1 |
Matematiskt innehåll och förmågor : Lärares tankar om en uppgift i matematikGrundén, Helena January 2011 (has links)
Lärare planerar undervisning och väljer vad eleverna ska arbeta med. Denna studie syftar till att undersöka lärares tankar om vilket matematiskt innehåll elever möter samt vilka förmågor elever tränar i arbetet med en uppgift i matematik. Studien genomfördes genom intervjuer med fem lärare som fick svara på frågor kring en uppgift i matematik. De övergripande frågorna handlade om matematiskt innehåll och förmågor, men även uppgiftens koppling till Lgr11 efterfrågades. Lärarnas svar kopplades till de specifika kunskaper som behövs för att undervisa i matematik. Studien visade att lärarna i hög utsträckning sorterade in uppgiften inom området kombinatorik och att de framförallt såg uppgiften som en problemlösningsuppgift. När lärarna diskuterade det matematiska innehållet var det ingen som framhöll kombinatorikens olika generella formler och heller ingen som angav kombinatoriken som en grund för att förstå begreppet sannolikhet. Lärarna motiverade främst användandet av uppgiften med de i kursplanen beskrivna långsiktiga målen, förmågorna, men frågetecken kring hur lärarna tolkar dessa förmågor dök upp under studiens gång. I analysen av uppgiften visade lärarna prov på flera aspekter av Mathematical knowledge for teaching, även om studien också visade att de specifika kunskaper som krävs för undervisning i matematik kan utvecklas
|
2 |
The Development of Algebraic Reasoning in Undergraduate Elementary Preservice TeachersHayata, Carole Anne 12 1900 (has links)
Although studies of teacher preparation programs have documented positive changes in mathematical knowledge for teaching with preservice teachers in mathematics content courses, this study focused on the impact of a mathematics methods course and follow-up student teaching assignment. The presumption was that preservice teachers would show growth in their mathematical knowledge during methods since the course was structured around active participation in mathematics, research-based pedagogy, and was concurrent with a two-day-per-week field experience in a local elementary school. Survey instruments utilized the computer adaptive test version of the Mathematical Knowledge for Teaching (MKT) measures from the Learning Mathematics for Teaching Project, and the Attitudes and Beliefs (towards mathematics) survey from the Mathematical Education of Elementary Teachers Project. A piecewise growth model analysis was conducted on data collected from 176 participants at 5 time-points (methods, 3 time-points; student teaching, 2 time-points) over a 9 month period. Although the participants' demographics were typical of U.S. undergraduate preservice teachers, findings suggest that initial low-level of mathematical knowledge, and a deep-rooted belief that there is only one way to solve mathematics problems, limited the impact of the methods and student teaching courses. The results from this study indicate that in (a) number sense, there was no significant change during methods (p = .392), but a significant decrease during student teaching (p < .001), and in (b) algebraic thinking, there was a significant decrease during methods (p < .001), but no significant change during student teaching (p = .653). Recommendations include that the minimum teacher preparation program entry requirements for mathematical knowledge be raised and that new teachers participate in continued professional development emphasizing both mathematical content knowledge and reform-based pedagogy to continue to peel away deep-rooted beliefs towards mathematics.
|
3 |
An exploratory study of teachers’ use of mathematical knowledge for teaching to support mathematical argumentation in middle-grades classroomsKim, Hee-Joon 30 January 2012 (has links)
Mathematical argumentation is fundamental to doing mathematics and developing
new knowledge. Working from the view that mathematical argumentation is also integral
to teaching and learning mathematics, this study investigated teachers’ use of
mathematical knowledge for teaching (MKT) to support student participation in
mathematical argumentation. Classroom observations were made of three case-study
teachers’ implementation of a three-day curriculum unit on mathematical argumentation
and supplemented with paper and pencil assessments of teachers’ MKT. Teaching moves,
or teachers’ actions directed toward supporting argumentation, were identified as a unit
of discourse in which MKT-in-action appeared. Teachers’ MKT showed up in three types
of teaching moves including: Revoicing by Reformulation, Responding to Student
Difficulties, and Pressing for Generalization in Defining. MKT that was evident in these
moves included knowledge of core information in argument, heuristic methods, and
vii
formulation of mathematical definition through and in argumentation. Findings highlight
that supporting mathematical argumentation requires teachers to have a sophisticated
understanding of the subject matter as well as how concepts develop through
argumentation. Findings have limitations in understanding complex teaching practices by
considering MKT as a single factor. The study has implications on teacher learning and
MKT assessments. / text
|
4 |
Lärares introduktion av matematiklektioner : Vilka lärarkunskaper används och hur används dessa?Wallenström, Petra, Oreskovic, Johanna January 2018 (has links)
Syftet med föreliggande studie är att beskriva hur det matematiska innehållet beskrivs och förmedlas av lärare vid introduktion av matematiklektioner. Observationer av åtta grundskolelärare har genomförts. Balls, Thames och Phelps (2008) modell för MKT har använts för att sortera och analysera studiens empiri. Resultatet visar att lärarna kombinerar både ämnes- och pedagogiska kunskaper vid introduktion av matematiklektioner. Dock missar samtliga lärare att förklara och förmedla målet med matematiklektionen till eleverna. Resultatet diskuteras utifrån ett pragmatiskt perspektiv och en av slutsatserna som dras är att modellen för MKT kan användas av lärare som underlag vid planering och genomförande av matematiklektioner.
|
5 |
Vilket innehåll och hur ska det läras ut? : En kvalitativ intervjustudie om lärares kunskaper inom programmering i matematikämnet. / What content and how should it be taught? : A qualitative interview study about teachers' knowledge of programming in mathematics.Hultman, Sanna January 2023 (has links)
Programmering är ett relativt nytt innehåll i matematikämnet för årskurs 1–3 då det infördes i läroplanen 2018. Därmed finns ett intresse att undersöka hur lärare bedriver programmeringsundervisning. Denna studie genomfördes i syfte att bidra med kunskap om hur lärare i grundskolans tidiga år planerar och genomför undervisning omprogrammering. För att uppnå syftet användes frågeställningar kring hur lärare planerar undervisning om programmering, hur lärare arbetar med programmering i matematikundervisningen, samt vilka kunskaper lärare behöver för att undervisa om programmering. Fem semistrukturerade intervjuer har genomförts med verksamma lärare för att samla in data som analyserats utifrån det teoretiska ramverket Mathematical Knowledge for Teaching (MKT). Studiens resultat sammanställer vilka lärarkunskaper som framkommit inom programmering i relation till kunskapskategorierna knowledge of content and curriculum (KCC), knowledge of content and students (KCS), common content knowledge (CCK) samt knowledge of content and teaching (KCT) inom MKT. Resultatet visar att stegvisa instruktioner är ett centralt programmeringsinnehåll vid lärarnas planering, samt att både analoga och digitala arbetssätt används i matematikundervisningen. Vid analoga arbetssätt kan eleverna programmera varandra som robotar, och vid digitala arbetssätt kan eleverna arbeta i programmet ScratchJr.
|
6 |
Prospective Teachers' Knowledge of Secondary and Abstract Algebra and their Use of this Knowledge while Noticing Students' Mathematical ThinkingSerbin, Kaitlyn Stephens 03 August 2021 (has links)
I examined the development of three Prospective Secondary Mathematics Teachers' (PSMTs) understandings of connections between concepts in Abstract Algebra and high school Algebra, as well as their use of this understanding while engaging in the teaching practice of noticing students' mathematical thinking. I drew on the theory, Knowledge of Nonlocal Mathematics for Teaching, which suggests that teachers' knowledge of advanced mathematics can become useful for teaching when it first helps reshape their understanding of the content they teach. I examined this reshaping process by investigating how PSMTs extended, deepened, unified, and strengthened their understanding of inverses, identities, and binary operations over time. I investigated how the PSMTs' engagement in a Mathematics for Secondary Teachers course, which covered connections between inverse functions and equation solving and the abstract algebraic structures of groups and rings, supported the reshaping of their understandings. I then explored how the PSMTs used their mathematical knowledge as they engaged in the teaching practice of noticing hypothetical students' mathematical thinking. I investigated the extent to which the PSMTs' noticing skills of attending, interpreting, and deciding how to respond to student thinking developed as their mathematical understandings were reshaped.
There were key similarities in how the PSMTs reshaped their knowledge of inverse, identity, and binary operation. The PSMTs all unified the additive identity, multiplicative identity, and identity function as instantiations of the same overarching identity concept. They each deepened their understanding of inverse functions. They all unified additive, multiplicative, and function inverses under the overarching inverse concept. They also strengthened connections between inverse functions, the identity function, and function composition. They all extended the contexts in which their understandings of inverses were situated to include trigonometric functions. These changes were observed across all the cases, but one change in understanding was not observed in each case: one PSMT deepened his understanding of the identity function, whereas the other two had not yet conceptualized the identity function as a function in its own right; rather, they perceived it as x, the output of the composition of inverse functions.
The PSMTs had opportunities to develop these understandings in their Mathematics for Secondary Teachers course, in which the instructor led the students to reason about the inverse and identity group axioms and reflect on the structure of additive, multiplicative, and compositional inverses and identities. The course also covered the use of inverses, identities, and binary operations used while performing cancellation in the context of equation solving.
The PSMTs' noticing skills improved as their mathematical knowledge was reshaped. The PSMTs' reshaped understandings supported them paying more attention to the properties and strategies evident in a hypothetical student's work and know which details were relevant to attend to. The PSMTs' reshaped understandings helped them more accurately interpret a hypothetical student's understanding of the properties, structures, and operations used in equation solving and problems about inverse functions. Their reshaped understandings also helped them give more accurate and appropriate suggestions for responding to a hypothetical student in ways that would build on and improve the student's understanding. / Doctor of Philosophy / Once future mathematics teachers learn about how advanced mathematics content is related to high school algebra content, they can better understand the algebra content they may teach. The future teachers in this study took a Mathematics for Secondary Teachers course during their senior year of college. This course gave them opportunities to make connections between advanced mathematics and high school mathematics. After this course, they better understood the mathematical properties that people use while equation solving, and they improved their teaching practice of making sense of high school students' mathematical thinking about inverses and equation solving. Overall, making connections between the advanced mathematics content they learned during college and the algebra content related to inverses and equation solving that they teach in high school helped them improve their teaching practice.
|
7 |
Att undervisa i programmering utan programmeringsutbildning.En intervjustudie hur lärare utan utbildning i programmering implementerar programmering i sin undervisning.Bengtsson, Maja January 2021 (has links)
In the fall of 2018, programming was implemented in the swedish curriculum and then became a new element in mathematics education for grades 1-3. Teachers who took their degree before the implementation, lacks education in programming and there is interest in finding out how teaching about programming is conducted since it became part of the curriculum. The purpose of this study was to contribute with knowledge about how teachers have implemented programming in their teaching even though they lack education in it. Four semi-structured interviews have been conducted where the data from the interviews has been analyzed from Mathematical Knowledge for Teaching. The result shows that teachers without education in programming find it difficult to plan instruction in programming by themselves. In the teaching of programming the teachers focus on the central concepts in programming and that the programming should interest the students. It was difficult for teachers to assess the students in programming and the only assessment that teachers make is the formative assessment. / Hösten 2018 implementerades programmering i den svenska läroplanen och blev då ett nytt moment inom matematikundervisningen för årskurs 1-3. Lärare som innan detta tog sin lärarexamen saknar utbildning inom programmering och det finns intresse att ta reda på hur undervisningen kring programmering bedrivs sedan det blev en del av läroplanen. Syftet med denna studie var att bidra med kunskap om hur lärare har implementerat programmering i sin undervisning trots att de saknar utbildning inom det. Fyra stycken semistrukturerade intervjuer har gjorts där datan från intervjuerna har analyserats utifrån Mathematical Knowledge for Teaching. Resultatet visar på att lärare utan utbildning inom programmering har svårigheter att på egen hand planera undervisning i programmering. Under genomförandet av undervisningen fokuserar lärarna på att befästa centrala begrepp inom programmering och att väcka ett intresse hos eleverna. Det upplevdes svårt för lärarna att bedöma eleverna inom programmering och den enda bedömning som lärarna gör är den formativa bedömningen.
|
8 |
Att undervisa i programmering utan programmeringsutbildning.En intervjustudie hur lärare utan utbildning i programmering implementerar programmering i sin undervisning.Bengtsson, Maja January 2021 (has links)
In the fall of 2018, programming was implemented in the swedish curriculum and then became a new element in mathematics education for grades 1-3. Teachers who took their degree before the implementation, lacks education in programming and there is interest in finding out how teaching about programming is conducted since it became part of the curriculum. The purpose of this study was to contribute with knowledge about how teachers have implemented programming in their teaching even though they lack education in it. Four semi-structured interviews have been conducted where the data from the interviews has been analyzed from Mathematical Knowledge for Teaching. The result shows that teachers without education in programming find it difficult to plan instruction in programming by themselves. In the teaching of programming the teachers focus on the central concepts in programming and that the programming should interest the students. It was difficult for teachers to assess the students in programming and the only assessment that teachers make is the formative assessment. / Sammanfattning Hösten 2018 implementerades programmering i den svenska läroplanen och blev då ett nytt moment inom matematikundervisningen för årskurs 1-3. Lärare som innan detta tog sin lärarexamen saknar utbildning inom programmering och det finns intresse att ta reda på hur undervisningen kring programmering bedrivs sedan det blev en del av läroplanen. Syftet med denna studie var att bidra med kunskap om hur lärare har implementerat programmering i sin undervisning trots att de saknar utbildning inom det. Fyra stycken semistrukturerade intervjuer har gjorts där datan från intervjuerna har analyserats utifrån Mathematical Knowledge for Teaching. Resultatet visar på att lärare utan utbildning inom programmering har svårigheter att på egen hand planera undervisning i programmering. Under genomförandet av undervisningen fokuserar lärarna på att befästa centrala begrepp inom programmering och att väcka ett intresse hos eleverna. Det upplevdes svårt för lärarna att bedöma eleverna inom programmering och den enda bedömning som lärarna gör är den formativa bedömningen.
|
9 |
Student Teacher Knowledge and Its Impact on Task DesignCannon, Tenille 11 July 2008 (has links)
This study investigated how student teachers used their mathematical knowledge for teaching and pedagogical knowledge to design and modify mathematical tasks. It also examined the relationship between teacher knowledge and the cognitive demands of a task. The study relied heavily on the framework in Hill, Ball, and Shilling (2008), which describes the different domains of knowledge in mathematical knowledge for teaching, and the framework on the cognitive demands of mathematical tasks in Stein, Smith, Henningsen, and Silver (2000). Results of the study indicated that the student teachers used their common content knowledge when they lacked sufficient knowledge in other domains, especially specialized content knowledge, to perform a particular job of teaching. There was often a decrease in the cognitive demands of a task when it was modified by the student teachers. These drops were often associated with a lack of specialized content knowledge.
|
10 |
Improving Teaching, Improving Learning, Improving as a Teacher : Mathematical Knowledge for Teaching as an Object of Learningvan Bommel, Jorryt January 2012 (has links)
This thesis concerns teaching in mathematics teacher education and is based on the implementation of a learning study at teacher training. The overall purpose was to investigate in what way teacher training could facilitate and improve student teachers’ Mathematical Knowledge for Teaching (MKT). In the learning study design, MKT was conceptualized as an object of learning with a meta-character, which meant that it was applicable to and transferable between different content areas of mathematics. This made it possible to vary the mathematical content between lessons but to keep the object of learning constant. Four critical features of the object of learning were found, giving insight in some of the problems related to teacher education. Student teachers had to be able to formulate proper aims for a lesson and to give detailed descriptions of elements of MKT for coherence in their MKT to occur. A focus on student teachers’ role as mathematics teachers had to be established and finally, sufficient mathematical knowledge was found to be a prerequisite for their MKT to develop. The study shows that enactment of these critical features improved the teaching by the teacher educators, which in its turn improved the student teachers’ learning with regard to MKT. The study also indicates that the prescribed design is worth considering for future collaborative efforts of improving teaching where other objects of learning with a similar meta-character are involved.
|
Page generated in 0.1496 seconds