Spelling suggestions: "subject:"manybody"" "subject:"anybody""
121 |
Coarse-grained simulations to predict structure and properties of polymer nanocompositesKhounlavong, Youthachack Landry 02 February 2011 (has links)
Polymer Nanocomposites (PNC) are a new class of materials characterized by their large interfacial areas between the host
polymer and nanofiller. This unique feature, due to the size of the
nanofiller, is understood to be the cause of enhanced
mechanical, electrical, optical, and barrier properties observed of
PNCs, relative to the properties of the unfilled polymer. This
interface can determine the miscibility of the nanofiller in the
polymer, which, in turn, influences the PNC's properties. In addition,
this interface alters the polymer's structure near the surface of the
nanofiller resulting in heterogeneity of local properties that can be
expressed at the macroscopic level.
Considering the polymer-nanoparticle interface significantly
influences PNC properties, it is apparent that some atomistic level of
detail is required to accurately predict the behavior of
PNCs. Though an all-atom simulation of a PNC would be able to
accomplish the latter, it is an impractical approach to pursue even with
the most advanced computational resources currently available.
In this contribution, we develop
(1) an equilibrium coarse-graining method to predict nanoparticle
dispersion in a polymer melt, (2) a dynamic coarse-graining method
to predict rheological properties of polymer-nanoparticle melt
mixtures, and (3) a numerical approach that includes interfacial
layer effects and polymer rigidity when predicting barrier properties
of PNCs.
In addition to the above, we study how particle and polymer
characteristics affect the interfacial layer thickness as well as how
the polymer-nanoparticle interface may influence the entanglement
network in a polymer melt. More specifically, we use a mean-field
theory approach to discern how the concentration of a semiflexible
polymer, its rigidity and the particle's size determine the
interfacial layer thickness, and the scaling laws to describe this
dependency. We also utilize molecular dynamics and simulation
techniques on a model
PNC to determine if the polymer-nanoparticle interaction can influence
the entanglement network of a polymer melt. / text
|
122 |
Energy Functional for Nuclear MassesBertolli, Michael Giovanni 01 December 2011 (has links)
An energy functional is formulated for mass calculations of nuclei across the nuclear chart with major-shell occupations as the relevant degrees of freedom. The functional is based on Hohenberg-Kohn theory. Motivation for its form comes from both phenomenology and relevant microscopic systems, such as the three-level Lipkin Model. A global fit of the 17-parameter functional to nuclear masses yields a root- mean-square deviation of χ[chi] = 1.31 MeV, on the order of other mass models. The construction of the energy functional includes the development of a systematic method for selecting and testing possible functional terms. Nuclear radii are computed within a model that employs the resulting occupation numbers.
|
123 |
A study of one-dimensional quantum gasesAndrew Sykes Unknown Date (has links)
In this thesis we study the physics of quantum many-body systems confined to one-dimensional geometries. The work was motivated by the recent success of experimentalists in developing atom traps, capable of restricting the motion of the individual atoms to a single spatial dimension. Specifically, we look at aspects of the one-dimensional Bose gas including; excitation spectrum, correlation functions, and dynamical behaviour. In Chapter \ref{ch:excitation1D} we consider the Lieb-Liniger model of interacting bosons in one-dimension. We numerically solve the equations arising from the Bethe ansatz solution for the exact many-body wave function in a finite-size system of up to twenty particles for attractive interactions. We discuss novel features of the solutions, including deviations from the well-known string solutions due to finite size effects. We present excited state string solutions in the limit of strong interactions and discuss their physical interpretation, as well as the characteristics of the quantum phase transition that occurs as a function of interaction strength in the mean-field limit. Our results are compared to those obtained via exact diagonalization of the Hamiltonian in a truncated basis. In Chapter \ref{ch:g2} we analytically calculate the spatial nonlocal pair correlation function for an interacting uniform one dimensional Bose gas at finite temperature and propose an experimental method to measure nonlocal correlations. Our results span six different physical realms, including the weakly and strongly interacting regimes. We show explicitly that the characteristic correlation lengths are given by one of four length scales: the thermal de Broglie wavelength, the mean interparticle separation, the healing length, or the phase coherence length. In all regimes, we identify the profound role of interactions and find that under certain conditions the pair correlation may develop a global maximum at a finite interparticle separation due to the competition between repulsive interactions and thermal effects. In Chapter \ref{ch:casimirdrag} we study the drag force below the critical velocity for obstacles moving in a superfluid. The absence of drag is well established in the context of the mean-field Gross-Pitaevskii theory. We calculate the next order correction due to quantum and thermal fluctuations and find a non-zero force acting on a delta-function impurity moving through a quasi-one-dimensional Bose-Einstein condensate at all subcritical velocities and at all temperatures. The force occurs due to an imbalance in the Doppler shifts of reflected quantum fluctuations from either side of the impurity. Our calculation is based on a consistent extension of Bogoliubov theory to second order in the interaction strength, and finds new analytic solutions to the Bogoliubov-de Gennes equations for a gray soliton. In Chapter \ref{ch:solitons} we study the effect of quantum noise on the stability of a soliton. We find the soliton solutions exactly define the reflectionless potentials of the Bogoliubov-de Gennes equations. This results in complete stability of the solitons in a purely one dimensional system. We look at the modifications to the density profile of a black soliton due to quantum fluctuations.
|
124 |
A study of one-dimensional quantum gasesAndrew Sykes Unknown Date (has links)
In this thesis we study the physics of quantum many-body systems confined to one-dimensional geometries. The work was motivated by the recent success of experimentalists in developing atom traps, capable of restricting the motion of the individual atoms to a single spatial dimension. Specifically, we look at aspects of the one-dimensional Bose gas including; excitation spectrum, correlation functions, and dynamical behaviour. In Chapter \ref{ch:excitation1D} we consider the Lieb-Liniger model of interacting bosons in one-dimension. We numerically solve the equations arising from the Bethe ansatz solution for the exact many-body wave function in a finite-size system of up to twenty particles for attractive interactions. We discuss novel features of the solutions, including deviations from the well-known string solutions due to finite size effects. We present excited state string solutions in the limit of strong interactions and discuss their physical interpretation, as well as the characteristics of the quantum phase transition that occurs as a function of interaction strength in the mean-field limit. Our results are compared to those obtained via exact diagonalization of the Hamiltonian in a truncated basis. In Chapter \ref{ch:g2} we analytically calculate the spatial nonlocal pair correlation function for an interacting uniform one dimensional Bose gas at finite temperature and propose an experimental method to measure nonlocal correlations. Our results span six different physical realms, including the weakly and strongly interacting regimes. We show explicitly that the characteristic correlation lengths are given by one of four length scales: the thermal de Broglie wavelength, the mean interparticle separation, the healing length, or the phase coherence length. In all regimes, we identify the profound role of interactions and find that under certain conditions the pair correlation may develop a global maximum at a finite interparticle separation due to the competition between repulsive interactions and thermal effects. In Chapter \ref{ch:casimirdrag} we study the drag force below the critical velocity for obstacles moving in a superfluid. The absence of drag is well established in the context of the mean-field Gross-Pitaevskii theory. We calculate the next order correction due to quantum and thermal fluctuations and find a non-zero force acting on a delta-function impurity moving through a quasi-one-dimensional Bose-Einstein condensate at all subcritical velocities and at all temperatures. The force occurs due to an imbalance in the Doppler shifts of reflected quantum fluctuations from either side of the impurity. Our calculation is based on a consistent extension of Bogoliubov theory to second order in the interaction strength, and finds new analytic solutions to the Bogoliubov-de Gennes equations for a gray soliton. In Chapter \ref{ch:solitons} we study the effect of quantum noise on the stability of a soliton. We find the soliton solutions exactly define the reflectionless potentials of the Bogoliubov-de Gennes equations. This results in complete stability of the solitons in a purely one dimensional system. We look at the modifications to the density profile of a black soliton due to quantum fluctuations.
|
125 |
Magnets with disorder and interactions:Rehn, Jorge Armando 14 March 2017 (has links) (PDF)
A very important step in the art of cooking up models for the study of natural phenomena is the identification of the relevant ingredients. Taking into account too many details will lead to an overly complicated model, not at all useful to work with, but neglecting some crucial elements will lead to an equally useless model. So it is often the case that the actual experimental situation presents unavoidable sources of local randomness, whilst the analysed phenomenon does not really rely on presence/absence of such imperfections.
For some other set of phenomena, however, disorder can play a crucial role, and must be carefully taken into account. Such is for example the case in certain phases of matter, the spin-glass phase, or the many-body localised phase. In this thesis we explore disorder in both of these situations and also as a theoretical means of testing the regime of liquidity in certain two-dimensional highly frustrated magnetic models. The focus here is placed on classical Heisenberg models defined on lattices consisting of clusters all sites of which interact mutually pairwise. This natural way to introduce frustration has been known in the literature to lead to so-called Coulomb spin-liquids, the single class of classical spin-liquids acknowledged to exist so far in Heisenberg models. Here we show that in fact two different classes of classical spin-liquids can be obtained from similarly defined frustrated models. In one of these, algebraic correlations exist at $T=0$, similar to the Coulomb phase, but the system exhibits a rather different low$-T$ effective action from the Coulomb phase.
In the other class, the spin-liquid has spin correlations that decay exponentially with distance, with a correlation length smaller than a lattice spacing even at $T=0$. One special effect of disorder in these models, considered in the form of dilution by non-magnetic impurities, is to nucleate local degrees of freedom, so-called orphans, which express the concomitant spin-liquid phase through their non-trivial fractionalisation. When the associated spin-liquid exhibit algebraic correlations, it is also possible to find new effective spin-glass models as an effective $T=0$ description for interactions between the orphans, leading to so-called `random Coulomb magnets'. One part of this thesis is devoted to the first study of these new models. This investigation consists mainly of Monte Carlo simulations and numerical solution of the relevant large$-n$ equations ($n$ being the number of spin components).
A clear spin-glass transition for infinitely large coupling strength is determined for the case of spins with an infinite number of components. The results presented on the situation for a finite number of spin components are more of an exploratory character, and large-scale simulations with further optimization schemes to ensure equilibration are still required to locate the transition. The final investigation treated in this thesis deals with the dynamics in a quantum model with disorder displaying the many-body localized phase, where in addition a periodic drive is applied. For a certain range of driving frequencies and amplitudes, it was found recently that the many-body localized phase is robust. These pioneering studies restricted themselves to an analysis of the stability of such a phase in the long time limit, while very little was known about the dynamics towards the asymptotic fate. Our study focuses on this aspect, and analyses the different dynamical behaviors as one varies the driving parameters, so that the many-body localized phase survives or is destroyed by the driving. We discover that on the border between these two asymptotic fates, a new dynamical behavior emerges, where the system heats up at a very slow, logarithmic in time, rate. / Die Bestimmung der wichtigsten Bestandteile stellt einen sehr wichtigen Schritt in der Kunst des Erstellens von Modellen dar. Die Annahme von zu vielen Details ergibt ein sehr kompliziertes, zu nichts zu gebrauchendes Modell, doch die Vernachlässigung von bedeutenden Zusammenhängen führt ebenfalls zu einem unbrauchbaren Ergebnis. Es ist so z.B. häufig der Fall, dass ein Experiment unter dem Einfluss von unvermeindlichen lokalen Zufälligkeiten steht, die allerdings kaum einen Einfluss auf ein beobachtetes Phänomen haben. Für gewisse Phänomene spielt Unordnung jedoch eine wesentliche Rolle und sie muss sehr genau in Betracht gezogen werden. Das ist für bestimmte Phasen, wie beispielsweise Spinglas oder die Vielteilchen-Lokalisation, der Fall.
In dieser Dissertation untersuchen wir ungeordnete Systeme, die solche Phasen aufweisen. Außerdem verwenden wir Unordnung als ein theoretisches Werkzeug für die Analyse von bestimmten `Spinflüssigkeiten' in zweidimensionalen Spinmodellen. Der Fokus liegt hierbei auf klassischen Heisenberg Modellen definiert auf Gittern, die aus einer Anordnung von Clustern bestehen, sodass jede einzelne paarweise Heisenberg-Wechselwirkung innerhalb eines Clusters stattfindet. Dadurch weist das System geometrische Frustration auf und in mehreren Fällen tritt eine sogennante Coulomb Spinflüssigkeit ---die bislang einzig bekannte Klasse von klassischen Spinflüssigkeit in Heisenberg Modellen--- auf. Wir zeigen, dass mindestens zwei weitere Arten von klassischen Spinflüssigkeiten in solchen Modellen zu finden sind. Für die eine Klasse sind Spinkorrelationen zu erwarten, die algebraisch mit der Entfernung bei $T=0$ abnehmen, ähnlich wie für eine Coulomb Phase.
Diese neu entdeckte Spinflüssigkeit lässt sich jedoch von der Coulomb Phase durch eine neue effektive Tieftemperatur-Theorie unterscheiden. Für die andere Klasse von Spinflüssigkeiten sind die Spinkorrelationen kurzreichweitig, und selbst bei $T=0$ nehmen sie exponentiell ab, mit einer Korrelationslänge, die kleiner als ein Gitterabstand ist. Unordnung, in der Form von nicht-magnetischen Störstellen, kann lokale Freiheitsgrade entstehen lassen (diese werden in der Literatur auch als `Orphans', Waisen, bezeichnet). Die Orphans verweisen durch ihre `Fraktionierung' eindeutig auf die nicht trivialen Korrelationen der spinflüssigen Phase. Falls die Spinflüssigkeit algebraische Korrelationen aufweist, findet man auch langreichweitige Wechselwirkungen zwischen den Orphans bei $T=0$. Dies führt zu neuen Spinglasmodellen, sogenannten `Random Coulomb Magnets'.
Ein Teil dieser Dissertation ist der Untersuchung solcher Modelle gewidmet. Diese Untersuchung besteht hauptsächlich aus Monte Carlo Simulationen und numerischer Lösung der relevanten Large-$n$ Gleichungen (wobei $n$ hier auf die Anzahl an Spinkomponenten hinweist). In dem Fall von Spins mit unendlich vielen Spinkomponenten können wir einen eindeutigen Spinglas Phasenübergang für eine unendlich große Kopplungsstärke bestimmen. Die entsprechenden Ergebnisse für den Fall von Spins mit einer endlichen Anzahl an Spinkomponenten sind von einem exploratorischen Charakter. Zusätzliche Simulationen, die möglicherweise weitere Optimierungsschema verwenden um Äquilibrium zu gewährleisten, sind noch von nöten um eine eindeutige Aussage über den Übergang in solchen Fällen zu treffen.
Der letzte Teil dieser Dissertation widmet sich der Untersuchung der Dynamik eines ungeordneten Quantenmodells. Das ausgewählte Modell weist die sogennante Vielteilchen-lokalisierte Phase auf, und wir untersuchen insbesondere den Effekt eines periodischen Antriebs auf die Dynamik des Systems. Für eine bestimmte Auswahl der Antriebs-frequenz und -amplitude, wurde es bereits vor kurzem bewiesen, dass die Vielteilchen-lokalisierte Phase diese Störung übersteht. Unsere Studie ist darauf ausgelegt, wie sich die Dynamik des Systems durch Variation der Antriebsparameter ändert, so dass die Vielteilchen-lokalisierte Phase für lange Zeit entweder den Antrieb übersteht oder von ihm zerstört wird. Wir konnten dadurch entdecken, dass an der Grenze zwischen diesen beiden Fällen ein neues dynamisches Verhalten entsteht, bei der das System eine sehr langsame, logarithmisch mit der Zeit, Erwärmung aufweist.
|
126 |
Limite de champ moyen pour des modèles discrets et équation de Schrödinger non linéaire discrète / Mean field limit for discrete models and nonlinear discrete Schrödinger equationPawilowski, Boris 11 December 2015 (has links)
Dans une série de travaux Zied Ammari et Francis Nier ont développé des méthodes pour étudier la dynamique de champ moyen bosonique pour des états quantiques généraux pouvant présenter des corrélations. Ils ont obtenu des formules pour décrire la dynamique des corrélations, ou plus généralement des matrices densité réduites d'ordre arbitraire. Cette thématique a été largement développée ces dernières années. Norbert Mauser en a été un des contributeurs, ainsi que sur la notion de mesure de Wigner qui est la clé de l'analyse développée par Z. Ammari et F. Nier. En général, il est admis que l'asymptotique de champ moyen est une bonne approximation du problème à N particules quand N dépasse la dizaine. Cela concerne l'asymptotique de la matrice densité réduite à une particule qui ne décrit pas la dynamique des corrélations. Un objectif est de tester la validité de la dynamique de champ moyen pour les matrices densité réduites à 2-particules. Pour des tests numériques, les modèles discrets qui n'ont pas été vraiment traités en détail dans les travaux précédents de Z. Ammari et F. Nier semblent bien adaptés. La thèse comprendra donc plusieurs étapes: adapter les résultats précédents de Z. Ammari et F. Nier à des modèles discrets , développer des méthodes numériques pour des systèmes simples mais pertinents, permettant de valider l'approximation de champ moyen et les formules pour la dynamique des corrélations. Au niveau numérique, on utilise des schémas numériques symplectiques, développés spécifiquement ces dernières années pour la discrétisation des équations hamiltoniennes. Une dernière étape concerne la combinaison des deux asymptotiques, champ moyen et approximation des modèles continus par les modèles discrets. / In a serie of works Z. Ammari and F. Nier developed methods to study the dynamics of bosonic mean field for general quantum states which can present correlations. They obtained formulas to describe the dynamics of the correlations, or more generally reduced density matrices with an arbitrary order. This topic was widely developed these last years. N.J. Mauser was one of contributors, as well as on the notion of Wigner measure which is the key of the analysis developed by Z. Ammari and F. Nier. Generally, the mean field asymptotic is admitted is a good approximation of the N-body problem when N exceed about ten. It concerns the asymptotics of the reduced density matrices for one particle which does not describe the dynamics of the correlations. An objective is to test the validity of the mean field dynamics for reduced density matrices for 2 particles. For numerical tests, the discrete models which were not really handled in detail in the previous works of Z. Ammari and F. Nier seem adapted well. The thesis will thus include several steps: adapt the previous results from Z. Ammari and F. Nier to discrete models , develop numerical methods, for simple but relevant systems, allowing to validate the approximation of mean field and the formulas for the dynamics of the correlations. About numerics, symplectic numerical scheme are used, developed specifically these last years for the discretization of the hamiltonian equations. A last possible step concerns the combination of both asymptotics, that is mean field and approximation of the continuous models by the discrete models.
|
127 |
Mott-Hubbard Phenomena : Studies Within The Local ApproximationMajumdar, Pinaki 10 1900 (has links)
No description available.
|
128 |
Spontaneous decoherence in large Rydberg systems / Décohérence spontanée dans les grands ensembles d'atomes de RydbergMagnan, Eric 17 December 2018 (has links)
La simulation quantique consiste à réaliser expérimentalement des systèmes artificiels équivalent à des modèles proposés par les théoriciens. Pour réaliser ces systèmes, il est possible d'utiliser des atomes dont les états individuels et les interactions sont contrôlés par la lumière. En particulier, une fois excités dans un état de haute énergie (appelé état de Rydberg), les atomes peuvent être contrôlés individuellement et leurs interactions façonnées arbitrairement par des faisceaux laser. Cette thèse s'intéresse à deux types de simulateurs quantiques à base d'atomes de Rydberg, et en particulier à leurs potentielles limitations.Dans l'expérience du Joint Quantum Institute (USA), nous observons la décohérence dans une structure cubique contenant jusqu'à 40000 atomes. A partir d'atomes préparés dans un état de Rydberg bien défini, nous constatons l'apparition spontanée d'états de Rydberg voisins et le déclenchement d'un phénomène d'avalanche. Nous montrons que ce mécanisme émane de l'émission stimulée produite par le rayonnement du corps noir. Ce phénomène s'accompagne d'une diffusion induite par des interactions de type dipole-dipole résonant. Nous complétons ces observations avec un modèle de champ moyen en état stationnaire. Dans un second temps, l'étude de la dynamique du problème nous permet de mesurer les échelles de temps caractéristiques. La décohérence étant globalement néfaste pour la simulation quantique, nous proposons plusieurs solutions pour en atténuer les effets. Nous évaluons notamment la possibilité de travailler dans un environnement cryogénique, lequel permettrait de réduire le rayonnement du corps noir.Dans l'expérience du Laboratoire Charles Fabry à l'Institut d'Optique (France), nous analysons les limites d'un simulateur quantique générant des structures bi- et tridimensionnelles allant jusqu'à 70 atomes de Rydberg piégés individuellement dans des pinces optiques. Le système actuel étant limité par le temps de vie des structures, nous montrons que l'utilisation d'un cryostat permettrait d'atteindre des tailles de structures jusqu'à 300 atomes. Nous présentons les premiers pas d'une nouvelle expérience utilisant un cryostat à 4K, et en particulier les études amont pour le développement de composants optomécaniques placés sous vide et à froid. / Quantum simulation consists in engineering well-controlled artificial systems that are ruled by the idealized models proposed by the theorists. Such toy models can be produced with individual atoms, where laser beams control individual atomic states and interatomic interactions. In particular, exciting atoms into a highly excited state (called a Rydberg state) allows to control individual atoms and taylor interatomic interactions with light. In this thesis, we investigate experimentally two different types of Rydberg-based quantum simulators and identify some possible limitations.At the Joint Quantum Institute, we observe the decoherence of an ensemble of up to 40000 Rydberg atoms arranged in a cubic geometry. Starting from the atoms prepared in a well-defined Rydberg state, we show that the spontaneous apparition of population in nearby Rydberg states leads to an avalanche process. We identify the origin of the mechanism as stimulated emission induced by black-body radiation followed by a diffusion induced by the resonant dipole-dipole interaction. We describe our observations with a steady-state mean-field analysis. We then study the dynamics of the phenomenon and measure its typical timescales. Since decoherence is overall negative for quantum simulation, we propose several solutions to mitigate the effect. Among them, we discuss the possibility to work at cryogenic temperatures, thus suppressing the black-body induced avalanche.In the experiment at Laboratoire Charles Fabry (Institut d'Optique), we analyze the limitation of a quantum simulator based on 2 and 3 dimensional arrays of up to 70 atoms trapped in optical tweezers and excited to Rydberg states. The current system is limited by the lifetime of the atomic structure. We show that working at cryogenic temperatures could allow to increase the size of the system up to N=300 atoms. In this context, we start a new experiment based on a 4K cryostat. We present the early stage of the new apparatus and some study concerning the optomechanical components to be placed inside the cryostat.
|
129 |
Characterization of ergodicity breaking in disordered quantum systemsDe Tomasi, Giuseppe 22 October 2018 (has links)
The interplay between quenched disorder and interaction effects opens the possibility in a closed quantum many-body system of a phase transition at finite energy density between an ergodic phase, which is governed by the laws of statistical physics, and a localized one, in which the degrees of freedom are frozen and ergodicity breaks down. The possible existence of a quantum phase transition at finite energy density is strongly questioning our understanding of the fundamental laws of nature and has generated an active field of research called many-body localization.
This thesis consists of three parts and is dedicated to the understanding and characterization of the phenomenon of many-body localization, approaching it from complementary facets. In particular, borrowing methods and tools from different fields, we analyze timely problems. The first part of the thesis is devoted to detecting the many-body localization transition and to characterize both the ergodic and the localized phase it separates. Here we provide a characterization from two different perspectives: the first one is based on the study of local entanglement properties. In the second one, using tools from quantum-chaos theory, we attempt to answer the question of understanding time-irreversibility, and thus probing the breaking of ergodicity.
We analyze experimentally viable observables. Moreover, we propose two different quantities to distinguish an Anderson insulating phase from a many-body localized one, which is one of the issues in experiments. The second part focuses on understanding the existence of a putative subdiffusive multifractal phase. Analyzing the quantum dynamics of the system in this region of the phase diagram, we point out the importance of finite-size effects, questioning the existence of this multifractal phase. We speculate with a possible scenario in which the diffusivity and thus ergodicity could be restored in the thermodynamic limit. Furthermore, we find that the propagation is highly non-Gaussian, which could have an important effect on understanding the critical point of the according transition. We tackle this problem also from a different angle. A possible toy-model to understand many-body localization entails the Anderson model on a random-regular graph.
Also in the latter model the possible existence of an intermediate multifractal phase has been conjectured. There, studying the survival return probability of a particle with time, we give a new characterization of multifractal phases and give indication of the possible existence of this phase. Nevertheless, we also outline possible caveats. In the last part of this thesis we study the interplay between symmetry and correlated disorder in a non-interacting fermionic system. We show another possible mechanism for breaking localization. In particular, we focus on studying information and particle transport, emphasizing how the two types of propagation can be different.
|
130 |
Local Integrals of Motion from Neural Networks / Lokala Röresleintegraler från Neurala NätverkKarlsson, Hannes January 2023 (has links)
Neural network quantum states (NNQS) is a novel machine learning method, based on restricted Boltzmann machines, previously used to represent the wave function in many-body quantum mechanics. In this thesis, we use NNQS to instead find integrals of motion, i.e., operators, commuting with the Hamiltonian, describing a system. We also attempt to use this method to find the phase transition in systems exhibiting many-body localization. The neural network is shown to be highly successful in finding integrals of motion for the considered systems, while the outcome of finding the phase transition is less conclusive. / Neurala nätverk-kvanttillstånd (NNQS) är en ny maskinginlärnings-metod, baserad på begränsad Boltzmann-maskin-arkitektur, som tidigare använts för att representera vågfunktionen i flerkropps-kvantmekanik. I den här avhandlingen använder vi NNQS för att istället hitta rörelseintegraler, det vill säga operatorer, som kommuterar med Hamiltonianen, vilken beskriver systemet. Vi undersöker även möjligheten att använda denna metod för att hitta fasövergången i system med flerkroppslokalisering. Vi visar att de neurala nätverken är mycket framgångsrika i att hitta rörelseintegraler för de betraktade systemen, medan våra resultat gällande att hitta fasövergången är mindre slutgiltiga.
|
Page generated in 0.0367 seconds