• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 8
  • 7
  • Tagged with
  • 28
  • 28
  • 22
  • 17
  • 17
  • 16
  • 12
  • 12
  • 12
  • 12
  • 7
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Struktur, Assoziations- und Glykierungsreaktionen von Caseinmicellen

Möckel, Ulrike 19 January 2017 (has links)
Milch dient der Versorgung neugeborener Säugetiere mit allen lebensnotwendigen Nährstoffen, wie Proteinen, Fetten, Kohlenhydraten, Vitaminen und Mineralstoffen. Insbesondere die Proteingruppe der Caseine, die in der Milch zum Großteil zu Caseinmicellen assoziiert vorliegen, stellen essentielle Aminosäuren bereit und transportieren große Mengen Calcium und Phosphor (Fox, 2008; Horne, 2008). Neben der Bedeutung als erste Nahrungsquelle für Neugeborene haben sich Milch und Milchprodukte zu einem der wichtigsten Handels- und Verarbeitungsgüter entwickelt. In Deutschland ist vorrangig der Konsum von Kuhmilch verbreitet. Zunehmend wird aber auch die Milch von Büffel, Schaf und Ziege direkt oder verarbeitet konsumiert (Fox, 2008; Töpel, 2016). Dabei unterscheidet sich die Zusammensetzung der Milch zwischen den verschiedenen Tierarten zum Teil beträchtlich. Diese Unterschiede betreffen nicht nur die Anteile der Hauptnährstoffe, sondern auch die Eigenschaften und die Zusammensetzung der Caseinmicellen (CM) (Fox, 2008). Die Eigenschaften und die Stabilität gegenüber einer Calciumkomplexierung wurden für bovine Caseinmicellen in der Literatur bereits ausführlich diskutiert (Horne, 1984; Banon & Hardy, 1992; Needs et al., 2000; O’Connell et al., 2001; Huppertz et al., 2004). Über die Micellen anderer Tierarten lagen zu Beginn der Untersuchungen hingegen kaum Informationen vor. Ein Ziel der vorliegenden Arbeit war es deshalb, die Caseinmicellen aus der Milch der wiederkäuenden Paarhufer Kuh, Büffel, Schaf, Ziege und Kamel und der nicht wiederkäuenden Unpaarhufer Pferd und Esel sowie aus Humanmilch bezüglich Größe, Struktur, Zusammensetzung und Stabilität zu charakterisieren und daraus Erkenntnisse zum tierartspezifischen Micellaufbau abzuleiten. Hierzu wurden die Caseinmicellen mit Hilfe der Ultrazentrifugation von der Molke abgetrennt und in tierartspezifischem, synthetischem Milchultrafiltrate (SMUF) resuspendiert. Untersuchungen der hydrodynamischen Durchmesser mittels dynamischer Lichtstreuung zeigten, dass die CM der Nicht-Wiederkäuer Stute und Esel sowie des Kamels deutlich größer waren als die der Wiederkäuer Kuh, Büffel, Schaf und Ziege, wohingegen sich die humanen CM als die kleinsten zeigten. Mittels Rasterelektronenmikroskopie (REM) konnten aufgrund der beobachteten unterschiedlichen Oberflächenstrukturen für einige Tierarten Hinweise hinsichtlich einer größen- und κ-Casein-abhängigen Ausbildung von κ Casein ‚bunches‘ oder einer ‚hairy layer‘ an der Oberfläche der kolloidalen Partikel erhalten werden. Anhand der Aminosäurezusammensetzung der micellaren Proteine konnte abgeleitet werden, dass bei allen Tierarten vor allem Phosphoserin sowie die hydrophoben Aminosäuren maßgeblich am Aufbau der CM beteiligt sein dürften. Hierbei wurden jedoch tierartspezifische Unterschiede festgestellt. Bei den Wiederkäuern wurde eine besonders starke Assoziation der Caseinmonomere über Phosphoserincluster vermutet, während bei den Nicht-Wiederkäuern und insbesondere bei den humanen CM auch hydrophobe Wechselwirkungen eine entscheidende Rolle spielen. Calcium und anorganischer Phosphor konnten als die bedeutendsten micellaren Salze identifiziert werden, die in besonders hohen Gehalten in den CM von Stute und Esel vorkamen. Humane Micellen wiesen deutlich niedrigere Mineralstoffgehalte auf, weshalb die Bedeutung der elektrostatischen Wechselwirkungen für die Verknüpfung der Caseinmonomere geringer eingeschätzt wurde als bei den weiteren untersuchten Tierarten. In Bezug auf die Stabilität gegenüber einer Calciumkomplexierung mit Ethylenglycol-bis(2-aminoethylether)-N,N,N\',N\'-tetraessigsäure (EGTA) unterschieden sich die CM der Tiere sehr deutlich voneinander. Instabile Micellen zeichneten sich durch eine starke Abnahme der Trübung, eine Zunahme des extra-micellaren Caseins sowie eine schneller einsetzende Verkleinerung des hydrodynamischen Durchmessers aus. Für die Micellstabilität ergab sich die folgende Reihenfolge: Kuh << Büffel < Ziege < Schaf < Kamel = Stute < Esel < Mensch. Caseinmicellen eignen sich, neben dem natürlichen Transport von Aminosäuren und Mineralstoffen, als Nanotransporter für bioaktive Substanzen wie Vitamin D2 (Semo et al., 2007), β-Carotin (Sáiz-Abajo et al., 2013), Curcumin (Sahu et al., 2008), Triclosan (Roach et al., 2009) oder auch dem antibakteriellen Enzym Lysozym (de Roos et al., 1998; Anema & de Kruif, 2013). Da zu Beginn der Untersuchungen ausschließlich Daten zur Beladung boviner Caseinmicellen mit Hühnereiweißlysozym (HEWL) verfügbar waren, sollte zunächst die Stabilität der tierartspezifischen Micellen und die Effektivität der Beladung mit Lysozym beurteilt werden. Zusätzlich sollte die antibakterielle Wirksamkeit der mit Lysozym beladenen Caseinmicellen verschiedener Säugetiere sowohl in vitro als auch in orientierenden Untersuchungen gegenüber Bakterien erfasst werden. Dabei konnte gezeigt werden, dass die CM aller untersuchten Tierarten mit HEWL beladen werden können. Hinsichtlich der Stabilität der CM sowie der Aufnahmekapazität wurden jedoch tierartspezifische Unterschiede festgestellt. Allgemein konnten die CM aus Wiederkäuer- und aus Humanmilch als stabiler beschrieben werden, wobei die HEWL-Aufnahme bei den CM der Wiederkäuer höher war. Die lytische Enzymaktivität des HEWL in vitro veränderte sich infolge der Micellassoziation für die meisten untersuchten Tierarten im Vergleich zu frei vorliegendem HEWL nicht. Für die antibakterielle Wirksamkeit gegenüber Bacillus subtilis wurden hingegen Unterschiede zwischen den verschiedenen Tierarten beobachtet. Für die HEWL-haltigen CM von Büffel und Ziege ergaben sich die gleichen Wachstumsverzögerungen wie bei freiem HEWL in SMUF. Im Gegensatz dazu wurde die bakteriostatische Wirkung durch die HEWL-Micellen von Kuh, Kamel und Mensch inhibiert, durch die von Schaf, Stute und Esel hingegen verstärkt. Neben der Funktionalisierung der Caseinmicellen durch den Einbau bioaktiver Substanzen, können die Partikel auch chemisch modifiziert werden. Eine Möglichkeit stellt hierbei die Glykierung dar. Glykierungsreaktionen zwischen den Carbonylgruppen reduzierender Zucker und Aminosäureseitenketten wurden für nicht-micellare Caseine in einer Vielzahl an Studien untersucht (Zin El-Din & Aoki, 1993; Morales & van Boekel, 1996; Pellegrino et al., 1999; Lima et al., 2009; Akıllıoğlu & Gökmen, 2014). Über den Einfluss der micellaren Anordnung der Caseine auf die Glykierungsreaktionen war nur wenig bekannt. Erkenntnisse diesbezüglich könnten einen Beitrag zur Aufklärung des Aufbaus der Caseinmicellen leisten. Die Untersuchungen zeigten, dass bei der Erhitzung von micellaren und nicht-micellaren Caseinen für 0 - 4 h bei 100 °C in Gegenwart der reduzierenden Zucker Lactose und Glucose hauptsächlich die frühe Phase der Maillard Reaktion abläuft. Die Bildung der Amadori-Produkte erfolgte dabei in den CM und im nicht micellaren Natrium-Caseinat (NaCas) in gleichem Maße. Hieraus wurde eine ähnliche Zugänglichkeit der reaktiven Aminosäureseitenketten in den micellaren und nicht micellaren Caseinen geschlussfolgert. Signifikante Unterschiede konnten hinsichtlich der Produktbildung der späten Phase der Maillard-Reaktion beobachtet werden. Während Nε-Carboxymethyllysin (CML) im NaCas in höheren Gehalten detektiert wurde, trat in den CM eine verstärkte Pyrralin-Bildung auf. Zudem bewirkte eine Inkubation in Gegenwart von Lactose eine bevorzugte CML-Bildung, wohingegen mit Glucose Pyrralin in höheren Mengen gebildet wurde. Die Maillard-induzierten Proteinquervernetzungsprodukte Glyoxal-Lysin-Dimer und Pentosidin wurden im Vergleich zum zuckerunabhängig gebildeten Lysinoalanin in deutlich geringeren Gehalten erfasst. Hohe Oligomerisierungsgrade zwischen 50 und 84 % zeigten jedoch, dass die Proteinquer-vernetzungen, die im Zuge der Glykierung entstehen, quantitativ von größerer Bedeutung sind. Anhand der Bestimmung der hydrodynamischen Durchmesser und mit Hilfe von REM-Aufnahmen konnte eine weitgehend intra-micellare Proteinquervernetzung abgeleitet werden. Die Ausbildung intra-micellarer Oligomere bewirkte dabei eine höhere Micellstabilität gegenüber einem Calciumentzug durch EGTA. Die vorliegenden Untersuchungen deuten darauf hin, dass die hydrophilen Zuckermoleküle über die von Dalgleish (2011) vorgeschlagenen Wasserkanäle in die CM eindringen und die frühe Phase der Maillard-Reaktion anschließend vor allem in diesen Regionen erfolgt. Die weiteren Phasen der Maillard-Reaktion könnten dann, durch ein tieferes Eindringen der reaktiven Komponenten, zunehmend auch in dehydratisierteren Bereichen ablaufen. Bezüglich des Aufbaus der Caseinmicellen unterstützen die in dieser Arbeit gewonnen Ergebnisse die Vorstellungen des Internal Structure Modells.
22

Carbonyl Compounds in Manuka Honey:: Antibacterial Activity, Reactions and Metabolic Transit

Rückriemen, Jana 08 February 2018 (has links)
New Zealand is the world’s third-largest honey exporter by value behind China and Argentina and honey accounts for up to 80 % of New Zealand’s exports. However, it is only the 16th biggest global supplier by volume. Manuka honey from New Zealand is sold for premium prices and merchandised for its health benefits. Because of its exceptional antibacterial effect, there is a strong market demand and the price for a kilogram of manuka honey has tripled in recent years (Ministry for Primary Industries 2015). When consumers are willing to pay prices up to 200 €/kg manuka honey, the risk of misleading advertisement and intended fraud increases. This thesis aims to further characterize manuka honey and contribute to the development of a manuka honey definition. The first part deals with the antibacterial activity of manuka honey. The effect of manuka honey is mainly due to methylglyoxal, whereas the effect of non-manuka honeys is primarily caused by hydrogen peroxide. The objective is to develop a method to quantify the effect solely due to one of the respective chemical compounds and compare their effectiveness. Finally, an evaluation of the contribution of methylglyoxal and hydrogen peroxide to the inhibitory effect of honey should be given. The second part deals with chemical reactions of carbonyl compounds in honey. Because of the reactive nature of carbonyl compounds, the formation of specific glycation compounds in honey is assumed. Since the carbonyl profile of manuka honey differs remarkably from non-manuka honeys, the reaction products are expected to vary widely. Specific compounds, solely present in manuka honey, could serve as quality control parameters to ensure manuka honey authenticity. The final part deals with the metabolism of food-derived carbonyl compounds. Carbonyl compounds, like methylglyoxal or 3-deoxyglucosone are discussed to be potentially toxic to human tissues. Until now, only little is known about the impact of the diet on the physiological carbonyl-load and the metabolism of carbonyl compounds. With the help of nutrition studies and the analysis of body fluids, the question of metabolic transit of carbonyl compounds shall be addressed. The antibacterial studies showed that bacterial species are affected differently by bioactive compounds present in honey. Methylglyoxal (MGO), which is solely present in manuka honeys and hydrogen peroxide, which is formed in most conventional honeys by glucose oxidase, are strong inhibitors of the growth of S. aureus and E. coli. The strain of P. aeruginosa used for this work was not inhibited by MGO, whereas B. subtilis was not inhibited by hydrogen peroxide. To compare and quantify the effect of MGO and hydrogen peroxide, a mathematic model was created. By comparing the slopes of the linearized dose-response curves, it was found that S. aureus, E. coli and P. aeruginosa were more sensitive to hydrogen peroxide than to MGO. However, the natural amounts of MGO in honey are higher than the formation of hydrogen peroxide. Although most bacteria are more sensitive to hydrogen peroxide, MGO is the predominantly antibacterial compound in honey, because of its higher concentrations compared to hydrogen peroxide formation. The inclusion of manuka honey in α-cyclodextrin had only minor consequences on bioavailability and antibacterial activity. The commercial product “Cyclopower” (α-cyclodextrin with manuka honey) does not enhance the antibacterial activity of manuka honey on S. aureus, E. coli and P. aeruginosa. With the help of the newly developed quantitative model, it was shown that the growth of B. subtilis is synergistically inhibited with cyclopower compared to manuka honey and α-cyclodextrin alone. The study of bacterial enzymes as possible targets for bacterial inhibition with manuka honey revealed that MGO and DHA inhibited jack bean urease, which was used as a model for Helicobacter pylori urease. The concentration of MGO and DHA in manuka honey positively correlated with its urease inhibition. Conventional honeys, which lack MGO and DHA, showed significantly less urease inhibition. Based on the unique presence of MGO, manuka honey has extraordinary effects on bacteria, which might lead to further application to fight the emerging crisis of antibacterial resistance to antibiotics. Until now, there is no consistent definition for the term “genuine manuka honey”. In the present work, an approach based on unique chemical reactions in manuka honey was followed. It was shown that the exceptional high amounts of MGO induced the formation of 2-acetyl-1-pyrroline (2-AP). In manuka honey containing ≥ 250 mg/kg MGO, the 2-AP concentration was significantly increased compared to conventional honey. Moreover, honey proteins form MGO-derived reactions products, which were studied by measuring the molecular size of honey proteins. Manuka honey proteins significantly shifted to high molecular weights (HMW) with a size above 510 kDa. The amount of HMW protein in non-manuka honey was significantly lower. The cleavage of disulphide bonds led to a decrease of HMW fraction of conventional honeys but not of manuka honeys. It is hypothesized that MGO cross-linking of proteins is mainly responsible for the formation of HMW adducts in manuka honey. The formation of HMW adducts was also shown with fluorescence analysis, whereby manuka honey proteins had higher fluorescence intensities at λex=350 nm and λem=450 nm compared to non-manuka honeys. The artificial addition of MGO and its precursor dihydroxyacetone (DHA) to a non-manuka honey did not lead to an increased fluorescence up to the level of commercial manuka honeys. The MGO-derived modifications of proteins were further studied by quantifying the protein-bound Maillard reaction products N-ε-carboxyethyllysine (CEL) and methylglyoxal-derived hydroimidazolone 1 (MG-H1) after enzymatic hydrolysis of honey proteins and LC-MS/MS analysis. Their amount was significantly higher in manuka compared to conventional honeys and correlated with the MGO content of the honey. Most of the MGO-derived reactions could be simulated by spiking a conventional honey or a low MGO manuka honey with artificial MGO and subsequent storage at elevated temperatures. Higher storage temperatures were associated with a quick increase of 5-hydroxymethylfurfuraldehyd (HMF). The HMF level in honey is used as a quality parameter and should not exceed 40 mg/kg (Codex Alimentarius Commission, 2001). High concentrations of HMF may point to a fraudulent addition of MGO and the production of artificial high-price manuka honey products. Taken together, the Maillard reaction in honey could be used to control the natural origin of MGO and DHA. The consumption of honey and especially manuka honey exposes humans to high levels of dietary dicarbonyl compounds like MGO and 3-deoxyglucosone (3-DG). Both compounds were discussed as potential risk factors for the development of age-related diseases. The simulated digestion of manuka honey in the presence of gastric and ileal fluids showed that only 9 % of the initial concentration can be recovered after 8 h. The honey matrix had no stabilising effect on MGO compared to a synthetic MGO solution. In contrast to MGO, the manuka honey compound DHA was stable during all simulated digestion steps. The complexation of MGO with α-cyclodextrin did not enhance the stability of MGO. The metabolic transit of dietary MGO and 3-DG was further studied with an intervention study with healthy volunteers, who collected their daily urine. It was shown that urinary concentrations of 3-DG and its less reactive metabolites 3-deoxyfructose (3-DF) and 2-keto-3-deoxygluconic acid (3-DGA), but not MGO, were influenced by the diet. During the intervention studies, up to 40 % of dietary 3-DG was recovered as the sum of 3-DG, 3-DF and 3-DGA. The metabolite 3-DGA only played a minor role in the metabolism of dietary 3-DG in comparison to 3-DF. The concentrations 3-DF and 3-DGA in plasma only increased after the consumption of dietary 3-DG and not after the uptake of carbohydrate rich meals in general. This led to the conclusion that dietary 3-DG is effectively metabolized to 3-DF extracellularly on the apical site of the intestinal epithelium and is resorbed slowly into the circulation. In contrast, 3-DG, which is formed (intracellularly) postprandial from glucose, bypasses this metabolic system and cannot be metabolized as rapidly to 3-DF. Preliminary results obtained with saliva instead of urine as a bio fluid to study the dietary influence of dicarbonyl compounds, confirmed the hypothesis. Based on the present results, dietary dicarbonyl compounds are effectively metabolized during digestion.
23

Amino acids and glycation compounds in hot trub formed during wort boiling

Böhm, Wendelin, Stegmann, Robin, Gulbis, Ojars, Henle, Thomas 22 February 2024 (has links)
The aim of this study was to investigate the amino acid composition and the amount of individual glycation compounds in hot trub formed during boiling of wort prepared from different malts. Compared to the initial amino acid composition of the used malts, some Maillard reaction products (namely MG-H1, pyrraline) and hydrophobic amino acids (leucine, isoleucine, valine, phenylalanine) accumulated in the hot trub, whereas hydrophilic amino acids remained in the boiled wort. For MG-H1, a threefold increase was observed during wort boiling, whereas the other Maillard reaction products, namely CML, CEL, pyrraline and maltosine increased only slightly (1.1–2-fold). Furosine as a hallmark for peptide-bound Amadori compounds showed a small decrease. The results suggest that mainly glycated amino acids derived from small dicarbonyl compounds such as methylglyoxal and glyoxal are formed during wort boiling. Furthermore, the studies indicate that the modification of the protein structure as a result of the Maillard reaction has an influence on the hydration of the denatured proteins during the wort boiling process, thus affecting the coagulation process and, therefore, precipitation of the hot trub. The work carried out contributes to the understanding of the chemical reactions influencing the amino acid and Maillard reaction product transfer from malt to beer.
24

Untersuchungen zur Bildung von Furosin und N-terminalen 2(1H)-Pyrazinonen / Studies on the formation of furosine and N-terminal 2(1H)-pyrazinones

Krause, René 05 March 2005 (has links) (PDF)
Furosin entsteht bei der Salzsäurehydrolyse aus den Amadori-Produkten des Lysins und wird als Marker für den Fortschritt der frühen Maillard-Reaktion, zur Beurteilung von lebensmitteltechnologischen Prozessen sowie zur Berechnung des verfügbaren und des nicht verfügbaren Lysins in Lebensmitteln verwendet. Für die Nutzung von Furosin als Qualitätsparameter ist die reproduzierbare und konstante Bildung während der Salzsäurehydrolyse entscheidend. Dies wird in der Literatur jedoch kontrovers diskutiert. Im ersten Abschnitt dieser Arbeit galt es deshalb, die molaren Ausbeuten an Furosin und den weiteren Hydrolyseprodukten Lysin, Pyridosin und N[epsilon]-Carboxymethyl-lysin zu bestimmen und damit eine sichere Interpretation der Ergebnisse zu ermöglichen. Dazu wurden peptid-gebundene Amadori-Produkte des N[alpha]-Hippuryl-lysins in chromatographisch reiner Form dargestellt. Weiterhin wurden N[alpha]-Hippuryl-N[epsilon]-carboxymethyl-lysin und Pyridosin als Standard gewonnen. Bei den Hydrolyseexperimenten zeigten die Fructosyl-Amadori-Produkte ein ähnliches Verhalten. Nach Hydrolyse mit 6M Salzsäure wurden molare Ausbeuten an Furosin von 32% für Fructosyl-lysin und jeweils 34% für Lactulosyl- und Maltulosyl-lysin bestimmt. Signifikant höhere Ausbeuten an Furosin waren nach Hydrolyse mit 8M Salzsäure festzustellen, 46% für Fructosyl-lysin, 50% für Lactulosyl-lysin und 51% für Maltulosyl-lysin. Im Gegensatz zu den Fructosyl-Derivaten war die molare Ausbeute an Furosin bei Tagatosyl-lysin unabhängig von der verwendeten Salzsäurekonzentration (6 bis 8M) und wurde zu 42% bestimmt. Anhand der auf Basis der molaren Ausbeuten ermittelten Überführungsfaktoren kann nun erstmals die Lysin-Derivatisierung mittels der Analytik von Furosin sicher bestimmt werden. Das ermöglicht exakte Aussagen zum Fortschritt nichtenzymatischer Glykierungsreaktionen sowohl in Lebensmittel als auch in vivo. Aufgrund der Relevanz für biologische Systeme und für Lebensmittel wurden weiterhin Reaktionen von alpha-Dicarbonylverbindungen mit kurzkettigen Peptiden und dem Protein Insulin unter physiologischen Bedingungen (pH=7,4 und 37°C) untersucht. Bei der Reaktion von Glyoxal mit ausgewählten Tripeptiden wurde eine sehr schnelle Derivatisierung der Peptide und jeweils die gleichzeitige Bildung eines definierten Produktes festgestellt. Mittels nuklearmagnetischer Resonanzspektroskopie und massenspektroskopischer Analyse konnten die Produkte zweifelsfrei, jeweils als die am N-Terminus durch einen 2(1H)-Pyrazinon-Ring modifizierten Peptide, aufgeklärt werden. Das Hauptprodukt der Reaktion von Methylglyoxal mit dem Peptid Gly-Ala-Phe wurde ebenfalls als 2(1H)-Pyrazinon-Peptid aufgeklärt. Nach Inkubation von Insulin mit Glyoxal unter physiologischen Bedingungen in verdünnter Lösung konnte weiterhin gezeigt werden, dass die 2(1H)-Pyrazinon-Bildung ebenfalls an einem Protein erfolgt. Die identifizierten N-terminalen 2(1H)-Pyrazinone weisen charakteristische UV-Absorptions- sowie Fluoreszenz-Spektren auf. Um die Reaktivität des N-Terminus und damit die Bedeutung der 2(1H)-Pyrazinon-Bildung beurteilen zu können, wurden vergleichende Studien mit dem als Hauptreaktionspartner für alpha-Dicarbonylverbindungen angesehenen Arginin durchgeführt. Bei diesen Experimenten zeigte der N-Terminus und peptidgebundenes Arginin eine nahezu identische Reaktivität. Auf Grund dieser Ergebnisse ist fest davon auszugehen, dass es sich bei den identifizierten N-terminalen 2(1H)-Pyrazinonen um eine neue Klasse von sogenannten Advanced Glycation Endproducts (AGEs) mit Bedeutung in physiologischen Systemen und in Lebensmitteln handelt.
25

Untersuchungen zur Bildung von Furosin und N-terminalen 2(1H)-Pyrazinonen

Krause, René 21 January 2005 (has links)
Furosin entsteht bei der Salzsäurehydrolyse aus den Amadori-Produkten des Lysins und wird als Marker für den Fortschritt der frühen Maillard-Reaktion, zur Beurteilung von lebensmitteltechnologischen Prozessen sowie zur Berechnung des verfügbaren und des nicht verfügbaren Lysins in Lebensmitteln verwendet. Für die Nutzung von Furosin als Qualitätsparameter ist die reproduzierbare und konstante Bildung während der Salzsäurehydrolyse entscheidend. Dies wird in der Literatur jedoch kontrovers diskutiert. Im ersten Abschnitt dieser Arbeit galt es deshalb, die molaren Ausbeuten an Furosin und den weiteren Hydrolyseprodukten Lysin, Pyridosin und N[epsilon]-Carboxymethyl-lysin zu bestimmen und damit eine sichere Interpretation der Ergebnisse zu ermöglichen. Dazu wurden peptid-gebundene Amadori-Produkte des N[alpha]-Hippuryl-lysins in chromatographisch reiner Form dargestellt. Weiterhin wurden N[alpha]-Hippuryl-N[epsilon]-carboxymethyl-lysin und Pyridosin als Standard gewonnen. Bei den Hydrolyseexperimenten zeigten die Fructosyl-Amadori-Produkte ein ähnliches Verhalten. Nach Hydrolyse mit 6M Salzsäure wurden molare Ausbeuten an Furosin von 32% für Fructosyl-lysin und jeweils 34% für Lactulosyl- und Maltulosyl-lysin bestimmt. Signifikant höhere Ausbeuten an Furosin waren nach Hydrolyse mit 8M Salzsäure festzustellen, 46% für Fructosyl-lysin, 50% für Lactulosyl-lysin und 51% für Maltulosyl-lysin. Im Gegensatz zu den Fructosyl-Derivaten war die molare Ausbeute an Furosin bei Tagatosyl-lysin unabhängig von der verwendeten Salzsäurekonzentration (6 bis 8M) und wurde zu 42% bestimmt. Anhand der auf Basis der molaren Ausbeuten ermittelten Überführungsfaktoren kann nun erstmals die Lysin-Derivatisierung mittels der Analytik von Furosin sicher bestimmt werden. Das ermöglicht exakte Aussagen zum Fortschritt nichtenzymatischer Glykierungsreaktionen sowohl in Lebensmittel als auch in vivo. Aufgrund der Relevanz für biologische Systeme und für Lebensmittel wurden weiterhin Reaktionen von alpha-Dicarbonylverbindungen mit kurzkettigen Peptiden und dem Protein Insulin unter physiologischen Bedingungen (pH=7,4 und 37°C) untersucht. Bei der Reaktion von Glyoxal mit ausgewählten Tripeptiden wurde eine sehr schnelle Derivatisierung der Peptide und jeweils die gleichzeitige Bildung eines definierten Produktes festgestellt. Mittels nuklearmagnetischer Resonanzspektroskopie und massenspektroskopischer Analyse konnten die Produkte zweifelsfrei, jeweils als die am N-Terminus durch einen 2(1H)-Pyrazinon-Ring modifizierten Peptide, aufgeklärt werden. Das Hauptprodukt der Reaktion von Methylglyoxal mit dem Peptid Gly-Ala-Phe wurde ebenfalls als 2(1H)-Pyrazinon-Peptid aufgeklärt. Nach Inkubation von Insulin mit Glyoxal unter physiologischen Bedingungen in verdünnter Lösung konnte weiterhin gezeigt werden, dass die 2(1H)-Pyrazinon-Bildung ebenfalls an einem Protein erfolgt. Die identifizierten N-terminalen 2(1H)-Pyrazinone weisen charakteristische UV-Absorptions- sowie Fluoreszenz-Spektren auf. Um die Reaktivität des N-Terminus und damit die Bedeutung der 2(1H)-Pyrazinon-Bildung beurteilen zu können, wurden vergleichende Studien mit dem als Hauptreaktionspartner für alpha-Dicarbonylverbindungen angesehenen Arginin durchgeführt. Bei diesen Experimenten zeigte der N-Terminus und peptidgebundenes Arginin eine nahezu identische Reaktivität. Auf Grund dieser Ergebnisse ist fest davon auszugehen, dass es sich bei den identifizierten N-terminalen 2(1H)-Pyrazinonen um eine neue Klasse von sogenannten Advanced Glycation Endproducts (AGEs) mit Bedeutung in physiologischen Systemen und in Lebensmitteln handelt.
26

Studies on the Reaction of Dietary Methylglyoxal and Creatine during Simulated Gastrointestinal Digestion and in Human Volunteers

Treibmann, Stephanie, Groß, Julia, Pätzold, Susann, Henle, Thomas 18 April 2024 (has links)
The reactive 1,2-dicarbonyl compound methylglyoxal (MGO) is consumed with food and its concentrations decrease during digestion. In the present paper, the reaction of MGO with creatine, arginine, and lysine during simulated digestion, and its reaction with creatine during the digestion in human volunteers, was studied. Therefore, simulated digestion experiments with a gastric and an intestinal phase were performed. Additionally, an intervention study with 12 subjects consuming MGO-containing Manuka honey and creatine simultaneously or separately was conducted. Derivatization with o-phenylenediamine and HPLC–UV was used to measure MGO, while creatine and glycated amino compounds were analyzed via HPLC–MS/MS. We show that MGO quickly reacts with creatine and arginine, but not lysine, during simulated digestion. Creatine reacts with 56% of MGO to form the hydroimidazolone MG-HCr, and arginine reacted with 4% of MGO to form the hydroimidazolone MG-H1. In the intervention study, urinary MG-HCr excretion is higher in subjects who consumed MGO and creatine simultaneously compared to subjects who ingested the substances separately. This demonstrates that the 1,2-dicarbonyl compound MGO reacts with amino compounds during human digestion, and glycated adducts are formed. These contribute to dietary glycation products consumed, and should be considered in studies investigating their physiological consequences.
27

N-Terminale Glykierung von Proteinen in Lebensmitteln und unter physiologischen Bedingungen

Löbner, Jürgen 06 March 2018 (has links) (PDF)
Kohlenhydrate und Proteine gehören neben Wasser und Fetten zu den quantitativ bedeutendsten Grundbestandteilen biologischer Systeme und der Lebensmittel. Unter milden Bedingungen in lebenden Organismen oder unter thermischer Belastung bei der Lebensmittelverarbeitung können reduzierende Kohlenhydrate amin-katalysiert durch die Abspaltung von Wasser und Fragmentierungen des Kohlenstoffgerüsts abgebaut werden, wobei die noch reaktiveren 1,2-Dicarbonylverbindungen entstehen. Aus der Reaktion der N-α-Aminogruppe und funktioneller Gruppen der Seitenketten von Aminosäuren mit Kohlenhydraten bzw. 1,2-Dicarbonylverbindungen können stabile Endprodukte entstehen. In vivo können proteingebundene Maillard-Produkte (MRPs) aus der Reaktion mit Glucose (Amadori-Produkte) oder 1,2-Dicarbonylverbindungen (Advanced Glycation Endproducts: AGEs) entstehen. Beispielsweise ist das „N-terminale“ N-α-Fructosylderivat der β-Kette des Hämoglobins ein etablierter Parameter zur Diagnose von Diabetes mellitus (HbA1c-Wert). Diese nicht-enzymatische, posttranslationale Modifizierung von Proteinen wird allgemein als Glykierung bezeichnet und kann die Funktionalität von Proteinen beeinträchtigen. Deshalb wird untersucht, ob die Trübung der Augenlinsen, die Versteifung von Blutgefäßen oder Schädigungen von Nervenzellen durch eine erhöhte Glykierung verursacht werden. Diese Veränderungen treten im Alter und bei Stoffwechselkrankheiten wie Diabetes mellitus und Urämie auf, die durch eine erhöhte Glucosekonzentration bzw. die Anreicherung von 1,2-Dicarbonylverbindungen im Blut gekennzeichnet sind. Zwar gibt es Publikationen zum Vorkommen N-terminaler Amadori-Produkte an Hämoglobin und in Lebensmitteln, aber die Bildung N-terminaler AGEs wurde bisher nur in wenigen Studien untersucht. Deshalb waren die Bildung und das Vorkommen N-terminaler AGEs im physiologischen Modell, in Hämoglobin und in Backwaren Gegenstand der vorliegenden Arbeit. In der vorliegenden Arbeit wurde erstmals systematisch die Sequenzabhängigkeit der Bildung der Fructosylderivate bzw. der CM-Derivate in Konkurrenz zu den Glyoxal-2(1H)-Pyrazinonen am N-Terminus von Peptiden unter physiologischen und backtechnologischen Bedingungen untersucht. Dabei wurde nachgewiesen, dass die Variation der C-terminalen Aminosäure in Dipeptiden den Glykierungsgrad und das Produktspektrum erheblich beeinflusst. Mit dem konsequenten Nachweis der N-terminalen von Glyoxal und Methylglyoxal ableitbaren Carboxyalkylderivate und 2(1H)-Pyrazinone in humanen Hämoglobin wurde die Relevanz der N-terminalen Glykierung in vivo untermauert. Damit wird eine umfassendere Beurteilung des Dicarbonylstresses und der Glykierung insbesondere bei Urämikern und Diabetikern ermöglicht. Am Beispiel von Backwaren wurde für Lebensmittel gezeigt, dass unter trockenen Reaktionsbedingungen die 2(1H)-Pyrazinone und in wasserhaltigen Systemen die Carboxyalkylderivate bevorzugt zu erwarten sind.
28

N-Terminale Glykierung von Proteinen in Lebensmitteln und unter physiologischen Bedingungen

Löbner, Jürgen 26 January 2018 (has links)
Kohlenhydrate und Proteine gehören neben Wasser und Fetten zu den quantitativ bedeutendsten Grundbestandteilen biologischer Systeme und der Lebensmittel. Unter milden Bedingungen in lebenden Organismen oder unter thermischer Belastung bei der Lebensmittelverarbeitung können reduzierende Kohlenhydrate amin-katalysiert durch die Abspaltung von Wasser und Fragmentierungen des Kohlenstoffgerüsts abgebaut werden, wobei die noch reaktiveren 1,2-Dicarbonylverbindungen entstehen. Aus der Reaktion der N-α-Aminogruppe und funktioneller Gruppen der Seitenketten von Aminosäuren mit Kohlenhydraten bzw. 1,2-Dicarbonylverbindungen können stabile Endprodukte entstehen. In vivo können proteingebundene Maillard-Produkte (MRPs) aus der Reaktion mit Glucose (Amadori-Produkte) oder 1,2-Dicarbonylverbindungen (Advanced Glycation Endproducts: AGEs) entstehen. Beispielsweise ist das „N-terminale“ N-α-Fructosylderivat der β-Kette des Hämoglobins ein etablierter Parameter zur Diagnose von Diabetes mellitus (HbA1c-Wert). Diese nicht-enzymatische, posttranslationale Modifizierung von Proteinen wird allgemein als Glykierung bezeichnet und kann die Funktionalität von Proteinen beeinträchtigen. Deshalb wird untersucht, ob die Trübung der Augenlinsen, die Versteifung von Blutgefäßen oder Schädigungen von Nervenzellen durch eine erhöhte Glykierung verursacht werden. Diese Veränderungen treten im Alter und bei Stoffwechselkrankheiten wie Diabetes mellitus und Urämie auf, die durch eine erhöhte Glucosekonzentration bzw. die Anreicherung von 1,2-Dicarbonylverbindungen im Blut gekennzeichnet sind. Zwar gibt es Publikationen zum Vorkommen N-terminaler Amadori-Produkte an Hämoglobin und in Lebensmitteln, aber die Bildung N-terminaler AGEs wurde bisher nur in wenigen Studien untersucht. Deshalb waren die Bildung und das Vorkommen N-terminaler AGEs im physiologischen Modell, in Hämoglobin und in Backwaren Gegenstand der vorliegenden Arbeit. In der vorliegenden Arbeit wurde erstmals systematisch die Sequenzabhängigkeit der Bildung der Fructosylderivate bzw. der CM-Derivate in Konkurrenz zu den Glyoxal-2(1H)-Pyrazinonen am N-Terminus von Peptiden unter physiologischen und backtechnologischen Bedingungen untersucht. Dabei wurde nachgewiesen, dass die Variation der C-terminalen Aminosäure in Dipeptiden den Glykierungsgrad und das Produktspektrum erheblich beeinflusst. Mit dem konsequenten Nachweis der N-terminalen von Glyoxal und Methylglyoxal ableitbaren Carboxyalkylderivate und 2(1H)-Pyrazinone in humanen Hämoglobin wurde die Relevanz der N-terminalen Glykierung in vivo untermauert. Damit wird eine umfassendere Beurteilung des Dicarbonylstresses und der Glykierung insbesondere bei Urämikern und Diabetikern ermöglicht. Am Beispiel von Backwaren wurde für Lebensmittel gezeigt, dass unter trockenen Reaktionsbedingungen die 2(1H)-Pyrazinone und in wasserhaltigen Systemen die Carboxyalkylderivate bevorzugt zu erwarten sind.

Page generated in 0.1201 seconds