• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 17
  • 6
  • Tagged with
  • 62
  • 10
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Untere Schranken für die Immersionsdimension homogener Räume

Walgenbach, Markus. Unknown Date (has links)
Universiẗat, Diss., 1998--Dortmund. / Dateiformat: PDF.
42

Geometric processing of CAD data and meshes as input of integral equation solvers

Randrianarivony, Maharavo, January 2006 (has links)
Chemnitz, Techn. Univ., Diss., 2006.
43

Periodic manifolds, spectral gaps, and eigenvalues in gaps

Post, Olaf. Unknown Date (has links) (PDF)
Techn. University, Diss., 2000--Braunschweig.
44

Infinite-dimensional lie theory for gauge groups

Wockel, Christoph. Unknown Date (has links)
Techn. University, Diss., 2006--Darmstadt.
45

On the Riemannian geometry of Seiberg-Witten moduli spaces

Becker, Christian January 2005 (has links)
<p>In this thesis, we give two constructions for Riemannian metrics on Seiberg-Witten moduli spaces. Both these constructions are naturally induced from the L2-metric on the configuration space. The construction of the so called quotient L2-metric is very similar to the one construction of an L2-metric on Yang-Mills moduli spaces as given by Groisser and Parker. To construct a Riemannian metric on the total space of the Seiberg-Witten bundle in a similar way, we define the reduced gauge group as a subgroup of the gauge group. We show, that the quotient of the premoduli space by the reduced gauge group is isomorphic as a U(1)-bundle to the quotient of the premoduli space by the based gauge group. The total space of this new representation of the Seiberg-Witten bundle carries a natural quotient L2-metric, and the bundle projection is a Riemannian submersion with respect to these metrics. We compute explicit formulae for the sectional curvature of the moduli space in terms of Green operators of the elliptic complex associated with a monopole. Further, we construct a Riemannian metric on the cobordism between moduli spaces for different perturbations. The second construction of a Riemannian metric on the moduli space uses a canonical global gauge fixing, which represents the total space of the Seiberg-Witten bundle as a finite dimensional submanifold of the configuration space.</p> <p>We consider the Seiberg-Witten moduli space on a simply connected K&auml;uhler surface. We show that the moduli space (when nonempty) is a complex projective space, if the perturbation does not admit reducible monpoles, and that the moduli space consists of a single point otherwise. The Seiberg-Witten bundle can then be identified with the Hopf fibration. On the complex projective plane with a special Spin-C structure, our Riemannian metrics on the moduli space are Fubini-Study metrics. Correspondingly, the metrics on the total space of the Seiberg-Witten bundle are Berger metrics. We show that the diameter of the moduli space shrinks to 0 when the perturbation approaches the wall of reducible perturbations. Finally we show, that the quotient L2-metric on the Seiberg-Witten moduli space on a K&auml;hler surface is a K&auml;hler metric.</p> / <p>In dieser Dissertationsschrift geben wir zwei Konstruktionen Riemannscher Metriken auf Seiberg-Witten-Modulr&auml;umen an. Beide Metriken werden in nat&uuml;rlicher Weise durch die L2-Metrik des Konfiguartionsraumes induziert. Die Konstruktion der sogenannten Quotienten-L2-Metrik entspricht der durch Groisser und Parker angegebenen Konstruktion einer L2-Metrik auf Yang-Mills-Modulr&auml;umen. Zur Konstruktion einer Quotienten-Metrik auf dem Totalraum des Seiberg-Witten-B&uuml;ndels f&uuml;hren wir die sogenannte reduzierte Eichgruppe ein. Wir zeigen, dass der Quotient des Pr&auml;modulraumes nach der reduzierten Eichgruppe als U(1)-B&uuml;ndel isomorph ist zu dem Quotienten nach der basierten Eichgruppe. Dadurch tr&auml;gt der Totalraum des Seiberg-Witten B&uuml;ndels eine nat&uuml;rliche Quotienten-L2-Metrik, bzgl. derer die B&uuml;ndelprojektion eine Riemannsche Submersion ist. Wir berechnen explizite Formeln f&uuml;r die Schnittr&uuml;mmung des Modulraumes in Ausdr&uuml;cken der Green-Operatoren des zu einem Monopol geh&ouml;rigen elliptischen Komplexes. Ferner konstruieren wir eine Riemannsche Metrik auf dem Kobordismus zwischen Modulr&auml;umen zu verschiedenen St&ouml;rungen. Die zweite Konstruktion einer Riemannschen Metrik auf Seiberg-Witten-Modulr&auml;umen benutzt eine kanonische globale Eichfixierung, verm&ouml;ge derer der Totalraum des Seiberg-Witten-B&uuml;ndels als endlich-dimensionale Untermannigfaltigkeit des Konfigurationsraumes dargestellt werden kann.</p> <p>Wir betrachten speziell die Seiberg-Witten-Modulr&auml;ume auf einfach zusammenh&auml;ngenden K&auml;hler-Mannigfaltigkeiten. Wir zeigen, dass der Seiberg-Witten-Modulraum (falls nicht-leer) im irreduziblen Fall ein komplex projektiver Raum its und im reduziblen Fall aus einem einzelnen Punkt besteht. Das Seiberg-Witten-B&uuml;ndel l&auml;&szlig;t sich mit der Hopf-Faserung identifizieren. Die L2-Metrik des Modulraumes auf der komplex projektiven Fl&auml;che CP2 (mit einer speziellen Spin-C-Struktur) ist die Fubini-Study-Metrik; entsprechend sind die Metriken auf dem Totalraum Berger-Metriken. Wir zeigen, dass der Durchmesser des Modulraumes gegen 0 konvergiert, wenn die St&ouml;rung sich dem reduziblen Fall n&auml;hert. Schlie&szlig;lich zeigen wir, dass die Quotienten-L2-Metrik auf dem Seiberg-Witten-Modulraum einer K&auml;hlerfl&auml;che eine K&auml;hler-Metrik ist.</p>
46

Rayleigh–quotient optimization on tensor products of Grassmannians / Rayleigh–Quotient Optimierung auf Tensorprodukte von Graßmann-Mannigfaltigkeiten

Curtef, Oana January 2012 (has links) (PDF)
Applications in various research areas such as signal processing, quantum computing, and computer vision, can be described as constrained optimization tasks on certain subsets of tensor products of vector spaces. In this work, we make use of techniques from Riemannian geometry and analyze optimization tasks on subsets of so-called simple tensors which can be equipped with a differentiable structure. In particular, we introduce a generalized Rayleigh-quotient function on the tensor product of Grassmannians and on the tensor product of Lagrange- Grassmannians. Its optimization enables a unified approach to well-known tasks from different areas of numerical linear algebra, such as: best low-rank approximations of tensors (data compression), computing geometric measures of entanglement (quantum computing) and subspace clustering (image processing). We perform a thorough analysis on the critical points of the generalized Rayleigh-quotient and develop intrinsic numerical methods for its optimization. Explicitly, using the techniques from Riemannian optimization, we present two type of algorithms: a Newton-like and a conjugated gradient algorithm. Their performance is analysed and compared with established methods from the literature. / Viele Fragestellungen aus den unterschiedlichen mathematischen Disziplinen, wie z.B. Signalverarbeitung, Quanten-Computing und Computer-Vision, können als Optimierungsprobleme auf Teilmengen von Tensorprodukten von Vektorräumen beschrieben werden. In dieser Arbeit verwenden wir Techniken aus der Riemannschen Geometrie, um Optimierungsprobleme für Mengen von sogenannten einfachen Tensoren, welche mit einer differenzierbaren Struktur ausgestattet werden können, zu untersuchen. Insbesondere führen wir eine verallgemeinerte Rayleigh-Quotienten-Funktion auf dem Tensorprodukt von Graßmann-Mannigfaltigkeiten bzw. Lagrange-Graßmann-Mannigfaltigkeiten ein. Dies führt zu einem einheitlichen Zugang zu bekannten Problemen aus verschiedenen Bereichen der numerischen linearen Algebra, wie z.B. die Niedrig–Rang–Approximation von Tensoren (Datenkompression), die Beschreibung geometrischer Maße für Quantenverschränkung (Quanten-Computing) und Clustering (Bildverarbeitung). Wir führen eine gründliche Analyse der kritischen Punkte des verallgemeinerten Rayleigh-Quotienten durch und entwickeln intrinsische numerische Methoden für dessen Optimierung. Wir stellen zwei Arten von Algorithmen vor, die wir mit Hilfe von Techniken aus der Riemannsche Optimierung entwickeln: eine mit Gemeinsamkeiten zum Newton-Verfahren und eine zum CG-Verfahren ähnliche. Wir analysieren die Performance der Algorithmen und vergleichen sie mit gängigen Methoden aus der Literatur.
47

Geometric electroelasticity

Ziese, Ramona January 2014 (has links)
In this work a diffential geometric formulation of the theory of electroelasticity is developed which also includes thermal and magnetic influences. We study the motion of bodies consisting of an elastic material that are deformed by the influence of mechanical forces, heat and an external electromagnetic field. To this end physical balance laws (conservation of mass, balance of momentum, angular momentum and energy) are established. These provide an equation that describes the motion of the body during the deformation. Here the body and the surrounding space are modeled as Riemannian manifolds, and we allow that the body has a lower dimension than the surrounding space. In this way one is not (as usual) restricted to the description of the deformation of three-dimensional bodies in a three-dimensional space, but one can also describe the deformation of membranes and the deformation in a curved space. Moreover, we formulate so-called constitutive relations that encode the properties of the used material. Balance of energy as a scalar law can easily be formulated on a Riemannian manifold. The remaining balance laws are then obtained by demanding that balance of energy is invariant under the action of arbitrary diffeomorphisms on the surrounding space. This generalizes a result by Marsden and Hughes that pertains to bodies that have the same dimension as the surrounding space and does not allow the presence of electromagnetic fields. Usually, in works on electroelasticity the entropy inequality is used to decide which otherwise allowed deformations are physically admissible and which are not. It is alsoemployed to derive restrictions to the possible forms of constitutive relations describing the material. Unfortunately, the opinions on the physically correct statement of the entropy inequality diverge when electromagnetic fields are present. Moreover, it is unclear how to formulate the entropy inequality in the case of a membrane that is subjected to an electromagnetic field. Thus, we show that one can replace the use of the entropy inequality by the demand that for a given process balance of energy is invariant under the action of arbitrary diffeomorphisms on the surrounding space and under linear rescalings of the temperature. On the one hand, this demand also yields the desired restrictions to the form of the constitutive relations. On the other hand, it needs much weaker assumptions than the arguments in physics literature that are employing the entropy inequality. Again, our result generalizes a theorem of Marsden and Hughes. This time, our result is, like theirs, only valid for bodies that have the same dimension as the surrounding space. / In der vorliegenden Arbeit wird eine diffentialgeometrische Formulierung der Elektroelastizitätstheorie entwickelt, die auch thermische und magnetische Einflüsse berücksichtigt. Hierbei wird die Bewegung von Körpern untersucht, die aus einem elastischen Material bestehen und sich durch mechanische Kräfte, Wärmezufuhr und den Einfluss eines äußeren elektromagnetischen Feldes verformen. Dazu werden physikalische Bilanzgleichungen (Massenerhaltung, Impuls-, Drehimpuls- und Energiebilanz) aufgestellt, um mit deren Hilfe eine Gleichung zu formulieren, die die Bewegung des Körpers während der Deformation beschreibt. Dabei werden sowohl der Körper als auch der umgebende Raum als Riemannsche Mannigfaltigkeiten modelliert, wobei zugelassen ist, dass der Körper eine geringere Dimension hat als der ihn umgebende Raum. Auf diese Weise kann man nicht nur - wie sonst üblich - die Deformation dreidimensionaler Körper im dreidimensionalen euklidischen Raum beschreiben, sondern auch die Deformation von Membranen und die Deformation innerhalb eines gekrümmten Raums. Weiterhin werden sogenannte konstitutive Gleichungen formuliert, die die Eigenschaften des verwendeten Materials kodieren. Die Energiebilanz ist eine skalare Gleichung und kann daher leicht auf Riemannschen Mannigfaltigkeiten formuliert werden. Es wird gezeigt, dass die Forderung der Invarianz der Energiebilanz unter der Wirkung von beliebigen Diffeomorphismen auf den umgebenden Raum bereits die restlichen Bilanzgleichungen impliziert. Das verallgemeinert ein Resultat von Marsden und Hughes, das nur für Körper anwendbar ist, die die selbe Dimension wie der umgebende Raum haben und keine elektromagnetischen Felder berücksichtigt. Üblicherweise wird in Arbeiten über Elektroelastizität die Entropieungleichung verwendet, um zu entscheiden, welche Deformationen physikalisch zulässig sind und welche nicht. Sie wird außerdem verwendet, um Einschränkungen für die möglichen Formen von konstitutiven Gleichungen, die das Material beschreiben, herzuleiten. Leider gehen die Meinungen über die physikalisch korrekte Formulierung der Entropieungleichung auseinander sobald elektromagnetische Felder beteiligt sind. Weiterhin ist unklar, wie die Entropieungleichung für den Fall einer Membran, die einem elektromagnetischen Feld ausgesetzt ist, formuliert werden muss. Daher zeigen wir, dass die Benutzung der Entropieungleichung ersetzt werden kann durch die Forderung, dass für einen gegebenen Prozess die Energiebilanz invariant ist unter der Wirkung eines beliebigen Diffeomorphimus' auf den umgebenden Raum und der linearen Reskalierung der Temperatur. Zum einen liefert diese Forderung die gewünschten Einschränkungen für die Form der konstitutiven Gleichungen, zum anderen benoetigt sie viel schwächere Annahmen als die übliche Argumentation mit der Entropieungleichung, die man in der Physikliteratur findet. Unser Resultat ist dabei wieder eine Verallgemeinerung eines Theorems von Marsden und Hughes, wobei es, so wie deren Resultat, nur für Körper gilt, die als offene Teilmengen des dreidimensionalen euklidischen Raums modelliert werden können.
48

On the monodromy of 4-dimensional lagrangian fibrations

Thier, Christian. January 2008 (has links)
Freiburg i. Br., Univ., Diss., 2008.
49

Log Hodge groups on a toric Calabi-Yau degeneration

Ruddat, Helge P. January 2008 (has links)
Freiburg i. Br., Univ., Diss., 2008.
50

Kazhdan-Lusztig-Basen, unzerlegbare Bimoduln und die Topologie der Fahnenmannigfaltigkeit einer Kac-Moody-Gruppe

Härterich, Martin. Unknown Date (has links) (PDF)
Universiẗat, Diss., 1999--Freiburg.

Page generated in 0.0662 seconds