Spelling suggestions: "subject:"maquinas"" "subject:"maquinaria""
211 |
[pt] MINERANDO O PROCESSO DE UM COQUEAMENTO RETARDADO ATRAVÉS DE AGRUPAMENTO DE ESTADOS / [en] MINING THE PROCESS OF A DELAYED COKER USING CLUSTERED STATESRAFAEL AUGUSTO GASETA FRANCA 25 November 2021 (has links)
[pt] Procedimentos e processos são essenciais para garantir a qualidade de
qualquer operação. Porém, o processo realizado na prática nem sempre está
de acordo com o processo idealizado. Além disso, uma análise mais refinada
de gargalos e inconsistências só é possível a partir do registro de eventos do
processo (log). Mineração de processos (process mining) é uma área que reúne
um conjunto de métodos para reconstruir, monitorar e aprimorar um processo a
partir de seu registro de eventos. Mas, ao aplicar as soluções já existentes no log
de uma unidade de coqueamento retardado, os resultados foram insatisfatórios.
O núcleo do problema está na forma como o log está estruturado, carecendo
de uma identificação de casos, essencial para a mineração do processo. Para
contornar esse problema, aplicamos agrupamento hierárquico aglomerativo no
log, separando as válvulas em grupos que exercem uma função na operação.
Desenvolvemos uma ferramenta (PLANTSTATE) para avaliar a qualidade desses
grupos no contexto da planta e ajustar conforme a necessidade do domínio.
Identificando os momentos de ativação desses grupos no log chegamos a uma
estrutura de sequência e paralelismo entre os grupos. Finalmente, propomos
um modelo capaz de representar as relações entre os grupos, resultando em
um processo que representa a operações em uma unidade de coqueamento
retardado. / [en] Procedures and processes are essential to guarantee the quality of any
operation. However, processes carried out in the real world are not always in
accordance with the imagined process. Furthermore, a more refined analysis
of obstacles and inconsistencies is only possible from the process events record
(log). Process mining is an area that brings together a set of methods to
rebuild, monitor and improve processes from their log. Nevertheless, when
applying existing solutions to the log of a delayed coker unit, the results
were unsatisfactory. The core of the problem is how the log is structured,
lacking a case identification, essential for process mining. To deal with this
issue, we apply agglomerative hierarchical clustering in the log, separating
the valves into groups that perform a task in an operation. We developed a
tool (PLANTSTATE) to assess the quality of these groups in the context of
the plant and to adjust in accord to the needs of the domain. By identifying
the moments of activation of these groups in the log we arrive at a structure
of sequence and parallelism between the groups. Finally, we propose a model
capable of representing the relationships between groups, resulting in a process
that represents the operations in a delayed coker unit.
|
212 |
[en] PREDICTING DRY GAS SEALS RELIABILITY WITH MACHINE LEARNING TECHNIQUES DEVELOPED FROM SCARCE DATA / [pt] PREVISÃO DE CONFIABILIDADE DE SELOS SECOS A GÁS COM TÉCNICAS DE MACHINE LEARNING DESENVOLVIDO A PARTIR DE DADOS ESCASSOSMATHEUS HOFFMANN BRITO 07 November 2022 (has links)
[pt] A correta operação de equipamentos na indústria de Óleo e Gás é fundamental
para a reduzir perdas ambientais, humanas e financeiras. Neste
cenário, foram estudados selos secos a gás (em inglês,DGS) de compressores
cetrífugos, por serem identificados como os mais críticos devido à extensão
dos danos potenciais causados em caso de falha. Neste estudo, foram desenvolvidos
31 modelos regressivos disponíveis no Scikit-Learn através de
técnicas de aprendizado de máquina (em inglês, ML). Estes foram treinados
com um conjunto de dados escassos, criado a partir de uma técnica de
planejamento de experimentos, para substituir simulações numéricas na previsão
de confiabilidade operacional de DGSs. Primeiramente, foi validado
um modelo baseado na simulação da Dinâmica dos Fluidos Computacionais
(em inglês, CFD) para representar o escoamento do gás entre as faces
de selagem, a fim de possibilitar o cálculo da confiabilidade operacional
do equipamento. Neste, foi utilizado o software de CFD de código aberto
OpenFOAM em conjunto com o banco de dados de substâncias do software
REFPROP, a fim de possibilitar ao usuário definir a mistura gasosa e as
condições operacionais avaliadas. Em seguida, foram realizados dois estudos
de caso seguindo um fluxograma genérico de projeto proposto. O primeiro
consistiu na determinação de um modelo regressivo para estimar a confiabilidade
de um DGS cuja composição gasosa (composta por metano, etano e
octano) é fixa porém suas condições operacionais podem ser alteradas. Já o
segundo consistiu na determinação de um modelo regressivo mais robusto,
onde tanto a composição gasosa como as condições operacionais podem ser
alteradas. Por fim, foi avaliada a viabilidade de implementação de ambos os
modelos em condições reais de operação, baseado na norma infinita obtida
para a predição do conjunto de teste. As performances atingidar foram de
1.872 graus Celsius e 6.951 grau Celsius para o primeiro e segundo estudos de caso, respectivamente. / [en] The correct equipment operation in the Oil and Gas industry is
essential to reduce environmental, human, and financial losses. In this
scenario, dry gas seals (DGS) of centrifugal compressors were studied,
as they are identified as the most critical device due to the extent of
the potential damage caused by their failure. In this study, 31 regression
models available at Scikit-Learn were developed using machine learning
(ML) techniques. They were trained with a scarce dataset, created based
on a design of experiment technique, to replace numerical simulations
in predicting the operational reliability of DGSs. First, a model based
on Computational Fluid Dynamics (CFD) simulation was validated to
represent the gas flowing between the sealing faces, to enable the calculation
of the equipment’s operational reliability. Thus, the open-source CFD
software OpenFOAM was used together with the substance database of
the software REFPROP, to allow the user to define the gas mixture and
the evaluated operational conditions. Then, two case studies were carried
out following a proposed generic workflow. The first comprised determining
a regression model to estimate the reliability of a DGS whose mixture
composition (composed of methane, ethane, and octane) is fixed but its
operating conditions can vary. The second consisted of determining a more
robust regressive model, where both the mixture composition and the
operational conditions can vary. Finally, the feasibility of implementing both
models under realistic operating conditions was evaluated, based on the
infinity norm obtained for the prediction of the test set. The performances
achieved were 1.872 degrees Celsius and 6.951 degrees Celsius for the first and second case studies,
respectively.
|
213 |
[en] A GENERIC PLUGIN FOR PLAYER CLASSIFICATION IN GAMES / [pt] UM PLUGIN GENÉRICO PARA CLASSIFICAÇÃO DE JOGADOR EM JOGOSLUIS FERNANDO TEIXEIRA BICALHO 22 November 2022 (has links)
[pt] Game Analytics é uma área que envolve o processamento de dados de
videogames com a finalidade de proporcionar uma melhor experiência de jogo
para o usuário. Também ajuda a verificar os padrões de comportamento dos
jogadores, facilitando a identificação do público-alvo. A coleta de dados dos
jogadores ajuda os desenvolvedores de jogos a identificar problemas mais cedo
e saber por que os jogadores deixaram o jogo ou continuaram jogando. O
comportamento desses jogadores geralmente segue um padrão, fazendo com
que se encaixem em diferentes perfis de jogadores. Especialistas em análise
de jogos criam e usam modelos de tipos de jogadores, geralmente variantes
do modelo de Bartle, para ajudar a identificar perfis de jogadores. Esses
especialistas usam algoritmos de agrupamento para separar os jogadores em
grupos diferentes e identificáveis, rotulando cada grupo com o tipo de perfil
definido pelo modelo proposto. O objetivo principal deste projeto é criar um
plugin Unity genérico para ajudar a identificar perfis de jogadores em jogos.
Este plugin usa uma API Python, que lida com os dados do jogo armazenados
em um banco de dados MongoDB, para agrupar e rotular cada partida ou
nível do jogo escolhido enquanto o jogo está em execução. Neste plugin, os
desenvolvedores de jogos podem configurar o número de tipos de jogadores que
desejam identificar, os rótulos dos jogadores e até os algoritmos que desejam
usar. Essa abordagem de agrupamento online não é usual no desenvolvimento
de jogos. Até onde sabemos, não há nenhum componente de software na
literatura de análise de jogos com a mesma direção e recursos. / [en] Game Analytics is an area that involves the processing of video game
data, in order to make a better game experience for the user. It also helps to
check the patterns in players behaviour, making it easier to identify the target
audience. Gathering player data helps game developers identify problems
earlier and know why players left the game or kept playing. These players
behavior usually follows a pattern, making them fit in different player profiles.
Game analytics experts create and use models of player types, usually variants
of Bartle s model, to help identify player profiles. These experts use clustering
algorithms to separate players into different and identifiable groups, labeling
each group with the profile type defined by the proposed model. The main
goal of this project is to create a generic Unity plugin to help identify Player
Profiles in games. This plugin uses a Python API, which deals with the
game data stored in a MongoDB database, to cluster and label each match
or level of the chosen game while the game is running. In this plugin, game
developers can configure the number of player types they want to identify, the
player labels, and even the algorithms they wish to use. This online clustering
approach is not usual in game development. As far as we are aware, there is no
software component in the game analytics literature with the same direction
and features.
|
214 |
[pt] APRENDIZADO PROFUNDO APLICADO À SEGMENTAÇÃO DE TEXTO / [en] DEEP LEARNING APPLIED TO TEXT CHUNKINGMIGUEL MENDES DE BRITO 15 May 2019 (has links)
[pt] O Processamento de Linguagem natural é uma área de pesquisa que explora como computadores podem entender e manipular textos em linguagem natural. Dentre as tarefas mais conhecidas em PLN está a de rotular sequências de texto. O problema de segmentação de texto em sintagmas é um dos problemas que pode ser abordado como rotulagem de sequências. Para isto, classificamos quais palavras pertencem a um sintagma, onde cada sintagma representa um grupo disjunto de palavras sintaticamente correlacionadas. Este tipo de segmentação possui importantes aplicações em tarefas mais complexas de processamento de linguagem natural, como análise de dependências, tradução automática, anotação de papéis semânticos, identificação de orações e outras. O objetivo deste trabalho é apresentar uma arquitetura de rede neural profunda para o problema de segmentação textual em sintagmas para a língua portuguesa. O corpus usado nos experimentos é o Bosque, do projeto Floresta Sintá(c)tica. Baseado em trabalhos recentes na área, nossa abordagem supera o estado-da-arte para o português ao alcançar um F(beta)=1 de 90,51, que corresponde a um aumento de 2,56 em comparação com o trabalho anterior. Além disso, como forma de comprovar a qualidade do segmentador, usamos os rótulos obtidos pelo nosso sistema como um dos atributos de entrada para a tarefa de análise de dependências. Esses atributos melhoraram a acurácia do analisador em 0,87. / [en] Natural Language Processing is a research field that explores how computers can understand and manipulate natural language texts. Sequence tagging is amongst the most well-known tasks in NLP. Text Chunking is one of the problems that can be approached as a sequence tagging problem. Thus, we classify which words belong to a chunk, where each chunk represents a disjoint group of syntactically correlated words. This type of chunking has important applications in more complex tasks of natural language processing, such as dependency parsing, machine translation, semantic role labeling, clause identification and much more. The goal of this work is to present a deep neural network archtecture for the Portuguese text chunking problem. The corpus used in the experiments is the Bosque, from the Floresta Sintá(c)tica project. Based on recent work in the field, our approach surpass the state-of-the-art for Portuguese by achieving a F(beta)=1 of 90.51, which corresponds to an increase of 2.56 in comparison with the previous work. In addition, in order to attest the chunker effectiveness we use the tags obtained by our system as feature for the depedency parsing task. These features improved the accuracy of the parser by 0.87.
|
215 |
[en] REDUCING TEACHER-STUDENT INTERACTIONS BETWEEN TWO NEURAL NETWORKS / [pt] REDUZINDO AS INTERAÇÕES PROFESSOR-ALUNO ENTRE DUAS REDES NEURAISGUSTAVO MADEIRA KRIEGER 11 October 2019 (has links)
[pt] Propagação de conhecimento é um dos pilares da evolução humana. Nossas descobertas são baseadas em conhecimentos já existentes, construídas em cima deles e então se tornam a fundação para a próxima geração de aprendizado. No ramo de Inteligência Artificial, existe o interesse em replicar esse aspecto da natureza humana em máquinas. Criando um primeiro modelo e treinando ele nos dados originais, outro modelo pode ser criado e aprender a partir dele ao invés de ter que começar todo o processo do zero. Se for comprovado que esse método é confiável, ele vai permitir várias mudanças na forma que nós abordamos machine learning, em que cada inteligência não será um microcosmo independente. Essa relação entre modelos é batizada de relação Professor-Aluno. Esse trabalho descreve o desenvolvimento de dois modelos distintos e suas capacidades de aprender usando a informação dada em um ao outro. Os experimentos apresentados aqui mostram os resultados desse treino e as diferentes metodologias usadas em busca do cenário ótimo em que esse processo de aprendizado é viável para replicação futura. / [en] Propagation of knowledge is one of the pillars of human evolution. Our discoveries are all based on preexisting knowledge, built upon them and then become the foundation for the next generation of learning. In the field of artificial intelligence, there s an interest in replicating this aspect of human nature on machines. By creating a first model and training it on the original data, another model can be created and learn from it instead of having to learn everything from scratch. If this method is proven to be reliable, it will allow many changes in the way that we approach machine learning, specially allowing different models to work together. This relation between models is nicknamed the Teacher-Student relation. This work describes the development of two separate models and their ability to learn using incomplete data and each other. The experiments presented here show the results of this training and the different methods used in the pursuit of an optimal scenario where such learning process is viable for future use.
|
216 |
[pt] MODELOS ESTATÍSTICOS COM PARÂMETROS VARIANDO SEGUNDO UM MECANISMO ADAPTATIVO / [en] STATISTICAL MODELS WITH PARAMETERS CHANGING THROUGH AN ADAPTIVE MECHANISMHENRIQUE HELFER HOELTGEBAUM 23 October 2019 (has links)
[pt] Esta tese é composta de três artigos em que a ligação entre eles são modelos estatísticos com parametros variantes no tempo. Todos os artigos adotam um arcabouço que utiliza um mecanismo guiado pelos dados para a atualização dos parâmetros dos modelos. O primeiro explora a aplicação de uma nova classe de modelos de séries temporais não Gaussianas denominada modelos Generalized Autegressive Scores (GAS). Nessa classe de modelos, os parâmetros são atualizados utilizando o score da densidade preditiva. Motivamos o uso de modelos GAS simulando cenários conjuntos de fator de capacidade eólico. Nos últimos dois artigos, o gradiente descentente estocástico (SGD) é adotado para atualizar os parâmetros que variam no tempo. Tal metodologia utiliza a derivada de uma função custo especificada pelo usuário para guiar a otimização. A estrutura desenvolvida foi projetada para ser aplicada em um contexto de fluxo de dados contínuo, portanto, técnicas de filtragem adaptativa são exploradas para levar em consideração o concept-drift. Exploramos esse arcabouço com aplicações em segurança cibernética e infra-estrutura instrumentada. / [en] This thesis is composed of three papers in which the common ground among them is statistical models with time-varying parameters. All of them adopt a framework that uses a data-driven mechanism to update
its coefficients. The first paper explores the application of a new class of non-Gaussian time series framework named Generalized Autoregressive Scores (GAS) models. In this class of models the parameters are updated using the score of the predictive density. We motivate the use of GAS models by simulating joint scenarios of wind power generation. In the last two papers, Stochastic Gradient Descent (SGD) is adopted to update time-varying parameters. This methodology uses the derivative of a user specified cost function to drive the optimization. The developed framework is designed to be applied in a streaming data context, therefore adaptive filtering techniques are explored to account for concept-drift.We explore this framework on cyber-security and instrumented infrastructure applications.
|
217 |
[pt] A EFICÁCIA DA OTIMIZAÇÃO DE DOIS NÍVEIS EM PROBLEMAS DE SISTEMAS DE POTÊNCIA DE GRANDE PORTE: UMA FERRAMENTA PARA OTIMIZAÇÃO DE DOIS NÍVEIS, UMA METODOLOGIA PARA APRENDIZADO DIRIGIDO PELA APLICAÇÃO E UM SIMULADOR DE MERCADO / [en] THE EFFECTIVENESS OF BILEVEL OPTIMIZATION IN LARGE-SCALE POWER SYSTEMS PROBLEMS: A BILEVEL OPTIMIZATION TOOLBOX, A FRAMEWORK FOR APPLICATION-DRIVEN LEARNING, AND A MARKET SIMULATORJOAQUIM MASSET LACOMBE DIAS GARCIA 25 January 2023 (has links)
[pt] A otimização de binível é uma ferramenta extremamente poderosa para
modelar problemas realistas em várias áreas. Por outro lado, sabe-se que a otimização
de dois níveis frequentemente leva a problemas complexos ou intratáveis.
Nesta tese, apresentamos três trabalhos que expandem o estado da arte da
otimização de dois níveis e sua interseção com sistemas de potência. Primeiro,
apresentamos BilevelJuMP, um novo pacote de código aberto para otimização
de dois níveis na linguagem Julia. O pacote é uma extensão da linguagem
de modelagem de programação matemática JuMP, é muito geral, completo e
apresenta funcionalidades únicas, como a modelagem de programas cônicos no
nível inferior. O software permite aos usuários modelar diversos problemas de
dois níveis e resolvê-los com técnicas avançadas. Como consequência, torna a
otimização de dois níveis amplamente acessível a um público muito mais amplo.
Nos dois trabalhos seguintes, desenvolvemos métodos especializados para
lidar com modelos complexos e programas de dois níveis de grande escala decorrentes
de aplicações de sistemas de potência. Em segundo lugar, usamos a
programação de dois níveis como base para desenvolver o Aprendizado Dirigido
pela Aplicação, uma nova estrutura de ciclo fechado na qual os processos
de previsão e tomada de decisão são mesclados e co-otimizados. Descrevemos o
modelo matematicamente como um programa de dois níveis, provamos resultados
de convergência e descrevemos métodos de solução heurísticos e exatos
para lidar com sistemas de grande escala. O método é aplicado para previsão de
demanda e alocação de reservas na operação de sistemas de potência. Estudos
de caso mostram resultados muito promissores com soluções de boa qualidade em sistemas realistas com milhares de barras. Em terceiro lugar, propomos
um simulador para modelar mercados de energia hidrotérmica de longo prazo
baseados em ofertas. Um problema de otimização estocástica multi-estágio é
formulado para acomodar a dinâmica inerente aos sistemas hidrelétricos. No
entanto, os subproblemas de cada etapa são programas de dois níveis para
modelar agentes estratégicos. O simulador é escalável em termos de dados do
sistema, agentes, cenários e estágios considerados. Concluímos o terceiro trabalho
com simulações em grande porte com dados realistas do sistema elétrico
brasileiro com 3 agentes formadores de preço, 1000 cenários e 60 estágios mensais.
Esses três trabalhos mostram que, embora a otimização de dois níveis
seja uma classe extremamente desafiadora de problemas NP-difíceis, é possível
desenvolver algoritmos eficazes que levam a soluções de boa qualidade. / [en] Bilevel Optimization is an extremely powerful tool for modeling realistic
problems in multiple areas. On the other hand, Bilevel Optimization is known
to frequently lead to complex or intractable problems. In this thesis, we
present three works expanding the state of the art of bilevel optimization
and its intersection with power systems. First, we present BilevelJuMP, a
novel open-source package for bilevel optimization in the Julia language. The
package is an extension of the JuMP mathematical programming modeling
language, is very general, feature-complete, and presents unique functionality,
such as the modeling of lower-level cone programs. The software enables
users to model a variety of bilevel problems and solve them with advanced
techniques. As a consequence, it makes bilevel optimization widely accessible
to a much broader public. In the following two works, we develop specialized
methods to handle much model complex and very large-scale bilevel programs
arising from power systems applications. Second, we use bilevel programming
as the foundation to develop Application-Driven Learning, a new closed-loop
framework in which the processes of forecasting and decision-making are
merged and co-optimized. We describe the model mathematically as a bilevel
program, prove convergence results and describe exact and tailor-made heuristic
solution methods to handle very large-scale systems. The method is applied
to demand forecast and reserve allocation in power systems operation. Case
studies show very promising results with good quality solutions on realistic
systems with thousands of buses. Third, we propose a simulator to model
long-term bid-based hydro-thermal power markets. A multi-stage stochastic program is formulated to accommodate the dynamics inherent to hydropower
systems. However, the subproblems of each stage are bilevel programs in
order to model strategic agents. The simulator is scalable in terms of system
data, agents, scenarios, and stages being considered. We conclude the third
work with large-scale simulations with realistic data from the Brazilian power
system with 3 price maker agents, 1000 scenarios, and 60 monthly stages.
These three works show that although bilevel optimization is an extremely
challenging class of NP-hard problems, it is possible to develop effective
algorithms that lead to good-quality solutions.
|
218 |
[pt] ARQUITETURA PROFUNDA PARA EXTRAÇÃO DE CITAÇÕES / [en] DEEP ARCHITECTURE FOR QUOTATION EXTRACTIONLUIS FELIPE MULLER DE OLIVEIRA HENRIQUES 28 July 2017 (has links)
[pt] A Extração e Atribuição de Citações é a tarefa de identificar citações de um texto e associá-las a seus autores. Neste trabalho, apresentamos um sistema de Extração e Atribuição de Citações para a língua portuguesa. A tarefa de Extração e Atribuição de Citações foi abordada anteriormente utilizando diversas técnicas e para uma variedade de linguagens e datasets. Os modelos tradicionais para a tarefa consistem em extrair manualmente um rico conjunto de atributos e usá-los para alimentar um classificador
raso. Neste trabalho, ao contrário da abordagem tradicional, evitamos usar atributos projetados à mão, usando técnicas de aprendizagem não supervisionadas e redes neurais profundas para automaticamente aprender atributos relevantes para resolver a tarefa. Ao evitar a criação manual de atributos, nosso modelo de aprendizagem de máquina tornou-se facilmente adaptável a outros domínios e linguagens. Nosso modelo foi treinado e avaliado no corpus GloboQuotes e sua métrica de desempenho F1 é igual a 89.43 por cento. / [en] Quotation Extraction and Attribution is the task of identifying quotations from a given text and associating them to their authors. In this work, we present a Quotation Extraction and Attribution system for the Portuguese language. The Quotation Extraction and Attribution task has been previously approached using various techniques and for a variety of languages and datasets. Traditional models to this task consist of extracting a rich set of hand-designed features and using them to feed a shallow classifier. In this work, unlike the traditional approach, we avoid using hand-designed features using unsupervised learning techniques and deep neural networks to automatically learn relevant features to solve the task. By avoiding design features by hand, our machine learning model became easily adaptable to other languages and domains. Our model is trained and evaluated at the GloboQuotes corpus, and its F1 performance metric is equal to 89.43 percent.
|
219 |
[pt] ANOTAÇÃO PROFUNDA DE PAPÉIS SEMÂNTICOS PARA O PORTUGUÊS / [en] DEEP SEMANTIC ROLE LABELING FOR PORTUGUESEGUILHERME SANT ANNA VARELA 06 August 2019 (has links)
[pt] Vivemos em um mundo complexo, no qual incontáveis fatores aparentemente desconexos – tais como a lei de Moore que dita um aumento exponencial da capacidade de processamento em um chip de silício, a queda do custo de espaço de armazenamento e a adoção em massa de smartphones colaboram para a formação de uma sociedade progressivamente interdependente. Todos os dias são criados 2,5 quintilhões de bytes de dados, de fato 90 por cento dos dados no mundo foram criados nos últimos dois anos. Domar os padrões salientes aos dados separando informação do caos torna-se uma necessidade iminente para a tomada de decisão dos indivíduos e para sobrevivência de organizações. Nesse cenário a melhor resposta dos pesquisadores de Processamento de Linguagem Natural encontra-se na tarefa de Anotação de Papéis
Semânticos. APS é a tarefa que tem o audacioso objetivo de compreender eventos, buscando determinar Quem fez o que e aonde, Quais foram os beneficiados? ou Qual o meio utilizado para atingir os fins. APS serve como tarefa intermediária para várias aplicações de alto nível e.g information extraction, question and answering e agentes conversacionais. Tradicionalmente, resultados satisfatórios eram obtidos apenas com alta dependência de conhecimento específico de domínio. Para o português, através desta abordagem,
o sistema estado da arte da tarefa para é de 79,6 por cento de pontuação F1. Sistemas mais recentes dependem de uma série de subtarefas, obtém 58 por cento de pontuação F1. Nessa dissertação, exploramos um novo paradigma utilizando redes neurais recorrentes, para o idioma do português do Brasil,
e sem subtarefas intermediárias obtendo uma pontuação de 66,23. / [en] We live in a complex world in which a myriad of seemingly unrelated factors – such as Moore s law which states that the processing capacity on a silicon wafer should increase exponentially, the fall of storage costs and mass adoption of smart-phones contribute to the formation of an increasingly inter-dependent society: 2.5 quintillion bytes of data are generated every day, in fact ninety percent of the world s data were created in the last few years. Harnessing the emerging patterns within the data, effectively separating information from chaos is crucial for both individual decision making as well as for the survival of organizations. In this scenario the best answer from Natural Language Processing researchers is the task
of Semantic Role Labeling. SRL is the task the concerns itself with the audacious goal of event understanding, which means determining Who did what to whom, Who was the beneficiary? or What were the means to achieve some goal. APS is also an intermediary task to high level applications such as information extraction, question and answering and chatbots. Traditionally, satisfactory results were obtained only by the introduction of highly specific domain knowledge. For Portuguese, this approach is able to yields a F1 score of 79.6 percent. Recent systems, rely on a pipeline of sub-tasks, yielding a F1 score of 58 percent. In this dissertation, we adopt a new paradigm using recurrent neural networks for the Brazilian Portuguese, that does not rely on a pipeline, our system obtains a score of 66.23 percent.
|
220 |
[en] PART-OF-SPEECH TAGGING FOR PORTUGUESE / [pt] PART-OF-SPEECH TAGGING PARA PORTUGUÊSROMULO CESAR COSTA DE SOUSA 07 April 2020 (has links)
[pt] Part-of-speech (POS) tagging é o processo de categorizar cada palavra
de uma sentença com sua devida classe morfossintática (verbo, substantivo,
adjetivo e etc). POS tagging é considerada uma atividade fundamental no
processo de construção de aplicações de processamento de linguagem natural
(PLN), muitas dessas aplicações, em algum ponto, demandam esse tipo de
informação. Nesse trabalho, construímos um POS tagger para o Português
Contemporâneo e o Português Histórico, baseado em uma arquitetura de
rede neural recorrente. Tradicionalmente a construção dessas ferramentas
requer muitas features específicas do domínio da linguagem e dados externos
ao conjunto de treino, mas nosso POS tagger não usa esses requisitos.
Treinamos uma rede Bidirectional Long short-term memory (BLSTM), que
se beneficia das representações de word embeddings e character embeddings
das palavras, para atividade de classificação morfossintática. Testamos nosso
POS tagger em três corpora diferentes: a versão original do corpus MacMorpho, a versão revisada do corpus Mac-Morpho e no corpus Tycho Brahe.
Nós obtemos um desempenho ligeiramente melhor que os sistemas estado
da arte nos três corpora: 97.83 por cento de acurácia para o Mac-Morpho original,
97.65 por cento de acurácia para o Mac-Morpho revisado e 97.35 por cento de acurácia para
Tycho Brahe. Conseguimos, também, uma melhora nos três corpora para
a medida de acurácia fora do vocabulário, uma acurácia especial calculada
somente sobre as palavras desconhecidas do conjunto de treino. Realizamos
ainda um estudo comparativo para verificar qual dentre os mais populares
algoritmos de criação de word embedding (Word2Vec, FastText, Wang2Vec
e Glove), é mais adequado para a atividade POS tagging em Português. O
modelo de Wang2Vec mostrou um desempenho superior. / [en] Part-of-speech (POS) tagging is a process of labeling each word
in a sentence with a morphosyntactic class (verb, noun, adjective and
etc). POS tagging is a fundamental part of the linguistic pipeline, most
natural language processing (NLP) applications demand, at some step,
part-of-speech information. In this work, we constructed a POS tagger
for Contemporary Portuguese and Historical Portuguese, using a recurrent
neural network architecture. Traditionally the development of these tools
requires many handcraft features and external data, our POS tagger does
not use these elements. We trained a Bidirectional Long short-term memory
(BLSTM) network that benefits from the word embeddings and character
embeddings representations of the words, for morphosyntactic classification.
We tested our POS tagger on three different corpora: the original version
of the Mac-Morpho corpus, the revised version of the Mac-Morpho corpus,
and the Tycho Brahe corpus. We produce state-of-the-art POS taggers for
the three corpora: 97.83 percent accuracy on the original Mac-Morpho corpus,
97.65 percent accuracy on the revised Mac-Morpho and 97.35 percent accuracy on the
Tycho Brahe corpus. We also achieved an improvement in the three corpora
in out-of-vocabulary accuracy, that is the accuracy on words not seen in
training sentences. We also performed a comparative study to test which
different types of word embeddings (Word2Vec, FastText, Wang2Vec, and
Glove) is more suitable for Portuguese POS tagging. The Wang2Vec model
showed higher performance.
|
Page generated in 0.0511 seconds