• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 42
  • 42
  • 18
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Map Based Sensor Fusion for Lane Boundary Estimation on ADAS / Sensorfusion med Kartdata för Estimering av Körfältsgränser på ADAS

Faghi, Puya January 2023 (has links)
A vehicles ability to detect and estimate its surroundings is important for ensuring the safety of the vehicle and passengers regardless of the level of vehicle autonomy. With an improved road and lane estimation, advanced driver-assistance systems will be able to provide earlier and more accurate warnings and actions to prevent a possible accident. Current lane boundary estimations rely on camera and inertial sensor data to detect and estimate relevant lane boundaries in the vehicles surroundings. The current lane boundary estimation system struggles to provide correct estimations at distances exceeding 75 meters and has a performance which is affected by environmental effects. The methods in this thesis show how map data, together with sensor fusion with radar, camera, inertial measurement unit and global navigation satellite system data is able to provide an improvement to the lane boundary estimations. The map based estimation system is implemented and evaluated for high speed roads (highways and country roads) where lane boundary estimations for distances above 75 meters are needed. The results are conducted in a simulate environment and show how the map based system is able to correct unreliable sensor input to provide more precise boundary estimations. The map based system is also able to provide an up to 36% relative increase in correctly identified objects within ego vehicles lane between 12.5-150 meters in front of ego vehicle. The results indicate the ability to extend the horizon in which driver-assistance functions are able to operate, thus increasing the safety of future autonomous or semi-autonomous vehicles. Future work within the subject is needed to apply map based estimations on urban areas. The precision of such an system also relies on precise positional data. Incorporation of more precise global navigation data would be able to show an increased performance. / Ett fordons förmåga att upptäcka och uppskatta sin omgivning är viktig för att säkerställa fordonets och passagerarnas säkerhet oavsett fordonets autonominivå. Med en förbättrad väg- och körfältsuppskattning kommer avancerade förarassistanssystem att kunna ge tidigare och mer exakta varningar och åtgärder för att förhindra en eventuell olycka. Aktuella estimeringar av körfältsgränser är beroende av kamera och tröghetssensordata för att upptäcka och uppskatta relevanta körfältsgränser i fordonets omgivning. Det nuvarande estimerings-systemet upvisar inkorrekta uppskattningar på avstånd över 75 meter och har en prestanda som påverkas av den omgivande miljön. Metoderna i detta examensarbete visar hur kartdata, tillsammans med sensorfusion av radar, kamera, tröghetsmätenhet och globala satellitnavigeringsdata, kan ge en förbättrad estimering av körfältsgränser. Det kartbaserade systemet är implementerat och utvärderat för höghastighetsvägar (motorvägar och landsvägar) där estimeringar av körfältsgränser för avstånd över 75 meter behövs. Resultaten utförs i en simulerad miljö och visar hur det kartbaserade systemet kan korrigera opålitlig sensorinmatning för att ge mer exakta gränsuppskattningar. Systemet kan också ge en upp till 36% relativ ökning av korrekt identifierade objekt inom ego-fordonets körfält mellan 12.5-150 meter framför ego-fordonet. Resultaten indikerar förmågan att förlänga horisonten som förarassistansfunktioner kan fungera i, vilket ökar säkerheten för framtida autonoma eller halvautonoma fordon. Framtida arbeten inom ämnet behövs för att tillämpa kartbaserade uppskattningar på tätorter. Precisionen hos ett sådant system är också beroende av mer exakt positionsdata. Inkorporering av mer exakt global navigationsdata skulle i detta fall kunna visa en ökad sytemprestanda.
42

GIS-based Episode Reconstruction Using GPS Data for Activity Analysis and Route Choice Modeling / GIS-based Episode Reconstruction Using GPS Data

Dalumpines, Ron 26 September 2014 (has links)
Most transportation problems arise from individual travel decisions. In response, transportation researchers had been studying individual travel behavior – a growing trend that requires activity data at individual level. Global positioning systems (GPS) and geographical information systems (GIS) have been used to capture and process individual activity data, from determining activity locations to mapping routes to these locations. Potential applications of GPS data seem limitless but our tools and methods to make these data usable lags behind. In response to this need, this dissertation presents a GIS-based toolkit to automatically extract activity episodes from GPS data and derive information related to these episodes from additional data (e.g., road network, land use). The major emphasis of this dissertation is the development of a toolkit for extracting information associated with movements of individuals from GPS data. To be effective, the toolkit has been developed around three design principles: transferability, modularity, and scalability. Two substantive chapters focus on selected components of the toolkit (map-matching, mode detection); another for the entire toolkit. Final substantive chapter demonstrates the toolkit’s potential by comparing route choice models of work and shop trips using inputs generated by the toolkit. There are several tools and methods that capitalize on GPS data, developed within different problem domains. This dissertation contributes to that repository of tools and methods by presenting a suite of tools that can extract all possible information that can be derived from GPS data. Unlike existing tools cited in the transportation literature, the toolkit has been designed to be complete (covers preprocessing up to extracting route attributes), and can work with GPS data alone or in combination with additional data. Moreover, this dissertation contributes to our understanding of route choice decisions for work and shop trips by looking into the combined effects of route attributes and individual characteristics. / Dissertation / Doctor of Philosophy (PhD)

Page generated in 0.0382 seconds