• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Navigating campus: a geospatial approach to 3-D routing

Jenkins, Jacob Luke January 1900 (has links)
Master of Landscape Architecture / Department of Landscape Architecture/Regional and Community Planning / Howard Hahn / Evolving needs for universities, municipalities, and corporations demand more sustainable and efficient techniques for data management. Geographic Information Systems (GIS) enables decision makers to spatially analyze the built environment to better understand facility usage by running test scenarios to evaluate current efficiencies and identify opportunities for investment. This can only be conducted when data is organized and leveraged across many departments in a collaborative environment. Data organization through GIS encourages interdepartmental collaboration uniting all efforts on a common front. An organized system facilitates a working relationship between the university and the community of Manhattan increasing efficiency, developing sustainable practices, and enhancing the health and safety of Kansas State University and larger community. Efficiency is increased through automation of many current practices such as work requests and routine maintenance. Sustainable practices will be developed by generating self-guided campus tours and identifying area appropriate for bioswales. Lastly, safety will be enhanced throughout campus by increasing emergency response access, determining areas within buildings difficult to reach in emergency situations, and identifying unsafe areas on campus. Evolving needs for universities, municipalities, and corporations demand more sustainable and efficient techniques for data management. Geographic Information Systems (GIS) enables decision makers to spatially analyze the built environment to better understand facility usage by running test scenarios to evaluate current efficiencies and identify opportunities for investment. This can only be conducted when data is organized and leveraged across many departments in a collaborative environment. Data organization through GIS encourages interdepartmental collaboration uniting all efforts on a common front. An organized system facilitates a working relationship between the university and the community of Manhattan increasing efficiency, developing sustainable practices, and enhancing the health and safety of Kansas State University and larger community. Efficiency is increased through automation of many current practices such as work requests and routine maintenance. Sustainable practices will be developed by generating self-guided campus tours and identifying area appropriate for bioswales. Lastly, safety will be enhanced throughout campus by increasing emergency response access, determining areas within buildings difficult to reach in emergency situations, and identifying unsafe areas on campus. Optimizing data management for Kansas State University was conducted in three phases. First, a baseline assessment for facility management at Kansas State University was conducted through discussions with campus departments. Second, case study interviews and research was conducted with leaders in GIS management. Third, practices for geospatial data management were adapted and implemented for Kansas State University: the building of a centralized database, constructing a 3-dimensional routing network, and modeling a virtual campus in 3D.
2

Application-Based Network Traffic Generator for Networking AI Model Development

Alsulami, Khalil Ibrahim D 18 May 2021 (has links)
No description available.
3

GIS-based Episode Reconstruction Using GPS Data for Activity Analysis and Route Choice Modeling / GIS-based Episode Reconstruction Using GPS Data

Dalumpines, Ron 26 September 2014 (has links)
Most transportation problems arise from individual travel decisions. In response, transportation researchers had been studying individual travel behavior – a growing trend that requires activity data at individual level. Global positioning systems (GPS) and geographical information systems (GIS) have been used to capture and process individual activity data, from determining activity locations to mapping routes to these locations. Potential applications of GPS data seem limitless but our tools and methods to make these data usable lags behind. In response to this need, this dissertation presents a GIS-based toolkit to automatically extract activity episodes from GPS data and derive information related to these episodes from additional data (e.g., road network, land use). The major emphasis of this dissertation is the development of a toolkit for extracting information associated with movements of individuals from GPS data. To be effective, the toolkit has been developed around three design principles: transferability, modularity, and scalability. Two substantive chapters focus on selected components of the toolkit (map-matching, mode detection); another for the entire toolkit. Final substantive chapter demonstrates the toolkit’s potential by comparing route choice models of work and shop trips using inputs generated by the toolkit. There are several tools and methods that capitalize on GPS data, developed within different problem domains. This dissertation contributes to that repository of tools and methods by presenting a suite of tools that can extract all possible information that can be derived from GPS data. Unlike existing tools cited in the transportation literature, the toolkit has been designed to be complete (covers preprocessing up to extracting route attributes), and can work with GPS data alone or in combination with additional data. Moreover, this dissertation contributes to our understanding of route choice decisions for work and shop trips by looking into the combined effects of route attributes and individual characteristics. / Dissertation / Doctor of Philosophy (PhD)

Page generated in 0.0524 seconds