• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • Tagged with
  • 12
  • 11
  • 10
  • 10
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stochastic dynamics of adhesion clusters under force

Erdmann, Thorsten January 2005 (has links)
Adhesion of biological cells to their environment is mediated by two-dimensional clusters of specific adhesion molecules which are assembled in the plasma membrane of the cells. Due to the activity of the cells or external influences, these adhesion sites are usually subject to physical forces. In recent years, the influence of such forces on the stability of cellular adhesion clusters was increasingly investigated. In particular, experimental methods that were originally designed for the investigation of single bond rupture under force have been applied to investigate the rupture of adhesion clusters. The transition from single to multiple bonds, however, is not trivial and requires theoretical modelling. <br><br> Rupture of biological adhesion molecules is a thermally activated, stochastic process. In this work, a stochastic model for the rupture and rebinding dynamics of clusters of parallel adhesion molecules under force is presented. In particular, the influence of (i) a constant force as it may be assumed for cellular adhesion clusters is investigated and (ii) the influence of a linearly increasing force as commonly used in experiments is considered. Special attention is paid to the force-mediated cooperativity of parallel adhesion bonds. Finally, the influence of a finite distance between receptors and ligands on the binding dynamics is investigated. Thereby, the distance can be bridged by polymeric linker molecules which tether the ligands to a substrate. / Adhäsionskontakte biologischer Zellen zu ihrer Umgebung werden durch zweidimensionale Cluster von spezifischen Adhäsionsmolekülen in der Plasmamembran der Zellen vermittelt. Aufgrund der Zellaktivität oder äußerer Einflüsse sind diese Kontakte normalerweise Kräften ausgesetzt. Der Einfluss mechanischer Kräfte auf die Stabilität zellulärer Adhäsionscluster wurde in den vergangenen Jahren verstärkt experimentell untersucht. Insbesondere wurden experimentelle Methoden, die zunächst vor allem zur Untersuchung des Reißssverhaltens einzelner Moleküle unter Kraft entwickelt wurden, zur Untersuchung von Adhäsionsclustern verwendet. Die Erweiterung von einzelnen auf viele Moleküle ist jedoch keineswegs trivial und erfordert theoretische Modellierung. <br><br> Das Reißen biologischer Adhäsionsmoleküle ist ein thermisch aktivierter, stochastischer Prozess. In der vorliegenden Arbeit wird ein stochastisches Modell zur Beschreibung der Reiß- und Rückbindedynamik von Clustern paralleler Adhäsionsmoleküle unter dem Einfluss einer mechanischen Kraft vorgestellt mit dem die Stabilität der Cluster untersucht wird. Im besonderen wird (i) der Einfluss einer konstante Kraft untersucht wie sie in zellulären Adhäsionsclustern angenommen werden kann und (ii) der Einfluss einer linear ansteigenden Kraft betrachtet wie sie gemeinhin in Experimenten angewendet wird. Besonderes Augenmerk liegt hier auf der durch die Kraft vermittelte Kooperativität paralleler Bindungen. Zuletzt wird der Einfluss eines endlichen Abstandes zwischen Rezeptoren und Liganden auf die Dynamik untersucht. Der Abstand kann hierbei durch Polymere, durch die die Liganden an das Substrat gebunden sind, überbrückt werden.
2

Diffusion on fractals and space-fractional diffusion equations

Prehl, Janett 16 July 2010 (has links) (PDF)
Ziel dieser Arbeit ist die Untersuchung der Sub- und Superdiffusion in fraktalen Strukturen. Der Fokus liegt auf zwei separaten Ansätzen, die entsprechend des Diffusionbereiches gewählt und variiert werden. Dadurch erhält man ein tieferes Verständnis und eine bessere Beschreibungsweise für beide Bereiche. Im ersten Teil betrachten wir subdiffusive Prozesse, die vor allem bei Transportvorgängen, z. B. in lebenden Geweben, eine grundlegende Rolle spielen. Hierbei modellieren wir den fraktalen Zustandsraum durch endliche Sierpinski Teppiche mit absorbierenden Randbedingungen und lösen dann die Mastergleichung zur Berechnung der Zeitentwicklung der Wahrscheinlichkeitsverteilung. Zur Charakterisierung der Diffusion auf regelmäßigen und zufälligen Teppichen bestimmen wir die Abfallzeit der Wahrscheinlichkeitsverteilung, die mittlere Austrittszeit und die Random Walk Dimension. Somit können wir den Einfluss zufälliger Strukturen auf die Diffusion aufzeigen. Superdiffusive Prozesse werden im zweiten Teil der Arbeit mit Hilfe der Diffusionsgleichung untersucht. Deren zweite Ableitung im Ort erweitern wir auf nichtganzzahlige Ordnungen, um die fraktalen Eigenschaften der Umgebung darzustellen. Die resultierende raum-fraktionale Diffusionsgleichung spannt ein Übergangsregime von der irreversiblen Diffusionsgleichung zur reversiblen Wellengleichung auf. Deren Lösungen untersuchen wir mittels verschiedener Entropien, wie Shannon, Tsallis oder Rényi Entropien, und deren Entropieproduktionsraten, welche natürliche Maße für die Irreversibilität sind. Das dabei gefundene Entropieproduktions-Paradoxon, d. h. ein unerwarteter Anstieg der Entropieproduktionsrate bei sinkender Irreversibilität des Prozesses, können wir nach geeigneter Reskalierung der Entropien auflösen. / The aim of this thesis is the examination of sub- and superdiffusive processes in fractal structures. The focus of the work concentrates on two separate approaches that are chosen and varied according to the corresponding regime. Thus, we obtain new insights about the underlying mechanisms and a more appropriate way of description for both regimes. In the first part subdiffusion is considered, which plays a crucial role for transport processes, as in living tissues. First, we model the fractal state space via finite Sierpinski carpets with absorbing boundary conditions and we solve the master equation to compute the time development of the probability distribution. To characterize the diffusion on regular as well as random carpets we determine the longest decay time of the probability distribution, the mean exit time and the Random walk dimension. Thus, we can verify the influence of random structures on the diffusive dynamics. In the second part of this thesis superdiffusive processes are studied by means of the diffusion equation. Its second order space derivative is extended to fractional order, which represents the fractal properties of the surrounding media. The resulting space-fractional diffusion equations span a linking regime from the irreversible diffusion equation to the reversible (half) wave equation. The corresponding solutions are analyzed by different entropies, as the Shannon, Tsallis or Rényi entropies and their entropy production rates, which are natural measures of irreversibility. We find an entropy production paradox, i. e. an unexpected increase of the entropy production rate by decreasing irreversibility of the processes. Due to an appropriate rescaling of the entropy we are able to resolve the paradox.
3

Diffusion on fractals and space-fractional diffusion equations

Prehl, Janett 02 July 2010 (has links)
Ziel dieser Arbeit ist die Untersuchung der Sub- und Superdiffusion in fraktalen Strukturen. Der Fokus liegt auf zwei separaten Ansätzen, die entsprechend des Diffusionbereiches gewählt und variiert werden. Dadurch erhält man ein tieferes Verständnis und eine bessere Beschreibungsweise für beide Bereiche. Im ersten Teil betrachten wir subdiffusive Prozesse, die vor allem bei Transportvorgängen, z. B. in lebenden Geweben, eine grundlegende Rolle spielen. Hierbei modellieren wir den fraktalen Zustandsraum durch endliche Sierpinski Teppiche mit absorbierenden Randbedingungen und lösen dann die Mastergleichung zur Berechnung der Zeitentwicklung der Wahrscheinlichkeitsverteilung. Zur Charakterisierung der Diffusion auf regelmäßigen und zufälligen Teppichen bestimmen wir die Abfallzeit der Wahrscheinlichkeitsverteilung, die mittlere Austrittszeit und die Random Walk Dimension. Somit können wir den Einfluss zufälliger Strukturen auf die Diffusion aufzeigen. Superdiffusive Prozesse werden im zweiten Teil der Arbeit mit Hilfe der Diffusionsgleichung untersucht. Deren zweite Ableitung im Ort erweitern wir auf nichtganzzahlige Ordnungen, um die fraktalen Eigenschaften der Umgebung darzustellen. Die resultierende raum-fraktionale Diffusionsgleichung spannt ein Übergangsregime von der irreversiblen Diffusionsgleichung zur reversiblen Wellengleichung auf. Deren Lösungen untersuchen wir mittels verschiedener Entropien, wie Shannon, Tsallis oder Rényi Entropien, und deren Entropieproduktionsraten, welche natürliche Maße für die Irreversibilität sind. Das dabei gefundene Entropieproduktions-Paradoxon, d. h. ein unerwarteter Anstieg der Entropieproduktionsrate bei sinkender Irreversibilität des Prozesses, können wir nach geeigneter Reskalierung der Entropien auflösen. / The aim of this thesis is the examination of sub- and superdiffusive processes in fractal structures. The focus of the work concentrates on two separate approaches that are chosen and varied according to the corresponding regime. Thus, we obtain new insights about the underlying mechanisms and a more appropriate way of description for both regimes. In the first part subdiffusion is considered, which plays a crucial role for transport processes, as in living tissues. First, we model the fractal state space via finite Sierpinski carpets with absorbing boundary conditions and we solve the master equation to compute the time development of the probability distribution. To characterize the diffusion on regular as well as random carpets we determine the longest decay time of the probability distribution, the mean exit time and the Random walk dimension. Thus, we can verify the influence of random structures on the diffusive dynamics. In the second part of this thesis superdiffusive processes are studied by means of the diffusion equation. Its second order space derivative is extended to fractional order, which represents the fractal properties of the surrounding media. The resulting space-fractional diffusion equations span a linking regime from the irreversible diffusion equation to the reversible (half) wave equation. The corresponding solutions are analyzed by different entropies, as the Shannon, Tsallis or Rényi entropies and their entropy production rates, which are natural measures of irreversibility. We find an entropy production paradox, i. e. an unexpected increase of the entropy production rate by decreasing irreversibility of the processes. Due to an appropriate rescaling of the entropy we are able to resolve the paradox.
4

Zufallsmatrixtheorie für die Lindblad-Mastergleichung

Lange, Stefan 31 January 2020 (has links)
Wir wenden die Zufallsmatrixtheorie auf den Lindblad-Superoperator L, d.h. den linearen Superoperator der Lindblad-Gleichung an und untersuchen die Verteilung und die Korrelationen der Eigenwerte von L zur Charakterisierung der Dynamik komplexer offener Quantensysteme. Zufallsmatrixensembles für L werden über Ensembles hermitescher und positiver Matrizen definiert, die alle freien Koeffizienten der Lindblad-Gleichung enthalten. Wir bestimmen Mittelwert und Breiten der Verteilung der von Null verschiedenen Eigenwerte von L in der komplexen Ebene und zeigen, wie diese Verteilung von den Verteilungen und Korrelationen der Eigenwerte der Koeffizientenmatrizen abhängt. In vielerlei Hinsicht ähneln die Ensembles für L dem Ginibreschen orthogonalen Ensemble. Beispielsweise finden wir das gleiche Abstoßungsverhalten zwischen benachbarten Eigenwerten. Alle Ergebnisse werden mit denen einer früheren Zufallsmatrixanalyse von Ratengleichungen verglichen. / Random matrix theory is applied to the Lindblad superoperator L, i.e., the linear superoperator of the Lindblad equation. We study the distribution and correlations of eigenvalues of L to characterize the dynamics of complex open quantum systems. Random matrix ensembles for L are given in terms of ensembles of hermitian and positive matrices, which contain all free coefficients of the Lindblad equation. We determine mean and widths of the distribution of the nonzero eigenvalues of L in the complex plane and show how this distribution depends on the distributions and correlations of eigenvalues of the matrices of coefficients. In many respects the ensembles for L resemble the Ginibre orthogonal ensemble. For instance, we find the same repulsion characteristics for neighboring eigenvalues. All results are compared to an earlier work on random matrix theory for rate equations.
5

Tensor product methods in numerical simulation of high-dimensional dynamical problems

Dolgov, Sergey 08 September 2014 (has links) (PDF)
Quantification of stochastic or quantum systems by a joint probability density or wave function is a notoriously difficult computational problem, since the solution depends on all possible states (or realizations) of the system. Due to this combinatorial flavor, even a system containing as few as ten particles may yield as many as $10^{10}$ discretized states. None of even modern supercomputers are capable to cope with this curse of dimensionality straightforwardly, when the amount of quantum particles, for example, grows up to more or less interesting order of hundreds. A traditional approach for a long time was to avoid models formulated in terms of probabilistic functions, and simulate particular system realizations in a randomized process. Since different times in different communities, data-sparse methods came into play. Generally, they aim to define all data points indirectly, by a map from a low amount of representers, and recast all operations (e.g. linear system solution) from the initial data to the effective parameters. The most advanced techniques can be applied (at least, tried) to any given array, and do not rely explicitly on its origin. The current work contributes further progress to this area in the particular direction: tensor product methods for separation of variables. The separation of variables has a long history, and is based on the following elementary concept: a function of many variables may be expanded as a product of univariate functions. On the discrete level, a function is encoded by an array of its values, or a tensor. Therefore, instead of a huge initial array, the separation of variables allows to work with univariate factors with much less efforts. The dissertation contains a short overview of existing tensor representations: canonical PARAFAC, Hierarchical Tucker, Tensor Train (TT) formats, as well as the artificial tensorisation, resulting in the Quantized Tensor Train (QTT) approximation method. The contribution of the dissertation consists in both theoretical constructions and practical numerical algorithms for high-dimensional models, illustrated on the examples of the Fokker-Planck and the chemical master equations. Both arise from stochastic dynamical processes in multiconfigurational systems, and govern the evolution of the probability function in time. A special focus is put on time propagation schemes and their properties related to tensor product methods. We show that these applications yield large-scale systems of linear equations, and prove analytical separable representations of the involved functions and operators. We propose a new combined tensor format (QTT-Tucker), which descends from the TT format (hence TT algorithms may be generalized smoothly), but provides complexity reduction by an order of magnitude. We develop a robust iterative solution algorithm, constituting most advantageous properties of the classical iterative methods from numerical analysis and alternating density matrix renormalization group (DMRG) techniques from quantum physics. Numerical experiments confirm that the new method is preferable to DMRG algorithms. It is as fast as the simplest alternating schemes, but as reliable and accurate as the Krylov methods in linear algebra.
6

Quantum Dissipative Dynamics and Decoherence of Dimers on Helium Droplets

Schlesinger, Martin 06 February 2012 (has links) (PDF)
In this thesis, quantum dynamical simulations are performed in order to describe the vibrational motion of diatomic molecules in a highly quantum environment, so-called helium droplets. We aim to reproduce and explain experimental findings which were obtained from dimers on helium droplets. Nanometer-sized helium droplets contain several thousands of 4-He atoms. They serve as a host for embedded atoms or molecules and provide an ultracold “refrigerator” for them. Spectroscopy of molecules in or on these droplets reveals information on both the molecule and the helium environment. The droplets are known to be in the superfluid He II phase. Superfluidity in nanoscale systems is a steadily growing field of research. Spectra obtained from full quantum simulations for the unperturbed dimer show deviations from measurements with dimers on helium droplets. These deviations result from the influence of the helium environment on the dimer dynamics. In this work, a well-established quantum optical master equation is used in order to describe the dimer dynamics effectively. The master equation allows to describe damping fully quantum mechanically. By employing that equation in the quantum dynamical simulation, one can study the role of dissipation and decoherence in dimers on helium droplets. The effective description allows to explain experiments with Rb-2 dimers on helium droplets. Here, we identify vibrational damping and associated decoherence as the main explanation for the experimental results. The relation between decoherence and dissipation in Morse-like systems at zero temperature is studied in more detail. The dissipative model is also used to investigate experiments with K-2 dimers on helium droplets. However, by comparing numerical simulations with experimental data, one finds that further mechanisms are active. Here, a good agreement is obtained through accounting for rapid desorption of dimers. We find that decoherence occurs in the electronic manifold of the molecule. Finally, we are able to examine whether superfluidity of the host does play a role in these experiments. / In dieser Dissertation werden quantendynamische Simulationen durchgeführt, um die Schwingungsbewegung zweiatomiger Moleküle in einer hochgradig quantenmechanischen Umgebung, sogenannten Heliumtröpfchen, zu beschreiben. Unser Ziel ist es, experimentelle Befunde zu reproduzieren und zu erklären, die von Dimeren auf Heliumtröpfchen erhalten wurden. Nanometergroße Heliumtröpfchen enthalten einige tausend 4-He Atome. Sie dienen als Wirt für eingebettete Atome oder Moleküle und stellen für dieseeinen ultrakalten „Kühlschrank“ bereit. Durch Spektroskopie mit Molekülen in oder auf diesen Tröpfchen erhält man Informationen sowohl über das Molekül selbst als auch über die Heliumumgebung. Man weiß, dass sich die Tröpfchen in der suprafluiden He II Phase befinden. Suprafluidität in Nanosystemen ist ein stetig wachsendes Forschungsgebiet. Spektren, die für das ungestörte Dimer durch voll quantenmechanische Simulationen erhalten werden, weichen von Messungen mit Dimeren auf Heliumtröpfchen ab. Diese Abweichungen lassen sich auf den Einfluss der Heliumumgebung auf die Dynamik des Dimers zurückführen. In dieser Arbeit wird eine etablierte quantenoptische Mastergleichung verwendet, um die Dynamik des Dimers effektiv zu beschreiben. Die Mastergleichung erlaubt es, Dämpfung voll quantenmechanisch zu beschreiben. Durch Verwendung dieser Gleichung in der Quantendynamik-Simulation lässt sich die Rolle von Dissipation und Dekohärenz in Dimeren auf Heliumtröpfchen untersuchen. Die effektive Beschreibung erlaubt es, Experimente mit Rb-2 Dimeren zu erklären. In diesen Untersuchungen wird Dissipation und die damit verbundene Dekohärenz im Schwingungsfreiheitsgrad als maßgebliche Erklärung für die experimentellen Resultate identifiziert. Die Beziehung zwischen Dekohärenz und Dissipation in Morse-artigen Systemen bei Temperatur Null wird genauer untersucht. Das Dissipationsmodell wird auch verwendet, um Experimente mit K-2 Dimeren auf Heliumtröpfchen zu untersuchen. Wie sich beim Vergleich von numerischen Simulationen mit experimentellen Daten allerdings herausstellt, treten weitere Mechanismen auf. Eine gute Übereinstimmung wird erzielt, wenn man eine schnelle Desorption der Dimere berücksichtigt. Wir stellen fest, dass ein Dekohärenzprozess im elektronischen Freiheitsgrad des Moleküls auftritt. Schlussendlich sind wir in der Lage herauszufinden, ob Suprafluidität des Wirts in diesen Experimenten eine Rolle spielt.
7

Quantum Dissipative Dynamics and Decoherence of Dimers on Helium Droplets

Schlesinger, Martin 16 December 2011 (has links)
In this thesis, quantum dynamical simulations are performed in order to describe the vibrational motion of diatomic molecules in a highly quantum environment, so-called helium droplets. We aim to reproduce and explain experimental findings which were obtained from dimers on helium droplets. Nanometer-sized helium droplets contain several thousands of 4-He atoms. They serve as a host for embedded atoms or molecules and provide an ultracold “refrigerator” for them. Spectroscopy of molecules in or on these droplets reveals information on both the molecule and the helium environment. The droplets are known to be in the superfluid He II phase. Superfluidity in nanoscale systems is a steadily growing field of research. Spectra obtained from full quantum simulations for the unperturbed dimer show deviations from measurements with dimers on helium droplets. These deviations result from the influence of the helium environment on the dimer dynamics. In this work, a well-established quantum optical master equation is used in order to describe the dimer dynamics effectively. The master equation allows to describe damping fully quantum mechanically. By employing that equation in the quantum dynamical simulation, one can study the role of dissipation and decoherence in dimers on helium droplets. The effective description allows to explain experiments with Rb-2 dimers on helium droplets. Here, we identify vibrational damping and associated decoherence as the main explanation for the experimental results. The relation between decoherence and dissipation in Morse-like systems at zero temperature is studied in more detail. The dissipative model is also used to investigate experiments with K-2 dimers on helium droplets. However, by comparing numerical simulations with experimental data, one finds that further mechanisms are active. Here, a good agreement is obtained through accounting for rapid desorption of dimers. We find that decoherence occurs in the electronic manifold of the molecule. Finally, we are able to examine whether superfluidity of the host does play a role in these experiments. / In dieser Dissertation werden quantendynamische Simulationen durchgeführt, um die Schwingungsbewegung zweiatomiger Moleküle in einer hochgradig quantenmechanischen Umgebung, sogenannten Heliumtröpfchen, zu beschreiben. Unser Ziel ist es, experimentelle Befunde zu reproduzieren und zu erklären, die von Dimeren auf Heliumtröpfchen erhalten wurden. Nanometergroße Heliumtröpfchen enthalten einige tausend 4-He Atome. Sie dienen als Wirt für eingebettete Atome oder Moleküle und stellen für dieseeinen ultrakalten „Kühlschrank“ bereit. Durch Spektroskopie mit Molekülen in oder auf diesen Tröpfchen erhält man Informationen sowohl über das Molekül selbst als auch über die Heliumumgebung. Man weiß, dass sich die Tröpfchen in der suprafluiden He II Phase befinden. Suprafluidität in Nanosystemen ist ein stetig wachsendes Forschungsgebiet. Spektren, die für das ungestörte Dimer durch voll quantenmechanische Simulationen erhalten werden, weichen von Messungen mit Dimeren auf Heliumtröpfchen ab. Diese Abweichungen lassen sich auf den Einfluss der Heliumumgebung auf die Dynamik des Dimers zurückführen. In dieser Arbeit wird eine etablierte quantenoptische Mastergleichung verwendet, um die Dynamik des Dimers effektiv zu beschreiben. Die Mastergleichung erlaubt es, Dämpfung voll quantenmechanisch zu beschreiben. Durch Verwendung dieser Gleichung in der Quantendynamik-Simulation lässt sich die Rolle von Dissipation und Dekohärenz in Dimeren auf Heliumtröpfchen untersuchen. Die effektive Beschreibung erlaubt es, Experimente mit Rb-2 Dimeren zu erklären. In diesen Untersuchungen wird Dissipation und die damit verbundene Dekohärenz im Schwingungsfreiheitsgrad als maßgebliche Erklärung für die experimentellen Resultate identifiziert. Die Beziehung zwischen Dekohärenz und Dissipation in Morse-artigen Systemen bei Temperatur Null wird genauer untersucht. Das Dissipationsmodell wird auch verwendet, um Experimente mit K-2 Dimeren auf Heliumtröpfchen zu untersuchen. Wie sich beim Vergleich von numerischen Simulationen mit experimentellen Daten allerdings herausstellt, treten weitere Mechanismen auf. Eine gute Übereinstimmung wird erzielt, wenn man eine schnelle Desorption der Dimere berücksichtigt. Wir stellen fest, dass ein Dekohärenzprozess im elektronischen Freiheitsgrad des Moleküls auftritt. Schlussendlich sind wir in der Lage herauszufinden, ob Suprafluidität des Wirts in diesen Experimenten eine Rolle spielt.
8

Gaussian Reaction Diffusion Master Equation: A Reaction Diffusion Master Equation With an Efficient Diffusion Model for Fast Exact Stochastic Simulations

Subic, Tina 13 September 2023 (has links)
Complex spatial structures in biology arise from random interactions of molecules. These molecular interactions can be studied using spatial stochastic models, such as Reaction Diffusion Master Equation (RDME), a mesoscopic model that subdivides the spatial domain into smaller, well mixed grid cells, in which the macroscopic diffusion-controlled reactions take place. While RDME has been widely used to study how fluctuations in number of molecules affect spatial patterns, simulations are computationally expensive and it requires a lower bound for grid cell size to avoid an apparent unphysical loss of bimolecular reactions. In this thesis, we propose Gaussian Reaction Diffusion Master Equation (GRDME), a novel model in the RDME framework, based on the discretization of the Laplace operator with Particle Strength Exchange (PSE) method with a Gaussian kernel. We show that GRDME is a computationally efficient model compared to RDME. We further resolve the controversy regarding the loss of bimolecular reactions and argue that GRDME can flexibly bridge the diffusion-controlled and ballistic regimes in mesoscopic simulations involving multiple species. To efficiently simulate GRDME, we develop Gaussian Next Subvolume Method (GNSM). GRDME simulated with GNSM up to six-times lower computational cost for a three-dimensional simulation, providing a significant computational advantage for modeling three-dimensional systems. The computational cost can be further lowered by increasing the so-called smoothing length of the Gassian jumps. We develop a guideline to estimate the grid resolution below which RDME and GRDME exhibit loss of bimolecular reactions. This loss of reactions has been considered unphysical by others. Here we show that this loss of bimolecular reactions is consistent with the well-established theory on diffusion-controlled reaction rates by Collins and Kimball, provided that the rate of bimolecular propensity is interpreted as the rate of the ballistic step, rather than the macroscopic reaction rate. We show that the reaction radius is set by the grid resolution. Unlike RDME, GRDME enables us to explicitly model various sizes of the molecules. Using this insight, we explore the diffusion-limited regime of reaction dynamics and discover that diffusion-controlled systems resemble small, discrete systems. Others have shown that a reaction system can have discreteness-induced state inversion, a phenomenon where the order of the concentrations differs when the system size is small. We show that the same reaction system also has diffusion-controlled state inversion, where the order of concentrations changes, when the diffusion is slow. In summary, we show that GRDME is a computationally efficient model, which enables us to include the information of the molecular sizes into the model.:1 Modeling Mesoscopic Biology 1.1 RDME Models Mesoscopic Stochastic Spatial Phenomena 1.2 A New Diffusion Model Presents an Opportunity For A More Efficient RDME 1.3 Can A New Diffusion Model Provide Insights Into The Loss Of Reactions? 1.4 Overview 2 Preliminaries 2.1 Reaction Diffusion Master Equation 2.1.1 Chemical Master Equation 2.1.2 Diffusion-controlled Bimolecular Reaction Rate 2.1.3 RDME is an Extention of CME to Spatial Problems 2.2 Next Subvolume Method 2.2.1 First Reaction Method 2.2.2 NSM is an Efficient Spatial Stochastic Algorithm for RDME 2.3 Discretization of the Laplace Operator Using Particle Strength Exchange 2.4 Summary 3 Gaussian Reaction Diffusion Master Equation 3.1 Design Constraints for the Diffusion Model in the RDME Framework 3.2 Gaussian-jump-based Model for RDME 3.3 Summary 4 Gaussian Next Subvolume Method 4.1 Constructing the neighborhood N 4.2 Finding the Diffusion Event 4.3 Comparing GNSM to NSM 4.4 Summary 5 Limits of Validity for (G)RDME with Macroscopic Bimolecular Propensity Rate 5.1 Previous Works 5.2 hmin Based on the Kuramoto length of a Grid Cell 5.3 hmin of the Two Limiting Regimes 5.4 hmin of Bimolecular Reactions for the Three Cases of Dimensionality 5.5 hmin of GRDME in Comparison to hmin of RDME 5.6 Summary 6 Numerical Experiments To Verify Accuracy, Efficiency and Validity of GRDME 6.1 Accuracy of the Diffusion Model 6.2 Computational Cost 6.3 hmin and Reaction Loss for (G)RDME With Macroscopic Bimolecular Propensity Rate kCK 6.3.1 Homobiomlecular Reaction With kCK at the Ballistic Limit 6.3.2 Homobiomlecular Reaction With kCK at the Diffusional Limit 6.3.3 Heterobiomlecular Reaction With kCK at the Ballistic Limit 6.4 Summary 7 (G)RDME as a Spatial Model of Collins-Kimball Diffusion-controlled Reaction Dynamics 7.1 Loss of Reactions in Diffusion-controlled Reaction Systems 7.2 The Loss of Reactions in (G)RDME Can Be Explained by Collins Kimball Theory 7.3 Cell Width h Sets the Reaction Radius σ∗ 7.4 Smoothing Length ε′ Sets the Size of the Molecules in the System 7.5 Heterobimolecular Reactions Can Only Be Modeled With GRDME 7.6 Zeroth Order Reactions Impose a Lower Limit on Diffusivity Dmin 7.6.1 Consistency of (G)RDME Could Be Improved by Redesigning Zeroth Order Reactions 7.7 Summary 8 Difussion-Controlled State Inversion 8.1 Diffusion-controlled Systems Resemble Small Systems 8.2 Slow Diffusion Leads to an Inversion of Steady States 8.3 Summary 9 Conclusion and Outlook 9.1 Two Physical Interpretations of (G)RDME 9.2 Advantages of GRDME 9.3 Towards Numerically Consistent (G)RDME 9.4 Exploring Mesoscopic Biology With GRDME Bibliography
9

Mesoscopic Models of Stochastic Transport

Radtke, Paul Kaspar 08 May 2018 (has links)
Transportphänomene treten in biologischen und künstlichen Systemen auf allen Längenskalen auf. In dieser Arbeit untersuchen wir sie für verschiedene Systeme aus einer mesoskopischen Perspektive, in der Fluktuationen physikalischer Größen um ihre Mittelwerte eine wichtige Rolle spielen. Im ersten Teil untersuchen wir die persistente Bewegung aktiver Brownscher Teilchen mit zusätzlichem Drehmoment, wie sie z.B. für Spermien oder Janus Teilchen auftritt. Wird ihre Bewegung auf einen Tunnel variierender Breite beschränkt, so setzt im thermischen Nichtgleichgewicht Transport ein; ungerichtete Fluktuationen des rauschhaften Antriebs werden gleichgerichtet. Hierdurch wird ein neuer Ratschentyp realisiert. Im zweiten Teil untersuchen wir den intrazellulären Cargotransport in den Axonen von Nervenzellen mithilfe molekularer Motoren. Sie werden als asymmetrischer Ausschlussprozess simuliert. Zusätzlich können die Cargos zwischen benachbarten Motoren ausgetauscht werden. Dadurch lassen sich charakteristische Eigenschaften des langsamen axonalen Transports mit einer einzigen Motorspezies reproduzieren. Bewerkstelligt wird dies durch die transiente Anbindung der Cargos an rückwärtslaufende Motorstaus. Im dritten Teil diskutieren wir resistive switching, die nicht volatile Widerstandsänderung eines Dielektrikums durch elektrische Impulse. Es wird für Anwendungen im Computerspeicher ausgenutzt, dem resistive RAM. Wir schlagen ein auf Sauerstoffvakanzen basierendes stochastisches Gitterhüpfmodell vor. Wir definieren binäre logische Zustände mit Hilfe der zugrunde liegenden Vakanzenverteilung und definieren Schreibe- und Leseoperationen durch Spannungsimpulse für ein solches Speicherelement. Überlegungen über die Unterscheidbarkeit dieser Operationen unter Fluktuationen zusammen mit der Deutlichkeit der unterschiedlichen Widerstandszustände selbst ermöglichen es uns, eine optimale Vakanzenzahl vorherzusagen. / Transport phenomena occur in biological and artificial systems at all length scales. In this thesis, we investigate them for various systems from a mesoscopic perspective, in which fluctuations around their average properties play an important role. In the first part, we investigate the persistent diffusive motion of active Brownian particles with an additional torque. It can appear in many real life systems, for example in sperm cells or Janus particles. If their motion is confined to a tunnel of varying width, transport arises out of thermal equilibrium; unbiased fluctuations of the noisy drive are rectified. This way, we have realized a novel kind of ratchet. In the second part, we study intracellular cargo transport in the axons of nerve cells by molecular motors. They are modeled by an asymmetric exclusion process. In a new approach, we add a cargo exchange interaction between the motors. This way, the characteristics of slow axonal transport can be accounted for with a single motor species. It is explained by the transient attachment of cargos to reverse walking motors jams. In the third part, we discuss resistive switching, the non-volatile change of resistance in a dielectric due to electric pulses. It is exploited for applications in computer memory, the resistive random access memory (ReRAM). We propose a stochastic lattice hopping model based on the on oxygen vacancies. We define binary logical states by means of the underlying vacancy distributions, and establish a framework of writing and reading such a memory element with voltage pulses. Considerations about the discriminability of these operations under fluctuations together with the markedness of the resistive switching effect itself enable us to predict an optimal vacancy number.
10

Tensor product methods in numerical simulation of high-dimensional dynamical problems

Dolgov, Sergey 20 August 2014 (has links)
Quantification of stochastic or quantum systems by a joint probability density or wave function is a notoriously difficult computational problem, since the solution depends on all possible states (or realizations) of the system. Due to this combinatorial flavor, even a system containing as few as ten particles may yield as many as $10^{10}$ discretized states. None of even modern supercomputers are capable to cope with this curse of dimensionality straightforwardly, when the amount of quantum particles, for example, grows up to more or less interesting order of hundreds. A traditional approach for a long time was to avoid models formulated in terms of probabilistic functions, and simulate particular system realizations in a randomized process. Since different times in different communities, data-sparse methods came into play. Generally, they aim to define all data points indirectly, by a map from a low amount of representers, and recast all operations (e.g. linear system solution) from the initial data to the effective parameters. The most advanced techniques can be applied (at least, tried) to any given array, and do not rely explicitly on its origin. The current work contributes further progress to this area in the particular direction: tensor product methods for separation of variables. The separation of variables has a long history, and is based on the following elementary concept: a function of many variables may be expanded as a product of univariate functions. On the discrete level, a function is encoded by an array of its values, or a tensor. Therefore, instead of a huge initial array, the separation of variables allows to work with univariate factors with much less efforts. The dissertation contains a short overview of existing tensor representations: canonical PARAFAC, Hierarchical Tucker, Tensor Train (TT) formats, as well as the artificial tensorisation, resulting in the Quantized Tensor Train (QTT) approximation method. The contribution of the dissertation consists in both theoretical constructions and practical numerical algorithms for high-dimensional models, illustrated on the examples of the Fokker-Planck and the chemical master equations. Both arise from stochastic dynamical processes in multiconfigurational systems, and govern the evolution of the probability function in time. A special focus is put on time propagation schemes and their properties related to tensor product methods. We show that these applications yield large-scale systems of linear equations, and prove analytical separable representations of the involved functions and operators. We propose a new combined tensor format (QTT-Tucker), which descends from the TT format (hence TT algorithms may be generalized smoothly), but provides complexity reduction by an order of magnitude. We develop a robust iterative solution algorithm, constituting most advantageous properties of the classical iterative methods from numerical analysis and alternating density matrix renormalization group (DMRG) techniques from quantum physics. Numerical experiments confirm that the new method is preferable to DMRG algorithms. It is as fast as the simplest alternating schemes, but as reliable and accurate as the Krylov methods in linear algebra.

Page generated in 0.1065 seconds