• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 6
  • 4
  • 2
  • Tagged with
  • 38
  • 15
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Electronic properties of quasi-one-dimensional systems (C60@SWCNTs and InAs nanowires) studied by electronic transport under high magnetic field / Propriétés électroniques des systèmes quasi-unidimensionnels (C60@SWCNTs et nanofils d'InAs) étudiés par le transport électronique sous champ magnétique intense

Prudkovskiy, Vladimir 14 June 2013 (has links)
Cette thèse présente des mesures de transport électronique dans des systèmes quasi-unidimensionnels (quasi-1D) sous champ magnétique intense. Deux systèmes différents présentant un confinement électrique quasi-1D ont été considérés: les peapods de carbone (C60@SWCNTs) et les nanofils d'InAs. L’objectif de ces travaux consiste à sonder les propriétés électroniques spécifiques de ces systèmes quasi-1D par les mesures de magnétotransport sur les nano-objets uniques. Dans les deux cas, les expériences sous champs magnétiques intenses ont été accompagnée par des caractérisations structurales et des mesures de conductance à champ magnétique nul.L'encapsulation de diverses molécules à l'intérieur de nanotubes de carbone (CNTs), comme par exemple les fullerènes C60, constitue une des voies prometteuses vers l'accordabilité de la conductance des CNTs. Parmi la grande variété des nanotubes de carbone remplis, les peapods représentent une structure hybride pionnière découvert en 1998. Depuis lors, leur structure électronique a fait l’objet d’études théoriques controversées avec un nombre limité de réalisations expérimentales. Dans cette thèse, les propriétés électroniques des peapods individuels ont été étudiés en combinant les mesures de spectroscopie micro-Raman et de magnétotransport sur les mêmes échantillons. Nous avons constaté que les C60 encapsulés modifient fortement la structure de bande électronique des nanotubes semi-conducteurs au voisinage du point de neutralité de charge. Cette modification comprend un déplacement rigide de la structure électronique et un remplissage partiel de la bande interdite. Nous avons aussi montré que l’excitation UV sélective des fullerènes conduit à une forte modification du couplage électronique entre les C60 et le CNT induite par la coalescence partielle des C60 et de leur distribution à l'intérieur du tube. Les résultats expérimentaux sont supportés par des simulations numériques de la densité d'états et de la conductance des nanotubes de carbone avec des fullerènes fusionnés à l'intérieur (K. Katin, M. Maslov).Les nanofils semiconducteurs (sc-NWs) font l'objet de recherches actives depuis ces dix dernières années. Ils représentent des systèmes modèles pour l’étude des propriété électronique objet quasi-1D. Ils représentent en outre des possibilités de modulation de la structure de bande aussi que de contrôle de la densité de porteurs. Dans ce domaine de recherche, les nanofils semi-conducteurs à base de composes III-V tel que InAs, ont une place particulière en raison de la faible masse effective des porteurs de charge. Nous avons étudié la conductance de nanofils individuels dans une large gamme de champs magnétiques (jusqu'à 60T). Les mesures en champ nul et en champ faible ont démontré un transport faiblement diffusif dans ces nanofils. Les mesures de transport sous champ magnétique intense ont révélé une forte chute de la conductance au dessus d'un champ critique qui s'élève clairement avec l'énergie de Fermi. Cet effet est interprété par la perte de canaux de conduction une fois que toutes les sous-bandes magnéto-électriques, décalés vers les hautes énergies par le champ magnétique, ont traversé l'énergie de Fermi. Les calculs de structure de bande préliminaires (Y-M. Niquet), en prenant en compte les confinements latéraux et magnétiques, sont en bon accord qualitatif avec les résultats observés dans le régime de champ magnétique intense. Ce résultat est la première observation des effets de structure de bande dans les expériences de magnéto-transport sur les sc-NWs / The scope of this thesis is related to the electronic properties of quasi 1D systems probed by high field magnetotransport. Two different systems exhibiting quasi-1D confinement have been considered: carbon C60 peapods (C60@SWCNTs) and InAs semiconductor nanowires. The magnetotransport measurements on single nano-objets have been used to investigate the specific electronic structure of these 1D systems. In both cases, the high magnetic fields experiments have been supported by structural characterisation and conductance measurements at zero field.The encapsulation of various molecules inside carbon nanotubes (CNTs), as for instance C60 fullerenes encapsulated in SWCNT, constitutes promising routes towards the tunability of the CNT conductance. Among the wide variety of filled CNTs, peapods represent a pioneer hybrid structure discovered in 1998. Since that time, their electronic structure has been subjected to intense and controversial theoretical studies together with a limited number of experimental realizations. In this thesis the electronic properties of individual fullerene peapods have been investigated by combining micro-Raman spectroscopy and magnetotransport measurements on the same devices. We bring evidence that the encapsulated C60 strongly modify the electronic band structure of semiconducting nanotubes in the vicinity of the charge neutrality point, including a rigid shift and a partial filling of the energy gap. In addition by playing with a selective UV excitation of the fullerene, we demonstrate that the electronic coupling between the C60 and the CNT is strongly modified by the partial coalescence of the C60 and their distribution inside the tube. The experimental results are supported by numerical simulations of the Density of States and the conductance of CNTs with coalesced fullerenes inside (K. Katin, M. Maslov).Semiconductor nanowires (sc-NWs) are being the subject of intense researches started a decade ago. They represent model systems for the exploration of the electronic properties inerrant to the quasi1-D confinement. Moreover they offer the possibility to play with band structure tailoring and carrier doping. In this direction III-V sc-NWs such as InAs NWs have played a particular role due to the small electron effective mass. We have studied the high magnetic field conductance of single nanowires. Prior to the high field measurements, the zero and low field investigations have demonstrated a weakly diffusive regime of the carrier transport in these wires. The high field investigations have revealed a drastic conductance drop above a critical field, which clearly rises with the Fermi energy. This effect is interpreted by the loss of conducting channels once all the magneto-electric subbands, shifted toward the high energy range by the magnetic field, have crossed the Fermi energy. Preliminary band structure calculations (Y-M. Niquet), taking into account the lateral and magnetic confinements, are in fairly good qualitative agreement with the observed result in the high field regime. This result is the first observation of band structure effects in magneto-transport experiments on sc-NWs
22

Effet du manganèse sur l'épitaxie par jets moléculaires de nanofils de silicium et de germanium et fonctionnalisation de nanofils de germanium en vue d'applications en spintronique / Effect of manganese on the growth of silicon and germanium nanowires by molecular beam epitaxy and functionalization of germanium nanowires for spintronic applications

Porret, Clément 08 September 2011 (has links)
Ce mémoire présente une étude de la synthèse par la méthode Vapeur-Liquide-Solide (VLS) de nanofils de silicium et de germanium par Epitaxie par Jets Moléculaires ainsi que de l'effet de la présence de manganèse sur leur croissance. La croissance des nanofils est fortement modifiée par la présence de manganèse. Les nanofils de silicium élaborés sous un faible flux de manganèse présentent des propriétés morphologiques et structurales remarquables. La présence de manganèse modifie le diamètre d'équilibre des gouttes AuSi utilisées pour la croissance par voie VLS et permet l'élaboration de nanofils de silicium de longueurs élevées et de faibles diamètres. De plus, leur qualité cristalline est considérablement améliorée par rapport aux nanofils de silicium formés sans apport de manganèse. Dans ce mémoire nous proposons quelques explications à ce phénomène. Dans le cas des nanofils de germanium, l'incorporation de manganèse n'a pu être obtenue par codépôt. Aussi, (i) le dopage par implantation ionique de nanofils de germanium et (ii) la fonctionnalisation de nanofils de germanium par la formation d'hétérostructures type cœur/coquille Ge/GeMn ont été considérés : - les mesures d'aimantation effectuées sur des nanofils de germanium implantés au manganèse démontrent l'existence de propriétés ferromagnétiques avec des températures de Curie supérieures à 400K. Il s'agit d'un résultat très prometteur en vue d'applications utilisant des nanofils de germanium ferromagnétiques à température ambiante ; - pour accéder aux propriétés magnétiques des nanofils de germanium fonctionnalisés par dépôt de GeMn, nous avons mis au point une procédure de prises de contacts adaptée à la mesure de leurs propriétés de magnétotransport. Les caractéristiques électriques de ces dispositifs montrent que les propriétés de transport sont dominées par la présence de la couche coquille de GeMn, surtout à basse température. Des mesures de magnétotransport effectuées à 100K indiquent l'existence d'effets de magnétorésistance liés aux propriétés ferromagnétiques des nanofils de Ge ainsi fonctionnalisés. / This thesis presents a study of the Vapour-Liquid-Solid (VLS) synthesis of silicon and germanium nanowires by Molecular Beam Epitaxy and the effect of the presence of manganese on the growth properties. The presence of manganese strongly modifies the growth of nanowires and observed behaviours are very different for AuSi and AuGe systems. Silicon nanowires grown in the presence of manganese exhibit very interesting morphological and structural properties. The presence of manganese modifies AuSi droplets' diameter and allows manufacturing long nanowires with relatively small diameters. Moreover, the crystalline quality is dramatically improved as compared to that of silicon nanowires grown without manganese. In this manuscript we propose some explanation for the growth phenomena. In the case of germanium nanowires, manganese incorporation could not be obtained by concomitant deposition of germanium and manganese. Consequently, (i) the doping of germanium nanowires by ion implantation as well as (ii) germanium nanowires functionalization by core/shell Ge/GeMn heterostructures formation were considered: - magnetization measurements performed on implanted germanium nanowires demonstrate ferromagnetic properties with Curie temperatures above 400K. This result is very promising for the processing of devices using room-temperature ferromagnetic germanium nanowires ; - in order to access Ge/GeMn nanowires magnetic properties, we processed samples to probe nanowires magnetotransport properties. Electrical resistivities of devices show that transport properties are dominated by GeMn shell layer even more at low temperature. Magnetotransport measurements done at 100K indicate magnetoresistance effects linked with nanowires ferromagnetic properties.
23

Nonlinear Electrical And Magnetotransport Properties Of ZnO/Perovskite Manganite Ceramic Composites

Vijayanandhini, K 10 1900 (has links)
This thesis deals with the investigations on the nonlinear electrical and manganetotransport properties of polycrystalline multi-phase ceramic composites of Zno/pervoskite manganite. Multifunctional properties are studied such as the enhanced low-field magnetoresistance(LFMR). magnetically tuneable low-voltage nonlinear current-voltage (I-V) characteristics with larger nonlinearity coefficients suitable for semiconducting and magnetoelectric devices. A brief introduction on the structure-property correlations, electronic and magnetic structures, nonlinear electrical conduction, phase separation, grain size and grain boundary effects on transport properties of manganites are presented. The nonlinear current-voltage characteristics of ZnO based varistors are also summarized. The thesis describes the synthesis of the ceramics and the methodology of different techniques utilized in characterizing the samples. The phase conversions in calcium manganite with changing Ca/Mn ratios as well as the oxygen non-stoichiometry and their influence on electrical transport properties were studied. The realization of low-voltage varistors prepared from ZnO+ CaMnO3 ceramic composites was described. An energy band model consisting of n-p-n heterojunctions of n-ZnO1-γ:Mn/p-CMZO/n-ZnO1 γ:Mn has been proposed in order to explain the large nonlinearity coefficients obtained at low field-strengths of 1.8 to 12 V/mm. The detailed investigationos on the structural identification and physico-chemical analyses of Ca4Mn7Zn3O21-δ(CMZO) phases having the beta-alumina or magnetoplumbite-type structures were carried out. The thesis also embodies the magnetically tuneable nonlinear I-V characteristics and the magnetotransport properties of ZnO/La(Sr)MnO3 and ZnO/La(Ca,Sr)MnO3 ceramic composites. The present investigations demonstrate that the ferromagnetic insulating (FMI) La06 Sr04Mn1-yZnyO3(y = 3 to 8 at.%) when present as minor phase in ZnO1- γ:Mn ceramics enables in attaining magnetically tunealbe nonlinear I-V characteristics. Wherein, the dominant ZnO1- γ:Mn phase remains paramagnetic. The results also indicate that the prevalence of ferromagnetism in ZnO1-γ:Mn is not significant for realizing magnetically tuneable I-V curves. The controversial results related to the existence of ferromagnetism in ZnO(doped)leading to diluted magnetic semiconductors(DMS) have been investigated. Another novel aspect of the present work is the low-field magnetoresistive(LFMR) property of ZnO/La(Sr)MnO3 and ZnO/La(Ca.Sr)MnO3 ceramic composites which been explained on the basis of spin-polarised tunneling across the intergrain regions. The influence of Zn2+ as a diamagnetic substitutent in modifying the crystallographic phase content, electrical transport and magnetic properties of Lao6Sro4MnO3 were studied in detail. The results point towards the fact the large decrease of Tc and Ms at lower Zn contents(≤ 8 at.%)is due to the dominant role played by the excess oxygen vacancy (Vo) as an electron donor in p-type Lao6Sro4Mn1-yZnyO3-δ rather than the charge compensatively predictable values. The modifications of electronic and magnetotransport properties were carried out on Lao6Sro4MnO3 substituted with diamagnetic ions such as Mg2+ - Al3+ - Ti4+ - Nb5+ - Mo6+ or W6+ at Mn-sublattice. The TEM studies including HREM results point to the fact the large ΔT(= Tc-TM-1)is accountable in terms of charge conduction within the electronically heterogeneous phase mixtures of charge ordered insulating (CO1) bi-stripes prevailing within the charge disordered FMI phases.
24

Magnetization, Magnetotransport And Electron Magnetic Resonance Studies Of Certain Doped Rare Earth Manganites

Sharma, Ajay 03 1900 (has links)
Study of rare-earth manganites has been a very active research area in the last few years in condensed matter physics. This is due to the interesting phenomena such as (1) colossal magneto resistance (2) charge, orbital and spin ordering and (3) phase separation exhibited by these materials as a function of doping, pressure and temperature [1-3]. There is a lot of experimental data available in literature on different doped manganites, but no satisfactory and complete theoretical understanding is available yet. Though different theoretical models proposed are able to explain certain individual physical properties, a unified theory is missing which can comprehensively explain the full phase diagram. The study of such complex systems requires a probe that is sensitive to various interactions observed in manganites such as spin-spin interactions, spin-lattice interactions, spin-orbit interactions, crystal field interactions and the magnetic environment of the spins. Electron paramagnetic resonance (EPR) being sensitive to these interactions is an ideal probe for investigating these strongly correlated systems. A number of EPR studies have been reported in the paramagnetic phase of manganites, throwing light on the complex spin dynamics present in the manganites [4-10]. There are a few reports in the ferromagnetic state of manganites [11-12]. In recent years, a few studies reporting the observation of phase separation using EPR have also been published [13-15]. Charge ordering phase is the other interesting phase, which is not understood from EPR point of view [16-19]. Recently there are a few reports on suppression of CO phase by reducing the particle size from micro to nano range [20-22]. In this thesis we present the results of Electron Magnetic Resonance (EMR) (EPR in the paramagnetic phase and FMR: ferromagnetic resonance in the ferromagnetic phase) studies supported by magnetization and magneto-transport studies of the following : (1) various magnetic phases in the two electron doped manganite Ca1-xCexMnO3 (CCMO) (2) Charge ordered phase vs. ferromagnetic metallic phase as a function of Cr and Ni doping at the Mn site of Nd0.5Ca0.5MnO3 (NCMO) and comparison between the effect of the two dopants, and (3) a study of nano-sized particles (with different particle size) of Cr doped NCMO. Chapter 1 of the thesis consists of a brief introduction to the general features of manganites describing various phenomena and the interactions underlying them. Further we have written a detailed overview of EPR studies in manganites describing the current level of understanding in the area. In this chapter we have also described the experimental methodology and the analysis procedure adopted in this work. Chapter 2 reports the magnetization, transport and electron paramagnetic resonance studies (EPR) on two electron-doped manganites Ca1-xCexMnO3 (0.075 ≤ x ≤ 0.20). The various compositions of CCMO were prepared by solid-state synthesis and characterized by different techniques like XRD, SEM, EDX, and ICPAES. Our magnetization and transport results are consitent with the earlier reports [23-25]. For compositions x ≥ 0.13, all the EPR parameters viz. intensity, linewidth and the resonance field show signatures of a CO phase and at low temperature coexistence of two magnetic phases. x = 0.1 composition shows the most interesting results. Though the EPR intensity and resonance field indicate the presence of a CO phase, the EPR linewidth shows behaviour of a spin-disordered phase which we attribute to a possible spin-liquid phase [26]. The linewidth for x = 0.11 composition shows a combination of a CO and a spin-disorderd phase. For low composition x = 0.075, we observe a weak ferromagnetic phase and later on at low temperatures an antiferromagnetic phase. We do not observe the CO phase for this composition. In chapter 3, we present the magnetization, magnetotransport and EMR studies on Cr doped NCMO (0.0 ≤ x ≤ 0.10) [27]. The samples were prepared by solid-state synthesis and characterized by various techniques like XRD, SEM, EDX, and ICPAES. The magnetization studies show that the Cr doping induces ferromagnetic phase at low temperatures. With the increase of Cr doping the magnetization increases at the expense of the CO phase and for higher doping CO phase disappears completely. The Cr doping induces insulator-metal transition and with increase of Cr doping the metallic phase increases. The doped samples show high CMR, almost 100%, near the TC. The EMR studies in the paramagnetic phase indicate a CO phase for low Cr doping and the presence of short-range dynamical CO-OO correlations for higher Cr doping, which were not observed in magnetization studies. We observe two EPR signals at low temperatures for the Cr doped samples. For 3% doping, the two signals appear well above TC whereas for higher doping (5%, 10%) the two signals were observed in the FM phase. We rule out the possibility of the two-signal behaviour arising from the coexistence of two magnetic phases. For higher doping, the presence of two signals in FM phase can be attributed to magnetic anisotropy. With increase of Cr doping, magnetic anisotropy decreases which is also supported by reduction of magnetic anisotropy in magnetization measurements. But it cannot explain the observation of two signals above TC in the 3% doped sample. In chapter 4, we present the magnetization, magnetotransport and EMR studies on Ni doped NCMO (0.0 ≤ x ≤ 0.10). The samples were prepared by solid-state synthesis and characterized by various techniques like XRD, SEM, EDX, and ICPAES. The magnetization studies show that the Ni doping induces ferromagnetic phase at low temperatures. With the increase of Ni doping, though the CO phase is suppressed, the FMM phase also weakens which is different from the behaviour observed in Cr doped NCMO. The Ni doping induces insulator-metal transition and with increase of Ni doping, the metallic phase weakens. The magnetic anisotropy increases with increase of Ni doping as obtained from magnetization measurements and the EMR data also corroborates the same fact. The EMR studies in the paramagnetic phase indicate a CO phase for low Ni doping and the presence of short-range dynamical CO-OO correlations for higher Ni doping, which were not observed in magnetization studies. We observe two signals in the FM phase, which again can be attributed to the magnetic anisotropy. In chapter 5, we present EMR studies on nano-particles of Cr doped NCMO for x = 0.03. We have prepared nano-particles of three different sizes by the sol-get route. The samples were characterized by various techniques like XRD, SEM, EDX, and ICPAES. The particle sizes are 50, 100, 200 nm. We also compare the results of nano samples with the bulk samples. The ac susceptibility measurements show that the FM phase increases with the reduction of particle size. The EMR measurements show that the magnetic anisotropy decreases with decrease of particle size. The EMR linewidth in the paramagnetic phase increases with the decrease of particle size. The EMR intensity also increases with the reduction of particle size consitent with the magnetization results. The EMR results show that the reduction of particle size is one more way of inducing FM phase more effectively. Also the CO phase gets suppressed with the reduction of particle size. The two-signal feature is observed for all the particles. For nano-sized particles, the two signals appear in FM phase whereas in bulk sample they appeared well above TC. For 50 nm sized particles, the two signals appear well below 40 K. Thus we conclude that with decrease of particle size, the magnetic anisotropy decreases. The thesis concludes with a brief writeup summarizing the results and indicating possible future directions of research in the area.
25

Growth, Structural And Physical Properties Of Certain Antimony Based III-V Diluted Magnetic Semiconductors

Ganesan, K 08 1900 (has links)
Semiconductor devices are the building blocks of electronics and communication technology in the modern world. The charge, mass and spin of charge carriers in the semiconductor devices lay the foundations of the technology developments in the modern age. But to date only the electronic charge of the semiconductors has been exploited for such applications. The significance of the spin of charge carriers is completely ignored because in a semiconductor the half of the carriers are in spin-up state and the remainder are in spin-down state. A new electronics termed as spintronics, spin-transport based electronics, is focused to utilise the spin degree of freedom of the charge carriers in addition to its electronic charge. The devices based on these have the potential for various technological advancements like non-volatility, increased data processing speed, decreased electronic power consumption and increased integration densities as compared to the conventional semiconductor devices. In this study, the author intended to study the growth and properties of magnetic impurity doped antimony based III-V compounds and compare these results with those of the films grown by MBE. This thesis is organised into seven chapters. The first introductory chapter gives a brief review of the work on spintronics, diluted magnetic semiconductors, Ferromagnetic / paramagnetic semiconductor hybrid structures with special emphasis on the properties of antimonides which have already been reported in the literature. This is followed by the scope of the thesis. The second chapter deals with technical details of various instruments used in the present research work. Third chapter describes the growth and structural properties of bulk crystals grown by Bridgman method and thin films grown by liquid phase epitaxy (LPE). Bulk crystals of InSb and GaSb doped with magnetic elements such as Mn and Fe are grown with different doping concentrations. Thin films of InSb and GaSb doped Mn with different doping concentrations are grown by LPE. The grown crystals are processed by slicing, lapping, polishing and chemical etching methods. X-ray diffraction studies are carried out to confirm alloy formation and to find the change in lattice parameter if any. From the powder diffraction patterns, the lattice parameter is refined with the help of Retvield refinement program. A systematic change of lattice parameter with the incorporation of magnetic impurities into InSb and GaSb is observed. Scanning electron microscopy and energy dispersive x-ray analysis are carried out to identify the secondary phases and their composition respectively. Chapter 4 gives the detailed magnetotransport studies carried out on InSb and GaSb crystals doped with Mn and Fe. Also, the magnetotransport studies carried out on thin films grown by liquid phase epitaxy are presented here. This chapter is divided into three sections of which the first section deals with Mn doped bulk crystals of InSb and GaSb, the second section deals with Fe doped bulk crystals of InSb and GaSb and the third section deals with Mn doped InSb and GaSb films grown on GaAs by Liquid Phase Epitaxy. Temperature dependence of zero field resistivity, magnetoresistance and Hall measurements are carried out from 1.4 to 300K. All the samples show p type conduction throughout the temperature range studied except for Fe doped InSb. Mn doped crystals show negative magnetoresistance and anomalous Hall effect below 10K. Anisotropy in magnetoresistance is also observed at low temperatures in InMnSb crystals. On the other hand, Fe doped samples exhibit positive magnetoresistance throughout the temperature range and no anomalous Hall effect is observed. Chapter 5 describes the magnetic properties of bulk InMnSb, GaMnSb, InFeSb and GaFeSb crystals so also the thin films of InMnSb/GaAs. DC magnetization measurements are carried out in the temperature range 2 - 300K. The Mn doped InSb and GaSb crystals as well as InMnSb/GaAs films, show a magnetic ordering below 10K which could arise from the InMnSb and GaMnSb alloy formation. Also, saturation in magnetization observed even at room temperature suggests the existence of ferromagnetic MnSb clusters in the crystals which has been verified by scanning electron microscopy studies. In Fe doped InSb crystals, the temperature dependent DC magnetization shows irreversibility under field cooled and zero field cooled conditions below 12K, suggesting a spin glass-like behaviour. Also, magnetization measurement shows the coexistence of ferromagnetic and paramagnetic phases throughout the temperature range studied. Existence of ferromagnetic phase could arise from secondary phases Fe1-xInx or FeSb2 present in the crystal as clusters and paramagnetic phase could arise from the randomly distributed Fe atoms in the InSb matrix. Fe doped GaSb crystals show interesting magnetic property that arises from the FeGa alloy (secondary phase) present in it. The EPR studies on Ga0.98Mn0.02Sb cluster-free (?) crystal suggest that the dominant Mn impurity in GaMnSb is Mn2+ (d5), described as ionized acceptor A−. This conclusion was derived from EPR experiments, which reveal a strong absorption line with an effective g factor very close to 2.00, the value typical for centre A−. The absence of EPR signal typical for neutral Mn acceptor A0 suggests that this center is absent in the crystal under investigation. The observed behavior is similar to that of Ga1-xMnxAs and In1-xMnxAs epilayers. EPR studies also reveal that the competition between antiferromagnetic and ferromagnetic phases exists in the studied crystal. Chapter 6 describes the optical measurements carried out on bulk Ga1-xMnxSb crystals and their films with different Mn doping concentrations. FTIR studies are carried out in the temperature range 4 - 300 K. From the FTIR studies, it is found that intra valance spin – orbit splitting band absorption is dominant compared to the fundamental absorption in doped crystals. In higher doped crystals (x > 0.01), fundamental band absorption merges with split-off band and could not be resolved. Free carrier absorption studies are also carried out in the energy range below the band gap. FTIR studies on GaMnSb/GaAs films suggest band gap narrowing effect due to Mn doping. Furthermore the Photoluminescence measurements are carried out in the temperature range 10 – 300 K for all the Mn doped GaSb crystals. PL studies also support the band gap narrowing and band filling effects. A comprehensive summary of this research investigation and scope for the further work are presented in the last chapter.
26

Sur un nouveau procédé de frittage de céramiques à basse température : le frittage hydrothermal. Développement et approche mécanistique / On a new process for the low temperature sintering of ceramics and multimaterials : the hydrothermal sintering. Development and mechanistic approach

Ndayishimiye, Arnaud 19 December 2017 (has links)
Le développement de nouveaux matériaux à hautes performances dépend fortement des procédés de frittage mis en oeuvre. La réduction de l’énergie libre de surface, force motrice de la densification, peut être activée en appliquant une pression extérieure et/ou en améliorant les processus de diffusion en phase solide ou liquide à l’aide de chauffages ultra rapides, les procédés associés requérant de hautes températures. Ainsi, le challenge est de permettre une densification à basse température afin de surmonter les verrous technologiques actuels (procédé peu coûteux et économe en énergie ; frittage de matériaux métastables, à basse température de décomposition et/ou nanométriques ; cofrittage de multimatériaux). Dans ce contexte, un procédé innovant de frittage hydrothermal inspiré des processus géologiques de densification a été développé : une contrainte uniaxiale est appliquée à une poudre en présence d’eau en conditions hydrothermales sur des durées relativement courtes. La force motrice principale réside dans les gradients de contrainte intragranulaires générant des phénomènes de dissolution-précipitation aux interfaces liquide/solide. Outre une optimisation du procédé, l’objectif principal a été la compréhension des mécanismes complexes spécifiques au frittage hydrothermal d’un matériau modèle, la silice nanométrique. Il a été montré que les effets mécano-chimiques à l’origine du fluage par dissolution sous contrainte sont assistés avec synergie par des effets chimiques de type polycondensation. L’influence de chaque paramètre de frittage (température, pression, durée de palier, rampe de montée en température, quantité de solvant, utilisation d’un co-solvant ou d’un agent minéralisateur) a été identifiée et a permis d’optimiser la densification de la silice (86-88% de compacité). De plus, du quartz-α massif polycristallin et nanométrique a pu être obtenu avec une densité relative de 98%. Enfin, le frittage hydrothermal a été mis en oeuvre pour la densification de multimatériaux complexes. Des nanocomposites de type 0-3 où des nanoparticules de pérovskite de manganèse sont dispersées dans une matrice de silice ont ainsi été obtenus. L’apport de cette nanostructuration sur les propriétés de magnétotransport a été évalué. / The development of new high performance advanced materials is strongly dependent on the mastering of sintering processes. The driving force for densification is the decrease of surface free energy, which can be promoted either by applying a pressure and/or by enhancing diffusional mechanisms in a solid or liquid phase with ultra-fast heating routes. High temperatures are then usually required in the as-involved processes. The challenge is to perform densification at low temperature in order to overcome current technological barriers (energy- and cost-efficiency of the process; sintering of metastable, low temperature decomposition and/or nanometric materials; cosintering of multimaterials). In this context, we have developed an innovative hydrothermal sintering process which is geologically-inspired: a powder mixed with water is externally and mechanically compressed under hydrothermal conditions over short time periods. The main driving force is the stress gradient within grains induced by external uniaxial compression which allows the activation of the dissolution/precipitation phenomenon at solid/liquid interfaces. Besides the technological development of the apparatus, our goal was to understand all the complex mechanisms involved in the hydrothermal sintering of a model material, nanometric silica. We have shown that the mechanical-chemical effects (pressure solution creep) were synergistically assisted by chemical ones (polycondensation). The influence of each parameter (temperature, pressure, time, heating rate, solvent amount, use of a co-solvent or of a mineralizer) were investigated. Consequently, the densification of silica was optimized, reaching 86-88% of relative density. In addition, bulk polycrystalline nanometric α -quartz with 98% of relative density was obtained. Finally, the hydrothermal sintering process has been implemented to densify complex multimaterials. In this way, 0-3 type nanocomposites where nanometric manganese perovskite are embedded in a silica matrix have been obtained. The advantage of nanostructuration on magnetotransport properties was evaluated.
27

Magneto-transporte e ferromagnetismo Hall em heteroestruturas semicondutoras magnéticas / Magnetotransport and Hall ferromagnetism in magnetic semiconductor heterostructures

Henrique Jota de Paula Freire 29 June 2004 (has links)
Heteroestruturas digitais magnéticas (DMHs) são estruturas semicondutoras em que a distribuição de impurezas magnéticas (Mn) restringe-se a alguns arranjos bidimensionais (monocamadas) regularmente espaçados entre si. Na presença de um campo magnético, a interação de troca sp-d entre os momentos magnéticos localizados e os portadores itinerantes é responsável por um desdobramento de spin gigante, da ordem ou até superior que a separação cíclotron dos níveis de Landau. Aqui eu calculo a estrutura eletrônica de poços quânticos digitais magnéticos do grupo II-VI. Resolvo as equações de Kohn-Sham da teoria do funcional da densidade dependente de spin na aproximação de massa efetiva. Eu então calculo diversas propriedades magnetoópticas e de transporte relevantes experimentalmente. Em particular, eu investigo a física dependente de spin presente nestes sistemas sob dois diferentes pontos de vista. Primeiramente o enfoque é no efeito do magnetismo do Mn sobre o potencial dependente de spin da interação de troca sp-d, em particular nos efeitos da aglomeração antiferromagnética e da diluição do seu perfil de concentração (segregação e interdifusão). Ao considerar estes efeitos eu reproduzo resultados experimentais para desdobramento de spin $Delta_E$ e tempos de espalhamento de spin $tau_$ [S. A. Crooker et al., Phys. Rev. Lett. 75, 505 (1995); Phys. Rev. B 61, 1736 (2000)]. Na segunda parte eu mudo o enfoque para a física de gases de elétrons bidimensionais (2DEGs) altamente polarizados e mostro a importância da forte dependência de spin das contribuições de muitos corpos (troca e correlação) presentes nestes sistemas. Em particular, estes efeitos são relevantes para o surgimento de fases de ferromagnetismo de efeito Hall quântico. Eu calculo o magnetotransporte no regime de efeito Hall quântico para DMHs baseadas em ZnSe e CdTe. Meus resultados reproduzem resultados experimentais [R. Knobel et al., Phys. Rev. B 65, 235327 (2002); J. Jaroszynski et al., Phys. Rev. Lett. 89, 266802 (2002)] para a dependência com o campo magnético, com a temperatura, o aparecimento de picos anômalos e o surgimento de curvas de histerese em várias propriedades físicas. / Digital magnetic heterostructures (DMHs) are semiconductor structures with magnetic impurities (Mn) restricted to some planar arrangements (monolayers) regularly spaced. In the presence of an external magnetic field, the sp-d exchange interaction between the localized magnetic moments and the itinerant carriers is responsible for a giant spin splitting, of the order of, or even greater than, the cyclotron separation between Landau levels. Here I calculate the electronic structure of group II-VI digital magnetic quantum wells. I solve the Kohn-Sham equations of the spin-density functional theory within the effective mass approximation. Then I calculate some magneto-optical and transport properties which are experimentally relevant. In particular, I investigate the spin dependent physics of these systems from two different points of view. First, I focus on effects of the Mn magnetism on the sp-d exchange spin dependent potential, particularly the effect of antiferromagnetic clustering and the effect of dilution (segregation and interdiusion) of the Mn content prole. By considering these effects I reproduce experimental results for the spin splitting $Delta_E$ and spin scattering times $tau_$ [S. A. Crooker et al., Phys. Rev. Lett. 75, 505 (1995); Phys. Rev. B 61, 1736 (2000)]. In the second part I move on to the physics of spin-polarized two-dimensional electron gases (2DEGs), and show the relevance of the strong dependence of the many-body contributions (exchange and correlation) with the spin polarization. In particular, these effects are relevant for the development of quantum Hall ferromagnetic phases. I calculate magneto- transport in the quantum Hall eect regime for DMHs consisting of ZnSe and CdTe. My results reproduce experimental results [R. Knobel et al., Phys. Rev. B 65, 235327 (2002); J. Jaroszynski et al., Phys. Rev. Lett. 89, 266802 (2002)] for the dependence with magnetic eld, temperature, development of anomalous resistivities spikes and hysteretic behaviors in many physical properties.
28

Magneto-transporte e ferromagnetismo Hall em heteroestruturas semicondutoras magnéticas / Magnetotransport and Hall ferromagnetism in magnetic semiconductor heterostructures

Freire, Henrique Jota de Paula 29 June 2004 (has links)
Heteroestruturas digitais magnéticas (DMHs) são estruturas semicondutoras em que a distribuição de impurezas magnéticas (Mn) restringe-se a alguns arranjos bidimensionais (monocamadas) regularmente espaçados entre si. Na presença de um campo magnético, a interação de troca sp-d entre os momentos magnéticos localizados e os portadores itinerantes é responsável por um desdobramento de spin gigante, da ordem ou até superior que a separação cíclotron dos níveis de Landau. Aqui eu calculo a estrutura eletrônica de poços quânticos digitais magnéticos do grupo II-VI. Resolvo as equações de Kohn-Sham da teoria do funcional da densidade dependente de spin na aproximação de massa efetiva. Eu então calculo diversas propriedades magnetoópticas e de transporte relevantes experimentalmente. Em particular, eu investigo a física dependente de spin presente nestes sistemas sob dois diferentes pontos de vista. Primeiramente o enfoque é no efeito do magnetismo do Mn sobre o potencial dependente de spin da interação de troca sp-d, em particular nos efeitos da aglomeração antiferromagnética e da diluição do seu perfil de concentração (segregação e interdifusão). Ao considerar estes efeitos eu reproduzo resultados experimentais para desdobramento de spin $Delta_E$ e tempos de espalhamento de spin $tau_$ [S. A. Crooker et al., Phys. Rev. Lett. 75, 505 (1995); Phys. Rev. B 61, 1736 (2000)]. Na segunda parte eu mudo o enfoque para a física de gases de elétrons bidimensionais (2DEGs) altamente polarizados e mostro a importância da forte dependência de spin das contribuições de muitos corpos (troca e correlação) presentes nestes sistemas. Em particular, estes efeitos são relevantes para o surgimento de fases de ferromagnetismo de efeito Hall quântico. Eu calculo o magnetotransporte no regime de efeito Hall quântico para DMHs baseadas em ZnSe e CdTe. Meus resultados reproduzem resultados experimentais [R. Knobel et al., Phys. Rev. B 65, 235327 (2002); J. Jaroszynski et al., Phys. Rev. Lett. 89, 266802 (2002)] para a dependência com o campo magnético, com a temperatura, o aparecimento de picos anômalos e o surgimento de curvas de histerese em várias propriedades físicas. / Digital magnetic heterostructures (DMHs) are semiconductor structures with magnetic impurities (Mn) restricted to some planar arrangements (monolayers) regularly spaced. In the presence of an external magnetic field, the sp-d exchange interaction between the localized magnetic moments and the itinerant carriers is responsible for a giant spin splitting, of the order of, or even greater than, the cyclotron separation between Landau levels. Here I calculate the electronic structure of group II-VI digital magnetic quantum wells. I solve the Kohn-Sham equations of the spin-density functional theory within the effective mass approximation. Then I calculate some magneto-optical and transport properties which are experimentally relevant. In particular, I investigate the spin dependent physics of these systems from two different points of view. First, I focus on effects of the Mn magnetism on the sp-d exchange spin dependent potential, particularly the effect of antiferromagnetic clustering and the effect of dilution (segregation and interdiusion) of the Mn content prole. By considering these effects I reproduce experimental results for the spin splitting $Delta_E$ and spin scattering times $tau_$ [S. A. Crooker et al., Phys. Rev. Lett. 75, 505 (1995); Phys. Rev. B 61, 1736 (2000)]. In the second part I move on to the physics of spin-polarized two-dimensional electron gases (2DEGs), and show the relevance of the strong dependence of the many-body contributions (exchange and correlation) with the spin polarization. In particular, these effects are relevant for the development of quantum Hall ferromagnetic phases. I calculate magneto- transport in the quantum Hall eect regime for DMHs consisting of ZnSe and CdTe. My results reproduce experimental results [R. Knobel et al., Phys. Rev. B 65, 235327 (2002); J. Jaroszynski et al., Phys. Rev. Lett. 89, 266802 (2002)] for the dependence with magnetic eld, temperature, development of anomalous resistivities spikes and hysteretic behaviors in many physical properties.
29

Étude d'états de surface topologiques en vue de leur intégration dans des dispositifs d'électronique de spin / Study of topological surface states for spintronic devices

Barbedienne, Quentin 10 December 2019 (has links)
La spintronique classique utilise généralement des matériaux magnétiques pour produire un courant de spin à partir d’un courant de charge. Un autre moyen, plus récemment étudié, consiste à utiliser le couplage spin-orbite (SOC). Il permet de produire un courant de spin pur selon une direction transverse au courant de charge en tenant compte des principes de la mécanique quantique relativiste. Dans les matériaux à fort couplage spin-orbite, les courants de spin ainsi produits sont suffisamment importants pour imaginer les utiliser pour la commutation magnétique dans les dispositifs spintroniques. Le couplage spin-orbite, correspondant à une correction relativiste dans les équations du mouvement de l’électron, particule de spin 1/2, peut être grand dans des matériaux contenant des atomes lourds. Cela signifie qu’une conversion du courant de charge en courant de spin peut être obtenue en utilisant les propriétés de systèmes à fort SOC tel que le platine (Pt), le tungstène (W) ou le tantale (Ta), par exemple. Depuis peu, des systèmes électroniques bidimensionnels (2DEG), obtenus au niveau d’interfaces ou de surfaces particulières, ont démontré des propriétés permettant des effets d’inter-conversion particulièrement efficaces. En particulier des états Rashba ou des systèmes d’isolants topologiques, suscitent actuellement un fort engouement dans la communauté de la spintronique pour cette faculté d’inter-conversion spin-charge.Dans ce cadre particulier, depuis une dizaine d’années, les isolants topologiques ont été étudiés pour leurs propriétés électroniques non conventionnelles qui prennent racine dans la définition théorique de l’effet Hall quantique entier donnée par Thouless, ainsi que dans les travaux de Haldane dans le graphène et de Kane dans des systèmes semi-conducteurs à faible bande interdite pourvus d’un SOC fort. Ces systèmes 2D présentent des propriétés électriques intrigantes : ils sont isolants en volume et conducteurs en surface. Ces états de conductions sont pourvus d’une dispersion linéaire en énergie en fonction du vecteur d’onde k, comme dans le cas du graphène, avec une hélicité en spin déterminée.De nombreuses questions restent néanmoins ouvertes quant à la compréhension des mécanismes à l’origine de ces états de conduction en surface, mais également quant à la manière la plus simple de détecter ces états topologiques. En vue de leur intégration dans des dispositifs spintroniques et de la réalisation d’interface TI/Matériaux ferromagnétiques un certain nombre de questions se posent : comment préserver la nature des états topologiques à l’interface ? Quels matériaux utiliser et quelle est la nature atomique de l’interface (diffusion atomique) ? Quels sont les échanges électroniques à l’interface ? Etc.L’une des applications utilisant les propriétés des isolants topologiques, est d’utiliser les propriétés de conversion du courant de charge en courant de spin (et vice versa) afin de modifier ou commuter l’aimantation d’un élément ou mémoire ferromagnétique déposé directement (ou séparé par une couche tampon) sur le matériau topologique lui-même. Un tel système de bicouches ou multi-couches devrait être capable de s’intégrer dans une mémoire vive magnétique (MRAM) ou d’accroître le potentiel des disques électroniques (SSD) en raison du caractère permanent et non volatile de l’état d’aimantation du matériau. C’est dans ce cadre que s’inscrit cette thèse. / Conventional spintronics generally uses magnetic materials to produce a spin current from a current of charge. Another means, more recently studied, is the use of spin-orbit coupling (SOC). It makes possible to produce a pure current of spin in a direction transverse to the charge current, taking into account the principles of relativistic quantum mechanics. In materials with strong spin-orbit coupling, the spin currents are large enough to imagine using them for magnetic switching in spintronic devices. The spin-orbit coupling, corresponding to a relativistic correction in the equations of motion of the electron, a spin 1/2 particle, can be large in materials containing heavy atoms. This means that a conversion from charge current to spin current can be obtained using the properties of SOC systems such as platinum (Pt), tungsten(W) or tantalum (Ta) for example. Recently 2 dimensionnal electronic gas (2DEG), obtained at particular interfaces or surfaces, have demonstrated properties allowing particularly effective inter-conversion effects. In particular Rashba states or topological insulator systems, are currently arousing a strong interest in the spintronics community for this faculty of spin-charge conversion.In this particular context, over the last ten years or so, topological insulators have been studied for their electronic properties which are rooted in the theoretical definition of the integer quantum Hall effect given by Thouless, as well as in the work of Haldane in graphene and Kane in low bandgap semiconductor systems with a strong SOC. These systems have intriguing electrical properties: they are insulating in volume and conductive on the surfaces. These conductivity states have a linear energy dispersion as a function of the k-wave vector, as in the case of the graphene, with a determined spin helicity.Nevertheless, many questions remain open as the understanding of the mechanisms at the origin of these states of surface conduction, but also as to the simplest way to detect these topological states. In order to integrate in spintronic devices and to realize TI/Ferromagnetic materials interface, a number of questions arise: how to preserve the nature of the topological states at the interface? What materials should be used and what is the atomic nature of the interface (inter-mixing) ? What are the electronic exchanges at the interface? Etc.One of the applications using the properties of topological insulators, is to use the conversion properties of the charge current to spin current in order to modify or switch the magnetization of a ferromagnetic element or memory deposited directly (or separated by a buffer layer) on the topological material itself. Such a two-layer system or multilayer should be capable of integration into a magnetic random access memory (MRAM) or of increasing the potential of disks (SSD) due to the permanent and non-volatile nature of the magnetisation state of the material. This is framework of this thesis.
30

Engineering Magnetism in Rare Earth Garnet and Metallic Thin Film Heterostructures

Lee, Aidan Jarreau January 2020 (has links)
No description available.

Page generated in 0.0934 seconds