell antiparalleler Magnetisierungsausrichtung in die Schichten einzuprägen. In Abhängigkeit der Strukturorientierung sowie Streifenperiode konnte direkt das Ummagnetisierungsverhalten sowie die magnetische Resonanzfrequenz und Dämpfung der Schichten modifiziert werden. Die neuen dynamischen Eigenschaften wie z.B. eine hybride Resonanzfrequenz werden hierbei im Rahmen der Kopplung über dynamische Ladungen und die direkte Beeinflussung des effektiven Feldes des künstlich eingebrachten Domänenzustandes diskutiert. Die vorgestellten Ergebnisse belegen somit das große Potential der lateralen Magneto-Strukturierung zur Einstellung spezifischer statischer wie auch dynamischer Eigenschaften magnetisch dünner Schichten.
226

Einfluß der magnetischen Ordnung auf Supraleitung und Kristallstruktur in Seltenerd-Nickel-Borkarbid-Verbindungen

Kreyßig, Andreas 04 July 2001 (has links)
Rare-earth nickel borocarbids RNi2B2C are particularly suitable for investigations on one of the most interesting problems in modern solid-state physics: these compounds display competition and coexistence of superconductivity and magnetism. Depending on the R3+ ion, the transition temperatures are in an experimentally easy accessible range of 1 K to 25 K. This thesis presents experimental studies on the interplay of both ordering phenomena. Neutron diffraction is used to determine the magnetic order and the resulting changes of the crystal structure. Experiments are performed on polycrystalline and single crystal samples in dependence on temperature and external magnetic fields. The Ni-B stoichiometry of the tetragonal RNi2B2C compounds is systematically varied and the magnetic R3+ ions are partially substituted by other magnetic or nonmagnetic R?3+ ions. The experimental results are compared with macroscopic magnetic and electrical properties. For HoNi2B2C three different magnetic structures are found in a narrow temperature range. While for two magnetic structures the Ho3+ moments are modulated along the c axis, a third magnetic structure with a modulation in a direction is observed. Both, partial substitution of Ho3+ ions and variation of the Ni-B stoichiometry, strongly modify the formation of these different types of magnetic order. The comparison with the concomitant changes of the superconducting properties yields the following scenario for HoNi2B2C-based compounds: superconductivity coexists with both magnetic structures with modulations in c direction. However, the onset of magnetic order weakens the superconductivity. For the magnetic structure with modulation along the a axis, components of the magnetic moments arise in c direction. The resulting local magnetic fields on Ni sites yield a strong suppression of the superconductivity. The observed competition between superconductivity and the magnetic structure with modulation along the a axis strongly suggests that the modification of the electronic structure due to the superconducting state influences the magnetic ordering. As a further impact of the magnetism in RNi2B2C compounds with R = Ho, Dy, Tb and Er changes of the crystal structure are investigated. Using high-resolution neutron diffraction, tetragonal-to-orthorhombic lattice distortions are found. They are induced by those magnetic structures with either parallel or anti-parallel alignement of R3+ magnetic moments. The direction of the lattice distortions, the dependence of their size on the square of the effective ordered magnetic moment and on the type of the R3+ ions indicate that the magneto-elastic interactions are determined by crystal-field effects. This fact also facilitates the elucidation of the magnetic phase diagrams by neutron diffraction experiments in external magnetic fields. For a given phase, absence or presence of magneto-elastic lattice distortions restrict the set of possible magnetic structures. For HoNi2B2C the magnetic phases reported in literature are confirmed. The experimental results for DyNi2B2C are interpreted using a simple model to determine the magnetic structures. Based on mean field calculations, the differences in the magnetic structures for increasing and decreasing magnetic fields can be understood as very strong hysteresis effects in connection with first-order phase transitions. / Seltenerd-Nickel-Borkarbid-Verbindungen RNi2B2C sind bestens zur Untersuchung eines der interessantesten Probleme der modernen Festkörperphysik geeignet: Diese Substanzen weisen Konkurrenz und Koexistenz von Supraleitung und Magnetismus auf, wobei die vom R3+-Ion abhängigen Übergangstemperaturen in einem experimentell gut zugänglichen Bereich von 1 K bis 25 K liegen. Die vorliegende Dissertation stellt experimentelle Arbeiten zum Wechselspiel der beiden Ordnungsphänomene vor. Für poly- und einkristalline Proben werden die magnetischen Ordnungen und resultierende Veränderungen der Kristallstruktur mittels Neutronendiffraktion in Abhängigkeit von der Temperatur und vom äußeren Magnetfeld bestimmt und mit den makroskopischen magnetischen und elektrischen Eigenschaften verglichen. Hierbei werden die tetragonalen RNi2B2C-Verbindungen gezielt in ihrer Ni-B-Stöchiometrie variiert sowie die magnetischen R3+-Ionen partiell durch andere magnetische als auch unmagnetische R?3+-Ionen substituiert. Für HoNi2B2C werden in einem engen Temperaturbereich drei verschiedene magnetische Strukturen nachgewiesen. Während in zwei magnetischen Ordnungen die Ho3+-Momente entlang der c-Achse moduliert sind, wird für die dritte magnetische Ordnung eine Modulation in a-Richtung beobachtet. Sowohl durch die partielle Substitution der Ho3+-Ionen als auch durch die Ni-B-Stöchiometrievariation wird die Ausprägung der magnetischen Strukturen stark modifiziert. Der Vergleich mit den ebenfalls veränderten supraleitenden Eigenschaften ergibt das folgende Bild für die HoNi2B2C-Verbindungen: Die Supraleitung koexistiert mit den beiden c-Achsen-modulierten magnetischen Strukturen, das Einsetzen der magnetischen Ordnung führt jedoch zu einer Schwächung der Supraleitung. Die a-Achsen-modulierte magnetische Struktur weist Momentkomponenten in c-Richtung auf, die auf Grund der resultierenden lokalen Magnetfelder an den Ni-Plätzen eine starke Unterdrückung der Supraleitung bewirken. Die beobachtete Konkurrenz zwischen der Supraleitung und der a-Achsen-modulierten magnetischen Struktur gibt andererseits einen starken Hinweis darauf, daß die Modifizierung der elektronischen Struktur im supraleitenden Zustand auf das magnetische System rückwirkt. Als weitere Auswirkung des Magnetismus kommt es in RNi2B2C-Verbindungen mit R = Ho, Dy, Tb und Er zu Veränderungen der Kristallstruktur. Mittels hochauflösender Neutronendiffraktion werden magnetisch induzierte, tetragonal-zu-orthorhombische Gitterverzerrungen für diejenigen magnetischen Ordnungen nachgewiesen, bei denen die magnetischen Momente der R3+-Ionen parallel bzw. antiparallel ausgerichtet sind. Die Richtung der Gitterverzerrung, die Abhängigkeit ihrer Größe vom Quadrat des geordneten magnetischen Momentes als auch von der Art der R3+-Ionen deuten darauf hin, daß die magneto-elastischen Wechselwirkungen durch Kristallfeldeffekte bestimmt werden. Diese Einsicht unterstützt auch die Aufklärung der magnetischen Phasendiagramme mittels magnetfeldabhängiger Neutronenbeugungsexperimente. Für eine magnetische Phase schränkt das Auftreten bzw. Fehlen der magneto-elastischen Effekte die Vielfalt der möglichen magnetischen Strukturen ein. Die aus der Literatur bekannten magnetischen Phasen von HoNi2B2C werden bestätigt. Für DyNi2B2C werden die experimentellen Ergebnisse unter Nutzung eines einfachen Modelles interpretiert und die magnetischen Strukturen bestimmt. Anhand von Molekularfeldrechnungen können die Unterschiede in den magnetischen Strukturen für ansteigendes und für abnehmendes Magnetfeld als sehr starke Hystereseeffekte in Zusammenhang mit Phasenübergängen erster Ordnung gedeutet werden.
227

A Comprehensive Study of Magnetic and Magnetotransport Properties of Complex Ferromagnetic/Antiferromagnetic- IrMn-Based Heterostructures

Arekapudi, Sri Sai Phani Kanth 21 June 2023 (has links)
Manipulation of ferromagnetic (FM) spins (and spin textures) using an antiferromagnet (AFM) as an active element in exchange coupled AFM/FM heterostructures is a promising branch of spintronics. Recent ground-breaking experimental demonstrations, such as electrical manipulation of the interfacial exchange coupling and FM spins, as well as ultrafast control of the interfacial exchange-coupling torque in AFM/FM heterostructures, have paved the way towards ultrafast spintronic devices for data storage and neuromorphic computing device applications.[5,6] To achieve electrical manipulation of FM spins, AFMs offer an efficient alternative to passive heavy metal electrodes (e.g., Pt, Pd, W, and Ta) for converting charge current to pure spin current. However, AFM thin films are often integrated into complex heterostructured thin film architectures resulting in chemical, structural, and magnetic disorder. The structural and magnetic disorder in AFM/FM-based spintronic devices can lead to highly undesirable properties, namely thermal dependence of the AFM anisotropy energy barrier, fluctuations in the magnetoresistance, non-linear operation, interfacial spin memory loss, extrinsic contributions to the effective magnetic damping in the adjacent FM, decrease in the effective spin Hall angle, atypical magnetotransport phenomena and distorted interfacial spin structure. Therefore, controlling the magnetic order down to the nanoscale in exchange coupled AFM/FM-based heterostructures is of fundamental importance. However, the impact of fractional variation in the magnetic order at the nanoscale on the magnetization reversal, magnetization dynamics, interfacial spin transport, and the interfacial domain structure of AFM/FM-based heterostructures remains a critical barrier. To address the aforementioned challenges, we conduct a comprehensive experimental investigation of chemical, structural, magnetization reversal (integral and element-specific), magnetization dynamics, and magnetotransport properties, combined with high-resolution magnetic imaging of the exchange coupled Ni3Fe/IrMn3-based heterostructures. Initially, we study the chemical, structural, electrical, and magnetic properties of epitaxially textured MgO(001)/IrMn3(0-35 nm)/Ni3Fe(15 nm)/Al2O3(2.0 nm) heterostructures. We reveal the impact of magnetic field annealing on the interdiffusion at the IrMn3/Ni3Fe interface, electrical resistivity, and magnetic properties of the heterostructures. We further present an AFM IrMn3 film thickness dependence of the exchange bias field, coercive field, magnetization reversal, and magnetization dynamics of the exchange coupled heterostructures. These experiments reveal a strong correlation between the chemical, structural and magnetic properties of the IrMn3-based heterostructures. We find a significant decrease in the spin-mixing conductance of the chemically-disordered IrMn3/Ni3Fe interface compared to the chemically-ordered counterpart. Independent of the AFM film thickness, we unveil that thermally disordered AFM grains exist in all the samples (measured up to 35-nm-thick IrMn3 films). We develop an iterative magnetic field cooling procedure to systematically manipulate the orientation of the thermally disordered and reversible AFM moments and thus, achieve tunable magnetic, and magnetotransport properties of exchange coupled AFM-based heterostructures. Subsequently, we investigate the impact of fractional variation in the AFM order on the magnetization reversal and magnetotransport properties of the epitaxially textured ɣ-phase IrMn3/Ni3Fe, Ni3Fe/IrMn3/Ni3Fe, and Ni3Fe/IrMn3/Ni3Fe/CoO heterostructures. We probe the element-specific (FM: Ni and Co, and AFM: Mn) magnetization reversal properties of the exchange coupled Ni3Fe/IrMn3/Ni3Fe/Co/CoO heterostructures in various magnetic field cooled states. We present a detailed procedure for separating the spin and orbital moment contributions for magnetic elements using the XMCD sum rule. We address whether Mauri-type domain walls can develop at the (polycrystalline) exchange coupled Ni3Fe/IrMn3/Ni3Fe interfaces. We further study the impact of magnetic field cooling on the AFM Mn (near L2,3-edges) X-ray absorption spectra. Finally, we employ a combination of in-field high-resolution magnetic force microscopy, magnetooptical Kerr effect magnetometry with micro-focused beam, and micromagnetic simulations to study the magnetic vortex structures in exchange coupled FM/AFM and AFM/FM/AFM disk structures. We examine the magnetic vortex annihilation mechanism mediated by the emergence and subsequent annihilation of the vortex-antivortex (V-AV) pairs in simple FM and exchange coupled FM/AFM as well as AFM/FM/AFM disk structures. We image the distorted magnetic vortex structures in exchange coupled FM/AFM disks proposed by Gilbert and coworkers. We further emphasize crucial magnetic vortex properties, such as handedness, effective vortex core radius, core displacement at remanence, nucleation field, annihilation field, and exchange bias field. Our experimental inquiry offers profound insight into the interfacial exchange interaction, magnetization reversal, magnetization dynamics, and interfacial spin transport of the AFM/FM-based heterostructures. Moreover, our results pave the way towards nanoscale control of the magnetic properties in AFM-based heterostructures and point towards future opportunities in the field of AFM spintronic devices.:1. Introduction 2. Magnetic Interactions and Exchange Bias Effect 3. Materials 4. Experimental Methods 5. Structural, Electrical, and Magnetization Reversal Properties of Epitaxially Textured ɣ-IrMn3/ Ni3Fe Heterostructures 6. Magnetization Dynamics of MgO(001)/IrMn3/Ni3Fe Heterostructures in the Frequency Domain 7. Tunable Magnetic and Magnetotransport Properties of MgO(001)/Ni3Fe/IrMn3/Ni3Fe/ CoO/Pt Heterostructures 8. Element-Specific XMCD Study of the Exchange Couple Ni3Fe/IrMn3/Ni3Fe/Co/CoO Heterostructures 9. Distorted Vortex Structure and Magnetic Vortex Reversal Processes in Exchange Coupled Ni3Fe/IrMn3 Disk Structures 10. Conclusions and Outlook Addendum Acronyms Symbols Publication List Author Information Acknowledgments Statement of Authorship
228

From 2D CoCrPt:SiO2 films with perpendicular magnetic anisotropy to 3D nanocones — A step towards bit patterned media —

Ball, David Klaus 02 July 2013 (has links) (PDF)
Due to the ever-increasing worldwide consumption of memory for digital information, new technologies for higher capacity and faster data storage systems have been the focus of research and development. A step towards achieving higher data storage densities or magnetic recording media is the concept of bit patterned media, where the magnetic recording layer is divided up into magnetically isolated bit units. This approach is one of the most promising technologies for increasing data storage densities and could be implemented by nanostructuring the wafer. Therefore, the fabrication of the appropriate nanostructures on a small scale and then be able to manufacture these structures on an industrial scale is one of the problems where science and industry are working on a solution. In addition, the answer to the open question about the influence that patterning on the nano length scale has on the magnetic properties is of great interest. The main goal of this thesis is to answer the open question, which magnetic properties can be tailored by a modification of the surface texture on the nanometre length scale. For this purpose the following properties: anisotropy, remanence, coercivity, switching field distribution, saturation magnetisation, Gilbert damping, and inhomogeneous linebroadening were compared between planar two dimensional thin ferromagnetic films and three dimensional magnetic structures. In addition, the influences of the tailored morphology on the intergranular or the exchange coupling between the structures, which is called interdot exchange coupling, was investigated. For the ferromagnetic thin films, the focus of the investigations was on the granular CoCrPt:SiO2 and [Co/Pd] layer, which currently are the state-of-the-art material for magnetic data storage media. These materials are characterised by their high coercivity and high perpendicular anisotropy, which has a low spatial distribution in the preferred direction of magnetisation. In this work the pre-structured GaSb(001) substrate with self-assembled periodic nanocone structures at the surface are used. The preparation by ion beam erosion of these structures is simple, fast, and highly reproducible and therefore this method is particularly beneficial for fundamental research. To compare the 2D thin films with the 3D magnetic structures, besides the pre-structured specimen, planar samples were also fabricated. The first sample series prepared was coated by Py. Due to the fact that the magnetic properties of this material are well-known, it was also possible to do some OOMMF simulations in addition to the VNA-FMR and MOKE measurements. Afterwards two planar samples with CoCrPt and CoCrPt:SiO2 were prepared. The planar CoCrPt:SiO2 samples were Co+ ion implanted to study the influence of such irradiation on the intergranular and interdot exchange coupling, switching field distribution, and in particular on the spin dynamics. Moreover, both samples were measured by TRMOKE in order to obtain information about the spin dynamics. Subsequently, the perpendicular storage media materials CoCrPt:SiO2 and [Co/Pd] were deposited on a prestructured GaSb(001) nanocone substrate surface. These sample series were measured by MOKE, SQUID, and vector-VSM. The measurements demonstrate the influence of the periodicity and height of the nanocones on the intergranular and interdot exchange coupling. They also show the reorientation of the magnetisation with respect to the curvature of the substrate template and furthermore, the morphology-induced influences on the magnetic domains. From the comparison between the results for the planar and the pre-structured samples, a decrease of the interdot exchange coupling was observed, which scales together with the periodicity of the nanocone pattern. In addition, it was shown that for all samples with thin magnetic films on nanocones,the magnetisation aligns along the curvature of the underlying nanocone structure. For Py on nanocones, planar granular CoCrPt:SiO2, and planar granular CoCrPt, measurements by VNA-FMR and TRMOKE could be carried out, which yielded information about the spin dynamics. The results obtained for both of the planar sample are comparable to values from the literature for the Gilbert damping. The results for the Py samples showed that the commonly used 2D model resonance condition is, in case of a 3D magnetic structure, no longer valid due to the alignment of the magnetisation along the underlying substrate structure and therefore an new model has to be derived. / Aufgrund des weltweiten, immer weiter steigenden Bedarfs an Speicherplatz von digitalen Information, sind neue Technologien für größere und schnellere Speichermedien im Fokus von Forschung und Entwicklung. Ein Schritt hin zu einer höheren Speicherdichte in der magnetischen Datenspeicherung ist dabei das sogenannte Konzept der ”Bit patterned media”, das definierte Informationseinheiten auf regelmäßig angeordneten Nanostrukturen beschreibt. Dieser Ansatz ist einer der derzeit vielversprechendsten Optionen die Speicherdichte zu erhöhen. Dabei ist die Herstellung der benötigten Nanostrukturen und deren Skalierung hin zu makroskopischen Dimensionen eines der Probleme an deren Lösung die Wissenschaft und Industrie derzeit arbeitet. Desweiteren ist die Antwort auf die noch offene Frage nach der Beeinflussung der nanoskaligen Strukturen auf die magnetischen Eigenschaften von großem Interesse. Das Hauptziel in dieser Arbeit ist es, einen Beitrag zur Beantwortung der Frage, welche magnetischen Eigenschaften sich durch eine Veränderung der Oberflächenstruktur im Nanometerbereich beeinflussen lassen, zu leisten. Hierzu wurden die folgenden Eigenschaften, wie zum Beispiel die Anisotropie, Remanenz,Koerzitivität, Schaltfeldverteilung, Sättigungsmagnetisierung, Gilbertdämpfung und inhomogene Linienverbreiterung von planaren zweidimensionalen dünnen ferromagnetische Schichten mit denen von dreidimensionalen magnetischen Strukturen verglichen. Zusätzlich wurde der Einfluss der angegpassten Morphologie auf die intergranularen- beziehungsweise auf die zwischen den Strukturen wirkende (interdot) Austauschkopplung untersucht. Der Hauptaugenmerk bei den ferromagnetisch dünnen Schichten lag dabei auf den granularen CoCrPt:SiO2 und [Co/Pd] Filmen, die heutzutage ein Standardmaterial für die magnetischen Speichermedien darstellen. Diese Materialien zeichnen sich durch eine hohe Koerzivität und senkrechte Anisotropie, mit geringer räumlicher Verteilung der Vorzugsrichtung der Magnetisierung, aus. Die hier vorgestellten vorstrukturierten GaSb(001) Substrate mit selbstordnenden periodischen Nanokegeln auf der Oberfläche, sind mittels Ionenstrahlerosion einfach, schnell und sehr gut reproduzierbar herzustellen. Deshalb ist diese Methode besonders für die Grundlagenforschung von Vorteil. Um einen Vergleich zwischen 2D Filmen und 3D Strukturen ziehen zu können, wurden neben den vorstrukturierten Substraten auch planare Proben beschichtet. Eine erste Versuchsreihe wurde mit einem dünnen Py Film präpariert. Da dessen magnetische Eigenschaften wohlbekannt sind, konnten neben den Untersuchungen mit VNA-FMR und MOKE auch einige OOMF Simulationen erstellt werden. Danach wurden zwei Proben mit planarem CoCrPt beziehungsweise CoCrPt:SiO2 untersucht. Bei den planaren CoCrPt:SiO2 Proben wurden außerdem noch Co+ Ionen implantiert, um deren Auswirkungen auf die intergranulare Austauschkopplung, Schaltfeldverteilung und besonders auf die Spindynamik zu bestimmen. Bei beiden Probensystemen konnte zusätzlich die Spindynamik mittels zeitaufgelöstem MOKE gemessen werden. Im Anschluss wurden die beiden senkrechten Speichermedien CoCrPt:SiO2 and [Co/Pd] auf Substraten mit Nanokegeln vorstrukturierten GaSb(001) Oberflächen abgeschieden. Diese Proben wurden mit MFM, MOKE, SQUID und Vektor-VSM vermessen. Aus den Messungen konnnten dann die Einflüsse auf die intergranulare- beziehungsweise interdot Austauschkopplung in Abhängigkeit von der Periodizität und Höhe der Nanokegel bestimmt werden, sowie die Umorientierung der Magnetisierung bezüglich der Substratkrümmung und den Morphologie induzierten Einfluss auf die magnetischen Domänen. Anhand der Vergleiche zwischen den Messungen der planaren und den vorstrukturierten Proben konnte eine Verringerung der Austauschkopplung zwischen den Strukturen gezeigt werden, die mit der Nanokegelstrukturperiodizität skaliert. Außerdem wurde in allen dünnen magnetischen Filmen auf Nanokegeln gezeigt, dass die Magnetisierung sich in Abhängigkeit der darunterliegenden Struktur ausrichtet. Bei den Py auf Nanokegeln, den planaren CoCrPt und dem planaren CoCrPt:SiO2 Proben konnten außerdem mit VNA-FMR und TRMOKE Informationen bezüglich der Spindynamik gemessen werden. Die erzielten Ergebnisse, der beiden planaren Proben, sind vergleichbar mit denen, aus der Literatur bekannten Werten, für die Gilbertdämpfung. Darüber hinaus wurde durch die Messungen an den Py Proben gezeigt, dass die Theorie, des bisher genutzten 2D Modells, nicht mehr gültig ist, da sich die Magnetisierung entlang der Substratstruktur ausrichtet, und deshalb ein neues Model aufgestellt werden muss.
229

From 2D CoCrPt:SiO2 films with perpendicular magnetic anisotropy to 3D nanocones — A step towards bit patterned media —

Ball, David Klaus 19 April 2013 (has links)
Due to the ever-increasing worldwide consumption of memory for digital information, new technologies for higher capacity and faster data storage systems have been the focus of research and development. A step towards achieving higher data storage densities or magnetic recording media is the concept of bit patterned media, where the magnetic recording layer is divided up into magnetically isolated bit units. This approach is one of the most promising technologies for increasing data storage densities and could be implemented by nanostructuring the wafer. Therefore, the fabrication of the appropriate nanostructures on a small scale and then be able to manufacture these structures on an industrial scale is one of the problems where science and industry are working on a solution. In addition, the answer to the open question about the influence that patterning on the nano length scale has on the magnetic properties is of great interest. The main goal of this thesis is to answer the open question, which magnetic properties can be tailored by a modification of the surface texture on the nanometre length scale. For this purpose the following properties: anisotropy, remanence, coercivity, switching field distribution, saturation magnetisation, Gilbert damping, and inhomogeneous linebroadening were compared between planar two dimensional thin ferromagnetic films and three dimensional magnetic structures. In addition, the influences of the tailored morphology on the intergranular or the exchange coupling between the structures, which is called interdot exchange coupling, was investigated. For the ferromagnetic thin films, the focus of the investigations was on the granular CoCrPt:SiO2 and [Co/Pd] layer, which currently are the state-of-the-art material for magnetic data storage media. These materials are characterised by their high coercivity and high perpendicular anisotropy, which has a low spatial distribution in the preferred direction of magnetisation. In this work the pre-structured GaSb(001) substrate with self-assembled periodic nanocone structures at the surface are used. The preparation by ion beam erosion of these structures is simple, fast, and highly reproducible and therefore this method is particularly beneficial for fundamental research. To compare the 2D thin films with the 3D magnetic structures, besides the pre-structured specimen, planar samples were also fabricated. The first sample series prepared was coated by Py. Due to the fact that the magnetic properties of this material are well-known, it was also possible to do some OOMMF simulations in addition to the VNA-FMR and MOKE measurements. Afterwards two planar samples with CoCrPt and CoCrPt:SiO2 were prepared. The planar CoCrPt:SiO2 samples were Co+ ion implanted to study the influence of such irradiation on the intergranular and interdot exchange coupling, switching field distribution, and in particular on the spin dynamics. Moreover, both samples were measured by TRMOKE in order to obtain information about the spin dynamics. Subsequently, the perpendicular storage media materials CoCrPt:SiO2 and [Co/Pd] were deposited on a prestructured GaSb(001) nanocone substrate surface. These sample series were measured by MOKE, SQUID, and vector-VSM. The measurements demonstrate the influence of the periodicity and height of the nanocones on the intergranular and interdot exchange coupling. They also show the reorientation of the magnetisation with respect to the curvature of the substrate template and furthermore, the morphology-induced influences on the magnetic domains. From the comparison between the results for the planar and the pre-structured samples, a decrease of the interdot exchange coupling was observed, which scales together with the periodicity of the nanocone pattern. In addition, it was shown that for all samples with thin magnetic films on nanocones,the magnetisation aligns along the curvature of the underlying nanocone structure. For Py on nanocones, planar granular CoCrPt:SiO2, and planar granular CoCrPt, measurements by VNA-FMR and TRMOKE could be carried out, which yielded information about the spin dynamics. The results obtained for both of the planar sample are comparable to values from the literature for the Gilbert damping. The results for the Py samples showed that the commonly used 2D model resonance condition is, in case of a 3D magnetic structure, no longer valid due to the alignment of the magnetisation along the underlying substrate structure and therefore an new model has to be derived. / Aufgrund des weltweiten, immer weiter steigenden Bedarfs an Speicherplatz von digitalen Information, sind neue Technologien für größere und schnellere Speichermedien im Fokus von Forschung und Entwicklung. Ein Schritt hin zu einer höheren Speicherdichte in der magnetischen Datenspeicherung ist dabei das sogenannte Konzept der ”Bit patterned media”, das definierte Informationseinheiten auf regelmäßig angeordneten Nanostrukturen beschreibt. Dieser Ansatz ist einer der derzeit vielversprechendsten Optionen die Speicherdichte zu erhöhen. Dabei ist die Herstellung der benötigten Nanostrukturen und deren Skalierung hin zu makroskopischen Dimensionen eines der Probleme an deren Lösung die Wissenschaft und Industrie derzeit arbeitet. Desweiteren ist die Antwort auf die noch offene Frage nach der Beeinflussung der nanoskaligen Strukturen auf die magnetischen Eigenschaften von großem Interesse. Das Hauptziel in dieser Arbeit ist es, einen Beitrag zur Beantwortung der Frage, welche magnetischen Eigenschaften sich durch eine Veränderung der Oberflächenstruktur im Nanometerbereich beeinflussen lassen, zu leisten. Hierzu wurden die folgenden Eigenschaften, wie zum Beispiel die Anisotropie, Remanenz,Koerzitivität, Schaltfeldverteilung, Sättigungsmagnetisierung, Gilbertdämpfung und inhomogene Linienverbreiterung von planaren zweidimensionalen dünnen ferromagnetische Schichten mit denen von dreidimensionalen magnetischen Strukturen verglichen. Zusätzlich wurde der Einfluss der angegpassten Morphologie auf die intergranularen- beziehungsweise auf die zwischen den Strukturen wirkende (interdot) Austauschkopplung untersucht. Der Hauptaugenmerk bei den ferromagnetisch dünnen Schichten lag dabei auf den granularen CoCrPt:SiO2 und [Co/Pd] Filmen, die heutzutage ein Standardmaterial für die magnetischen Speichermedien darstellen. Diese Materialien zeichnen sich durch eine hohe Koerzivität und senkrechte Anisotropie, mit geringer räumlicher Verteilung der Vorzugsrichtung der Magnetisierung, aus. Die hier vorgestellten vorstrukturierten GaSb(001) Substrate mit selbstordnenden periodischen Nanokegeln auf der Oberfläche, sind mittels Ionenstrahlerosion einfach, schnell und sehr gut reproduzierbar herzustellen. Deshalb ist diese Methode besonders für die Grundlagenforschung von Vorteil. Um einen Vergleich zwischen 2D Filmen und 3D Strukturen ziehen zu können, wurden neben den vorstrukturierten Substraten auch planare Proben beschichtet. Eine erste Versuchsreihe wurde mit einem dünnen Py Film präpariert. Da dessen magnetische Eigenschaften wohlbekannt sind, konnten neben den Untersuchungen mit VNA-FMR und MOKE auch einige OOMF Simulationen erstellt werden. Danach wurden zwei Proben mit planarem CoCrPt beziehungsweise CoCrPt:SiO2 untersucht. Bei den planaren CoCrPt:SiO2 Proben wurden außerdem noch Co+ Ionen implantiert, um deren Auswirkungen auf die intergranulare Austauschkopplung, Schaltfeldverteilung und besonders auf die Spindynamik zu bestimmen. Bei beiden Probensystemen konnte zusätzlich die Spindynamik mittels zeitaufgelöstem MOKE gemessen werden. Im Anschluss wurden die beiden senkrechten Speichermedien CoCrPt:SiO2 and [Co/Pd] auf Substraten mit Nanokegeln vorstrukturierten GaSb(001) Oberflächen abgeschieden. Diese Proben wurden mit MFM, MOKE, SQUID und Vektor-VSM vermessen. Aus den Messungen konnnten dann die Einflüsse auf die intergranulare- beziehungsweise interdot Austauschkopplung in Abhängigkeit von der Periodizität und Höhe der Nanokegel bestimmt werden, sowie die Umorientierung der Magnetisierung bezüglich der Substratkrümmung und den Morphologie induzierten Einfluss auf die magnetischen Domänen. Anhand der Vergleiche zwischen den Messungen der planaren und den vorstrukturierten Proben konnte eine Verringerung der Austauschkopplung zwischen den Strukturen gezeigt werden, die mit der Nanokegelstrukturperiodizität skaliert. Außerdem wurde in allen dünnen magnetischen Filmen auf Nanokegeln gezeigt, dass die Magnetisierung sich in Abhängigkeit der darunterliegenden Struktur ausrichtet. Bei den Py auf Nanokegeln, den planaren CoCrPt und dem planaren CoCrPt:SiO2 Proben konnten außerdem mit VNA-FMR und TRMOKE Informationen bezüglich der Spindynamik gemessen werden. Die erzielten Ergebnisse, der beiden planaren Proben, sind vergleichbar mit denen, aus der Literatur bekannten Werten, für die Gilbertdämpfung. Darüber hinaus wurde durch die Messungen an den Py Proben gezeigt, dass die Theorie, des bisher genutzten 2D Modells, nicht mehr gültig ist, da sich die Magnetisierung entlang der Substratstruktur ausrichtet, und deshalb ein neues Model aufgestellt werden muss.
230

Ferromagnetic thin films of Fe and Fe 3 Si on low-symmetric GaAs(113)A substrates

Muduli, Pranaba Kishor 24 April 2006 (has links)
In dieser Arbeit werden das Wachstum mittels Molekularstrahlepitaxie und die Eigenschaften der Ferromagneten Fe und Fe_3Si auf niedrig-symmetirschen GaAs(113)A-Substraten studiert. Drei wichtige Aspekte werden untersucht: (i) Wachstum und strukturelle Charakterisierung, (ii) magnetische Eigenschaften und (iii) Magnetotransporteigenschaften der Fe und Fe_3Si Schichten auf GaAs(113)A-Substraten. Das Wachstum der Fe- und Fe_3Si-Schichten wurde bei einer Wachstumstemperatur von = bzw. 250 °C optimiert. Bei diesen Wachstumstemperaturen zeigen die Schichten eine hohe Kristallperfektion und glatte Grenz- und Oberflächen analog zu [001]-orientierten Schichten. Weiterhin wurde die Stabilität der Fe_(3+x)Si_(1-x) Phase über einen weiten Kompositionsbereich innerhalb der Fe_3Si-Stoichiometry demonstriert. Die Abhängigkeit der magnetischen Anisotropie innerhalb der Schichtebene von der Schichtdicke weist zwei Bereiche auf: einen Beresich mit dominanter uniaxialer Anisotropie für Fe-Schichten = 70 MLs. Weiterhin wird eine magnetische Anisotropie senkrecht zur Schichtebene in sehr dünnen Schichten gefunden. Der Grenzflächenbeitrag sowohl der uniaxialen als auch der senkrechten Anisotropiekonstanten, die aus der Dickenabhängigkeit bestimmt wurden, sind unabhängig von der [113]-Orientierung und eine inhärente Eigenschaft der Fe/GaAs-Grenzfläche. Die anisotrope Bindungskonfiguration zwischen den Fe und den As- oder Ga-Atomen an der Grenzfläche wird als Ursache für die uniaxiale magnetische Anisotropie betrachtet. Die magnetische Anisotropie der Fe_3Si-Schichten auf GaAs(113)A-Substraten zeigt ein komplexe Abhängigkeit von der Wachstumsbedingungen und der Komposition der Schichten. In den Magnetotransportuntersuchungen tritt sowohl in Fe(113)- als auch in Fe_3Si(113)-Schichten eine antisymmetrische Komponente (ASC) im planaren Hall-Effekt (PHE) auf. Ein phänomenologisches Modell, dass auf der Kristallsymmetrie basiert, liefert ein gute Beschreibung sowohl der ASC im PHE als auch des symmetrischen, anisotropen Magnetowiderstandes. Das Modell zeigt, dass die beobachtete ASC als Hall-Effekt zweiter Ordnung beschreiben werden kann. / In this work, the molecular-beam epitaxial growth and properties of ferromagnets, namely Fe and Fe_3Si are studied on low-symmetric GaAs(113)A substrates. Three important aspects are investigated: (i) growth and structural characterization, (ii) magnetic properties, and (iii) magnetotransport properties of Fe and Fe_3Si films on GaAs(113)A substrates. The growth of Fe and Fe_3Si films is optimized at growth temperatures of 0 and 250 degree Celsius, respectively, where the layers exhibit high crystal quality and a smooth interface/surface similar to the [001]-oriented films. The stability of Fe_(3+x)Si_(1-x) phase over a range of composition around the Fe_3Si stoichiometry is also demonstrated. The evolution of the in-plane magnetic anisotropy with film thickness exhibits two regions: a uniaxial magnetic anisotropy (UMA) for Fe film thicknesses = 70 MLs. The existence of an out-of-plane perpendicular magnetic anisotropy is also detected in ultrathin Fe films. The interfacial contribution of both the uniaxial and the perpendicular anisotropy constants, derived from the thickness-dependent study, are found to be independent of the [113] orientation and are hence an inherent property of the Fe/GaAs interface. The origin of the UMA is attributed to anisotropic bonding between Fe and As or Ga at the interface, similarly to Fe/GaAs(001). The magnetic anisotropy in Fe_3Si on GaAs(113)A exhibits a complex dependence on the growth conditions and composition. Magnetotransport measurements of both Fe(113) and Fe_3Si(113) films shows the striking appearance of an antisymmetric component (ASC) in the planar Hall effect (PHE). A phenomenological model based on the symmetry of the crystal provides a good explanation to both the ASC in the PHE as well as the symmetric anisotropic magnetoresistance. The model shows that the observed ASC component can be ascribed to a second-order Hall effect.

Page generated in 0.0539 seconds