• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 192
  • 89
  • 5
  • 1
  • 1
  • Tagged with
  • 290
  • 186
  • 156
  • 151
  • 132
  • 68
  • 41
  • 41
  • 34
  • 34
  • 31
  • 30
  • 29
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

[en] A SYNCHRONOUS VIRTUAL MACHINE FOR MULTIMEDIA PRESENTATIONS / [pt] UMA MÁQUINA VIRTUAL SÍNCRONA PARA APRESENTAÇÕES MULTIMÍDIA

GUILHERME AUGUSTO FERREIRA LIMA 07 June 2016 (has links)
[pt] As linguagens multimídia de alto-nível atuais são limitadas. Suas limitações decorrem não da ausência de funcionalidades mas da complexidade causada pelo excesso delas e, especialmente, da sua definição não-estruturada. Linguagens como NCL, SMIL e HTML definem diversas construções para controlar a apresentação de dados audiovisuais, porém falham ao não descreverem precisamente como essas construções relacionam-se umas com as outras, particularmente em termos de comportamento. Não há uma separação clara entre construções básicas e construções derivadas; nem um princípio aparente de estruturação hierárquica na sua definição. Usuários dessas linguagens podem dispensar tal princípio, mas ele é imprescindível para as pessoas que definem e implementam essas linguagens: o princípio de estruturação hierárquica torna as especificações e implementações controláveis através da redução da linguagem a um conjunto de conceitos básicos (primitivos). Nesta tese, um conjunto de tais conceitos básicos é proposto e adotado como a linguagem de uma máquina virtual para apresentações multimídia. Mais precisamente, uma nova linguagem multimídia de alto-nível, chamada Smix (Synchronous Mixer), é apresentada e definida de forma a servir como camada de abstração adequada para a definição e implementação de linguagens multimídia de nível superior. Ao definir a linguagem Smix, isto é, ao escolher um conjunto de conceitos básicos, este trabalho visa o minimalismo mas ao mesmo tempo trata alguns dos principais problemas das linguagens multimídia de alto-nível atuais, a saber, os modelos semânticos inadequados de suas especificações e as abordagens não-sistemáticas de suas implementações. No lado da especificação, sustenta-se o uso de uma semântica síncrona simples porém expressiva, com uma noção temporal precisa. No lado da implementação, propõe-se uma arquitetura de duas camadas que facilita o mapeamento dos conceitos da especificação em primitivas de processamento digital de sinais. A camada superior (front end) é a realização da semântica e a camada inferior (back end) estrutura-se como um dataflow para processamento digital de sinais multimídia. / [en] Current high-level multimedia languages are limited. Their limitation stems not from the lack of features but from the complexity caused by the excess of them and, more importantly, by their unstructured definition. Languages such as NCL, SMIL, and HTML define innumerable constructs to control the presentation of audiovisual data, but they fail to describe how these constructs relate to each other, especially in terms of behavior. There is no clear separation between basic and derived constructs, and no apparent principle of hierarchical build-up in their definition. Users may not need such principle, but it is indispensable for the people who define and implement these languages: it makes specifications and implementations manageable by reducing the language to a set of basic (primitive) concepts. In this thesis, a set of such basic concepts is proposed and taken as the language of a virtual machine for multimedia presentations. More precisely, a novel high-level multimedia language, called Smix (Synchronous Mixer), is presented and defined to serve as an appropriate abstraction layer for the definition and implementation of higher level multimedia languages. In defining Smix, that is, choosing a set of basic concepts, this work strives for minimalism but also aims at tackling major problems of current high-level multimedia languages, namely, the inadequate semantic models of their specifications and unsystematic approaches of their implementations. On the specification side, the use of a simple but expressive synchronous semantics, with a precise notion of time, is advocated. On the implementation side, a two-layered architecture that eases the mapping of specification concepts into digital signal processing primitives is proposed. The top layer (front end) is the realization of the semantics, and the bottom layer (back end) is structured as a multimedia digital signal processing dataflow.
192

[en] OPTICAL CHARACTER RECOGNITION FOR AUTOMATED LICENSE PLATE RECOGNITION SYSTEMS / [pt] IDENTIFICAÇÃO DE CARACTERES PARA RECONHECIMENTO AUTOMÁTICO DE PLACAS VEICULARES

EDUARDO PIMENTEL DE ALVARENGA 13 January 2017 (has links)
[pt] Sistemas de reconhecimento automático de placas (ALPR na sigla em inglês) são geralmente utilizados em aplicações como controle de tráfego, estacionamento, monitoração de faixas exclusivas entre outras aplicações. A estrutura básica de um sistema ALPR pode ser dividida em quatro etapas principais: aquisição da imagem, localização da placa em uma foto ou frame de vídeo; segmentação dos caracteres que compõe a placa; e reconhecimento destes caracteres. Neste trabalho focamos somente na etapa de reconhecimento. Para esta tarefa, utilizamos um Perceptron multiclasse, aprimorado pela técnica de geração de atributos baseada em entropia. Mostramos que é possível atingir resultados comparáveis com o estado da arte, com uma arquitetura leve e que permite aprendizado contínuo mesmo em equipamentos com baixo poder de processamento, tais como dispositivos móveis. / [en] ALPR systems are commonly used in applications such as traffic control, parking ticketing, exclusive lane monitoring and others. The basic structure of an ALPR system can be divided in four major steps: image acquisition, license plate localization in a picture or movie frame; character segmentation; and character recognition. In this work we ll focus solely on the recognition step. For this task, we used a multiclass Perceptron, enhanced by an entropy guided feature generation technique. We ll show that it s possible to achieve results on par with the state of the art solution, with a lightweight architecture that allows continuous learning, even on low processing power machines, such as mobile devices.
193

[en] PESSIMISTIC Q-LEARNING: AN ALGORITHM TO CREATE BOTS FOR TURN-BASED GAMES / [pt] Q-LEARNING PESSIMISTA: UM ALGORITMO PARA GERAÇÃO DE BOTS DE JOGOS EM TURNOS

ADRIANO BRITO PEREIRA 25 January 2017 (has links)
[pt] Este documento apresenta um novo algoritmo de aprendizado por reforço, o Q-Learning Pessimista. Nossa motivação é resolver o problema de gerar bots capazes de jogar jogos baseados em turnos e contribuir para obtenção de melhores resultados através dessa extensão do algoritmo Q-Learning. O Q-Learning Pessimista explora a flexibilidade dos cálculos gerados pelo Q-Learning tradicional sem a utilização de força bruta. Para medir a qualidade do bot gerado, consideramos qualidade como a soma do potencial de vitória e empate em um jogo. Nosso propósito fundamental é gerar bots de boa qualidade para diferentes jogos. Desta forma, podemos utilizar este algoritmo para famílias de jogos baseados em turno. Desenvolvemos um framework chamado Wisebots e realizamos experimentos com alguns cenários aplicados aos seguintes jogos tradicionais: TicTacToe, Connect-4 e CardPoints. Comparando a qualidade do Q-Learning Pessimista com a do Q-Learning tradicional, observamos ganhos de 0,8 por cento no TicTacToe, obtendo um algoritmo que nunca perde. Observamos também ganhos de 35 por cento no Connect-4 e de 27 por cento no CardPoints, elevando ambos da faixa de 50 por cento a 60 por cento para 90 por cento a 100 por cento de qualidade. Esses resultados ilustram o potencial de melhoria com o uso do Q-Learning Pessimista, sugerindo sua aplicação aos diversos tipos de jogos de turnos. / [en] This document presents a new algorithm for reinforcement learning method, Q-Learning Pessimistic. Our motivation is to resolve the problem of generating bots able to play turn-based games and contribute to achieving better results through this extension of the Q-Learning algorithm. The Q-Learning Pessimistic explores the flexibility of the calculations generated by the traditional Q-learning without the use of force brute. To measure the quality of bot generated, we consider quality as the sum of the potential to win and tie in a game. Our fundamental purpose, is to generate bots with good quality for different games. Thus, we can use this algorithm to families of turn-based games. We developed a framework called Wisebots and conducted experiments with some scenarios applied to the following traditional games TicTacToe, Connect-4 and CardPoints. Comparing the quality of Pessimistic Q-Learning with the traditional Q-Learning, we observed gains to 100 per cent in the TicTacToe, obtaining an algorithm that never loses. Also observed in 35 per cent gains Connect-4 and 27 per cent in CardPoints, increasing both the range of 60 per cent to 80 per cent for 90 per cent to 100 per cent of quality. These results illustrate the potential for improvement with the use of Q-Learning Pessimistic, suggesting its application to various types of games.
194

[en] A MACHINE LEARNING APPROACH FOR PORTUGUESE TEXT CHUNKING / [pt] UMA ABORDAGEM DE APRENDIZADO DE MÁQUINA PARA SEGMENTAÇÃO TEXTUAL NO PORTUGUÊS

GUILHERME CARLOS DE NAPOLI FERREIRA 10 February 2017 (has links)
[pt] A segmentação textual é uma tarefa de Processamento de Linguagem Natural muito relevante, e consiste na divisão de uma sentença em sequências disjuntas de palavras sintaticamente relacionadas. Um dos fatores que contribuem fortemente para sua importância é que seus resultados são usados como significativos dados de entrada para problemas linguísticos mais complexos. Dentre esses problemas estão a análise sintática completa, a identificação de orações, a análise sintática de dependência, a identificação de papéis semânticos e a tradução automática. Em particular, abordagens de Aprendizado de Máquina para estas tarefas beneficiam-se intensamente com o uso de um atributo de segmentos textuais. Um número respeitável de eficazes estratégias de extração de segmentos para o inglês foi apresentado ao longo dos últimos anos. No entanto, até onde podemos determinar, nenhum estudo abrangente foi feito sobre a segmentação textual para o português, de modo a demonstrar seus benefícios. O escopo deste trabalho é a língua portuguesa, e seus objetivos são dois. Primeiramente, analisamos o impacto de diferentes definições de segmentação, utilizando uma heurística para gerar segmentos que depende de uma análise sintática completa previamente anotada. Em seguida, propomos modelos de Aprendizado de Máquina para a extração de segmentos textuais baseados na técnica Aprendizado de Transformações Guiado por Entropia. Fazemos uso do corpus Bosque, do projeto Floresta Sintá(c)tica, nos nossos experimentos. Utilizando os valores determinados diretamente por nossa heurística, um atributo de segmentos textuais aumenta a métrica F beta igual 1 de um sistema de identificação de orações para o português em 6.85 e a acurácia de um sistema de análise sintática de dependência em 1.54. Ademais, nosso melhor extrator de segmentos apresenta um F beta igual 1 de 87.95 usando anotaçoes automáticas de categoria gramatical. As descobertas indicam que, de fato, a informação de segmentação textual derivada por nossa heurística é relevante para tarefas mais elaboradas cujo foco é o português. Além disso, a eficácia de nossos extratores é comparável à dos similares do estado-da-arte para o inglês, tendo em vista que os modelos propostos são razoavelmente simples. / [en] Text chunking is a very relevant Natural Language Processing task, and consists in dividing a sentence into disjoint sequences of syntactically correlated words. One of the factors that highly contribute to its importance is that its results are used as a significant input to more complex linguistic problems. Among those problems we have full parsing, clause identification, dependency parsing, semantic role labeling and machine translation. In particular, Machine Learning approaches to these tasks greatly benefit from the use of a chunk feature. A respectable number of effective chunk extraction strategies for the English language has been presented during the last few years. However, as far as we know, no comprehensive study has been done on text chunking for Portuguese, showing its benefits. The scope of this work is the Portuguese language, and its objective is twofold. First, we analyze the impact of different chunk definitions, using a heuristic to generate chunks that relies on previous full parsing annotation. Then, we propose Machine Learning models for chunk extraction based on the Entropy Guided Transformation Learning technique. We employ the Bosque corpus, from the Floresta Sintá(c)tica project, for our experiments. Using golden values determined by our heuristic, a chunk feature improves the F beta equal 1 score of a clause identification system for Portuguese by 6.85 and the accuracy of a dependency parsing system by 1.54. Moreover, our best chunk extractor achieves a F beta equal 1 of 87.95 when automatic part-of-speech tags are applied. The empirical findings indicate that, indeed, chunk information derived by our heuristic is relevant to more elaborate tasks targeted on Portuguese. Furthermore, the effectiveness of our extractors is comparable to the state-of-the-art similars for English, taking into account that our proposed models are reasonably simple.
195

[en] CLASSIFICATION OF OBJECTS IN REAL CONTEXT BY CONVOLUTIONAL NEURAL NETWORKS / [pt] CLASSIFICAÇÃO DE OBJETOS EM CONTEXTO REAL POR REDES NEURAIS CONVOLUTIVAS

LUIS MARCELO VITAL ABREU FONSECA 08 June 2017 (has links)
[pt] A classificação de imagens em contexto real é o ápice tecnológico do reconhecimento de objetos. Esse tipo de classificação é complexo, contendo diversos problemas de visão computacional em abundância. Este projeto propõe solucionar esse tipo de classificação através do uso do conhecimento no aprendizado de máquina aplicado ao dataset do MS COCO. O algoritmo implementado neste projeto consiste de um modelo de Rede Neural Convolutiva que consegue aprender características dos objetos e realizar predições sobre suas classes. São elaborados alguns experimentos que comparam diferentes resultados de predições a partir de diferentes técnicas de aprendizado. É também realizada uma comparação dos resultados da implementação com o estado da arte na segmentação de objetos em contexto. / [en] The classification of objects in real contexts is the technological apex of object recognition. This type of classification is complex, containing diverse computer vision problems in abundance. This project proposes to solve that type of classification through the use of machine learning knowledge applied to the MS COCO dataset. The implemented algorithm in this project consists of a Convolutional Neural Network model that is able to learn characteristics of the objects and predict their classes. Some experiments are made that compare different results of predictions using different techniques of learning. There is also a comparison of the results from the implementation with state of art in contextual objects segmentation.
196

Controle integrado de tensão e potência reativa através de aprendizado de máquina / Integrated voltage and reactive power control using machine learning

Pinto, Adriano Costa, 1989- 27 August 2018 (has links)
Orientador: Walmir de Freitas Filho / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-27T12:29:12Z (GMT). No. of bitstreams: 1 Pinto_AdrianoCosta_M.pdf: 2073375 bytes, checksum: e1c68a8598816ca4909e74ba53dee76d (MD5) Previous issue date: 2015 / Resumo: A crescente demanda por energia elétrica, por vezes em ritmo mais acelerado que os investimentos em expansão das redes de distribuição, tem levado as distribuidoras a operarem próximo aos limites aceitáveis, o que torna toda a operação da rede mais complexa. Um dos desafios atuais é estabelecer um efetivo controle de tensão e potência reativa (Volt/var) na rede buscando melhorar o nível de operação e de eficiência energética da rede. Muitas propostas para encontrar a solução do problema partiram de uma abordagem de forma desacoplada: o controle de tensão e o controle de potência reativa foram resolvidos separadamente. Neste trabalho, porém, foram estudados métodos de solução do problema visando à segurança da operação e à otimização global dos recursos da rede de modo integrado, ou seja, considerando a dependência entre tensão e potência reativa. Na literatura, grande parte dos trabalhos reportam soluções baseadas em modelos elétricos da rede de distribuição. Os métodos estudados nessa dissertação são baseados em técnicas de aprendizado de máquina com o objetivo de construir um modelo capaz de utilizar apenas as medições de tensão e corrente provenientes dos medidores instalados ao longo da rede e obter o melhor despacho dos ajustes dos dispositivos de controle, sem a necessidade de um modelo elétrico do sistema. A grande vantagem de não depender dos dados e modelo elétrico do sistema está associada às imprecisões tipicamente existentes na base de dados elétricos das concessionárias de distribuição de energia elétrica. Neste contexto, primeiramente, propõe-se o uso de aprendizado por reforço, no qual o agente interage com a rede enquanto acumula experiência de operação dos controles. A implementação através do algoritmo Q-Learning permite a construção de um operador virtual da rede de distribuição a partir dos dados provenientes dos medidores instalados em determinadas barras do sistema, dos quais é extraído o estado corrente da condição de carregamento da rede. Os principais aspectos da aplicação do método ao problema de controle integrado de tensão e potência reativa são simulados em redes típicas e as capacidades de aplicação prática ao cenário atual do sistema elétrico são discutidas. Em uma segunda etapa, propõe-se utilizar um algoritmo de aprendizado supervisionado através de Máquinas de Vetores de Suporte (em inglês, Support Vector Machine ¿ SVM), uma técnica eficientemente aplicada a problemas de mineração de dados. O modelo é implementado através de técnicas de classificação, que extraem características relevantes nos conjuntos de dados, a fim de otimizar a operação da rede para cada condição de carregamento, eliminando a necessidade de repetir o treinamento do modelo ou calcular uma nova solução do problema de otimização a cada novo cenário. Discute-se o desempenho do método baseado em SVM para diferentes características de entrada. Investiga-se ainda a generalização do modelo proposto na presença de ruídos nos dados e no caso de reconfiguração da rede. Estudos em sistemas típicos de distribuição mostram que o método proposto é eficiente na solução de problemas práticos do dia-a-dia das concessionárias, principalmente em ambientes com grande volume de dados / Abstract: The growing demand for electricity, sometimes at a faster rate than investments in distribution network expansion, has led utilities operating close to acceptable limits, which makes the network operation more complex. One of current challenges is to establish an effective voltage and reactive power control, improving the operation as well as the efficiency of the distribution network. There are many methods reported to find a solutions for the voltage and reactive power problem. Most of them have adopted a decoupled form, solving the voltage control and reactive power (Volt/var) control separately. However, in this work, methods for the problem solution aiming the operation safety and the global assets optimization are approached in an integrated fashion, i. e., considering the dependence between voltage and reactive power. Most papers reports solution based on electrical models of distribution network. In this dissertation, the methods studied are based on machine learning techniques aiming to build a model with directly power meter data using capability, and set optimal dispatch of controls devices adjustments, without the need of an electrical model of the system and, therefore, not susceptible to inaccuracies of the model of the distribution network under study. Firstly, it proposes a reinforcement learning use, in which the agent interacts with the network while earns control operating experience. The implementation, thought de Q-Learning algorithm allows a construction of a distribution network virtual operation from data obtained from the meters installed on buses. From the meter data, is extracted the current state of the network loading condition. The main aspects of the application of the method to the integrated voltage and reactive power control are simulated in a typical network and the possibilities of practical application in the current scenario of the electrical system are discussed. In a second step, an algorithm for supervised learning via the Support Vector Machine (SVM), a technique applied efficiently to problems in data mining is proposed. The model is implemented by classification techniques, extracting relevant features in the data sets from the power meters in order to optimize the operation of the network for each loading condition. Thus it eliminates the need to retraining model or calculating a new optimization problem solution for each new scenario. Discusses the performance based on different features for SVM model input. Also the generalization capabilities of the proposed model in the presence of noise and in the case of network reconfiguration are studied. Studies in typical distribution systems show that proposed method is a good candidate to solve the practical problem of the system, especially in large networks with large amounts of data / Mestrado / Energia Eletrica / Mestre em Engenharia Elétrica
197

[en] FIOT: AN AGENT-BASED FRAMEWORK FOR SELF-ADAPTIVE AND SELF-ORGANIZING INTERNET OF THINGS APPLICATIONS / [pt] FIOT: UM FRAMEWORK BASEADO EM AGENTES PARA APLICAÇÕES AUTO-ORGANIZÁVEIS E AUTOADAPTATIVAS DE INTERNET DAS COISAS

NATHALIA MORAES DO NASCIMENTO 01 June 2016 (has links)
[pt] A ideia principal da Internet das Coisas (IoT) é conectar bilhões de coisas à Internet nos próximos anos, a exemplo de carros, roupas e comidas. Entretanto, muitos problemas precisam ser resolvidos antes que essa ideia possa ser concretizada. Alguns desses problemas estão relacionados à necessidade de construir sistemas para IoT que sejam auto-organizáveis e autoadaptativos. Este trabalho, portanto, apresenta a elaboração do Framework para Internet das Coisas (FIoT), que oferece suporte ao desenvolvimento de aplicações para IoT com essas características. Ele é baseado nos paradigmas de Sistemas Multiagente (SMA) e algumas técnicas abordadas em Aprendizado de Máquina, a exemplo de redes neurais e algoritmos evolutivos. Um agente pode ter algumas características, como autonomia e sociabilidade, que tornam SMAs compatíveis com sistemas que requerem auto-organização. Redes neurais e algoritmos de evolução vêm sendo comumente usados nos estudos de robótica, no intuito de prover autonomia e adaptação à agentes físicos (ex.: robôs, sensores). Para demonstrar o uso do FIoT, dois grupos de problemas em IoT serão instanciados: (i) Cidades Inteligentes e (ii) Quantificação de Coisas. / [en] The agreed fact about the Internet of Things (IoT) is that, within the coming years, billions of resources, such as cars, clothes and foods will be connected to the Internet. However, several challenging issues need to be addressed before the IoT vision becomes a reality. Some open problems are related to the need of building self-organizing and self-adaptive IoT systems. To create IoT applications with these features, this work presents a Framework for Internet of Things (FIoT). Our approach is based on concepts from Multi-Agent Systems (MAS) and Machine Learning Techniques, such as a neural network and evolutionary algorithms. An agent could have characteristics, such as autonomy and social ability, which makes MAS suitable for systems requiring self-organization (SO). Neural networks and algorithms of evolution have been commonly used in robotic studies to provide embodied agents (as robots and sensors) with autonomy and adaptive capabilities. To illustrate the use of FIoT, we derived two different instances from IoT applications: (i) Quantified Things and (ii) Smart Cities. We show how exible points of our framework are instantiated to generate an application.
198

[en] ARTIFICIAL INTELLIGENCE METHODS APPLIED TO MECHANICAL ENGINEERING PROBLEMS / [pt] MÉTODOS DE INTELIGÊNCIA ARTIFICIAL APLICADOS A PROBLEMAS DE ENGENHARIA MECÂNICA

PEDRO HENRIQUE LEITE DA SILVA PIRES DOMINGUES 05 June 2020 (has links)
[pt] Problemas reais de engenharia mecânica podem compreender tarefas de i) otimização multi-objetivo (MO) ou ii) regressão, classificação e predição. Os métodos baseados em inteligência artificial (AI) são bastante difundidos na resolução desses problemas por i) demandarem menor custo computacional e informações do domínio do problema para a resolução de uma MO, quando comparados com métodos de programação matemática, por exemplo; e ii) apresentarem melhores resultados com estrutura mais simples, adaptabilidade e interpretabilidade, em contraste com outros métodos. Sendo assim, o presente trabalho busca i) otimizar um controle proporcional-integral-derivativo (PID) aplicado a um sistema de frenagem anti-travamento de rodas (ABS) e o projeto de trocadores de calor de placas aletadas (PFHE) e casco-tubo (STHE) através de métodos de otimização baseados AI, buscando o desenvolvimento de novas versões dos métodos aplicados, e.g. multi-objective salp swarm algorithm (MSSA) e multi-objective heuristic Kalman algorithm (MOHKA), que melhorem a performance da otimização; ii) desenvolver um sistema de detecção de vazamento em dutos (LDS) sensível ao roubo de combustível a partir do treinamento de árvores de decisão (DTs) com features baseadas no tempo e na análise de componentes principais (PCA), ambas exraídas de dados de transiente de pressão de operação normal do duto e de roubo de combustível; iii) constituir um guia de aplicação para problemas de MO de controle e projeto, processo de extração de features e treinamento de classificadores baseados em aprendizado de máquina (MLCs), através de aprendizado supervisionado; e, por fim iv) demonstrar o potencial das técnicas baseadas em AI. / [en] Real-world mechanical engineering problems may comprise tasks of i) multi-objective optimization (MO) or ii) regression, classification and prediction. The use of artificial intelligence (AI) based methods for solving these problems are widespread for i) demanding less computational cost and problem domain information to solve the MO, when compared with mathematical programming for an example; and ii) presenting better results with simpler structure, adaptability and interpretability, in contrast to other methods. Therefore, the present work seeks to i) optimize a proportional-integral-derivative control (PID) applied to an anti-lock braking system (ABS) and the heat exchanger design of plate-fin (PFHE) and shell-tube (STHE) types through AI based optimization methods, seeking to develop new versions of the applied methods, e.g. multi-objective salp swarm algorithm (MSSA) and multi-objective heuristic Kalman algorithm (MOHKA), which enhance the optimization performance; ii) develop a pipeline leak detection system (LDS) sensitive to fuel theft by training decision trees (DTs) with features based on time and principal component analysis (PCA), both extracted from pressure transient data of regular pipeline operation and fuel theft; iii) constitute an application guide for control and design MO problems, feature extraction process and machine learning classifiers (MLCs) training through supervised learning; and, finally, iv) demonstrate the potential of AI-based techniques.
199

[pt] ENSAIOS SOBRE PREVISÃO DE INFLAÇÃO: DESAGREGAÇÃO, COMBINAÇÃO DE PREVISÕES E DADOS NÃO ESTRUTURADOS / [en] ESSAYS CONCERNING INFLATION FORECASTING: DISAGGREGATION, COMBINATION OF FORECASTS, AND UNSTRUCTURED DATA

GILBERTO OLIVEIRA BOARETTO 07 August 2023 (has links)
[pt] Esta tese consiste em três ensaios sobre previsão de inflação, com foco na inflação brasileira. No primeiro ensaio, examinamos a eficácia de vários métodos de previsão para prever a inflação, com foco na agregação de previsões desagregadas. Consideramos diferentes níveis de desagregação para a inflação e empregamos uma variedade de técnicas tradicionais de séries temporais, bem como modelos lineares e não lineares de aprendizado de máquina que lidam com um número grande de preditores. Para muitos horizontes de previsão, a agregação de previsões desagregadas performa tão bem quanto expectativas baseadas em coleta e modelos que geram previsões a partir do agregado. No geral, os métodos de aprendizado de máquina superam os modelos de séries temporais tradicionais em precisão preditiva, com excelente desempenho para os desagregados da inflação. Em nosso segundo ensaio, investigamos os potenciais benefícios de combinar previsões de inflação individuais ao propor uma correção para viés variável no tempo da média de previsões. Nossa análise inclui estimações empregando janelas rolantes e modelos em espaço de estados que usam a recursividade do filtro de Kalman. Obtivemos um bom desempenho de previsão para modelos baseados em janelas rolantes pequenas em horizontes de previsão curtos e intermediários, enquanto um modelo em espaço de estados obtem um desempenho um pouco pior do que os procedimentos baseados em janelas rolantes. No terceiro ensaio, usamos aprendizado supervisionado para gerar índices prospectivos baseados em tweets e notícias para inflação acumulada e investigamos se esses índices podem melhorar o desempenho da previsão de inflação. Nossos resultados indicam que os índices baseados em notícias fornecem ganhos preditivos significativos, principalmente para os horizontes de 3 e 12 meses à frente. Esses achados sugerem que a incorporação de mais fontes de informação do que apenas expectativas baseadas em opiniões de especialistas pode levar a previsões mais precisas. / [en] This dissertation consists of three essays concerning inflation forecasting, taking the Brazilian case as an application. In the first essay, we examine the effectiveness of several forecasting methods for predicting inflation, focusing on aggregating disaggregated forecasts. We consider different disaggregation levels for inflation and employ a range of traditional time series techniques, as well as linear and nonlinear machine learning (ML) models that deal with a larger number of predictors. For many forecast horizons, aggregation of disaggregated forecasts performs just as well as survey-based expectations and models generating forecasts directly from the aggregate. Overall, ML methods outperform traditional time series models in predictive accuracy, with outstanding performance in forecasting disaggregates. In our second essay, we investigate the potential benefits of combining individual inflation forecasts by proposing a time-varying bias correction for the average forecast. Our analysis includes estimations using both rolling windows and state-space models that use the recursiveness of the Kalman filter. We achieve good forecast performance for models based on small rolling windows for shorter and intermediate forecast horizons, while a state-space model performs slightly worse than procedures based on rolling windows. In the third essay, we use supervised learning to generate forward-looking indexes based on tweets and news articles for accumulated inflation and investigate whether these indexes can improve inflation forecasting performance. Our results indicate that news-based indexes provide significant predictive gains, particularly for 3- and 12-month-ahead horizons. These findings suggest that incorporating more information sources than just expectations based on experts opinions can lead to more accurate forecasts.
200

[en] ALGORITHMS FOR TABLE STRUCTURE RECOGNITION / [pt] ALGORITMOS PARA RECONHECIMENTO DE ESTRUTURAS DE TABELAS

YOSVENI ESCALONA ESCALONA 26 June 2020 (has links)
[pt] Tabelas são uma forma bastante comum de organizar e publicar dados. Por exemplo, a Web possui um enorme número de tabelas publicadas em HTML, embutidas em documentos em PDF, ou que podem ser simplesmente baixadas de páginas Web. Porém, tabelas nem sempre são fáceis de interpretar pois possuem uma grande variedade de características e são organizadas de diversas formas. De fato, um grande número de métodos e ferramentas foram desenvolvidos para interpretação de tabelas. Esta dissertação apresenta a implementação de um algoritmo, baseado em Conditional Random Fields (CRFs), para classificar as linhas de uma tabela em linhas de cabeçalho, linhas de dados e linhas de metadados. A implementação é complementada por dois algoritmos para reconhecimento de tabelas em planilhas, respectivamente baseados em regras e detecção de regiões. Por fim, a dissertação descreve os resultados e os benefícios obtidos pela aplicação dos algoritmos a tabelas em formato HTML, obtidas da Web, e a tabelas em forma de planilhas, baixadas do Web site da Agência Nacional de Petróleo. / [en] Tables are widely adopted to organize and publish data. For example, the Web has an enormous number of tables, published in HTML, imbedded in PDF documents, or that can be simply downloaded from Web pages. However, tables are not always easy to interpret because of the variety of features and formats used. Indeed, a large number of methods and tools have been developed to interpret tables. This dissertation presents the implementation of an algorithm, based on Conditional Random Fields (CRFs), to classify the rows of a table as header rows, data rows or metadata rows. The implementation is complemented by two algorithms for table recognition in a spreadsheet document, respectively based on rules and on region detection. Finally, the dissertation describes the results and the benefits obtained by applying the implemented algorithms to HTML tables, obtained from the Web, and to spreadsheet tables, downloaded from the Brazilian National Petroleum Agency.

Page generated in 0.0407 seconds