Spelling suggestions: "subject:"matricialmente""
1 |
Improved interpolating fields in the Schrödinger FunctionalMolke, Heiko 04 May 2004 (has links)
Diese Arbeit befasst sich mit der Konstruktion verbesserter interpolierender Mesonenfelder in der Gitter-QCD. Sie hat das primäre Ziel, Korrelationsfunktionen mit einem deutlich reduzierten Beitrag des ersten angeregten Mesonenzustandes zu erhalten, um eine sicherere Bestimmung von Massen und Zerfallskonstanten der Mesonen zu ermöglichen. Eine Basis solcher interpolierender Mesonen-Randfelder wird im Schrödinger Funktional in der gequenchten Approximation benutzt. Verbesserte interpolierende Felder zur Bestimmung spektraler Eigenschaften leichter pseudoskalarer Mesonen sowie des B--Mesonensystems (letzteres wird in führender Ordnung der HQET behandelt) werden auf mehreren Wegen gewonnen. Ein Hilfsmittel, verbesserte Felder zu konstruieren, ist das Variationsprinzip. Es wird auf Matrizen von Rand-Rand-Korrelationsfunktionen angewandt. Darüber hinaus werden alternative Analysemethoden vorgestellt. Sie erlauben sowohl die Abschätzung der Grundzustandsenergie als auch der Energielücke zum ersten radial angeregten Zustand. Die Untersuchung des B-Mesonensystems ist in vielfacher Hinsicht interessant. Zum einen werden sie in sogenannten B-Fabriken, wie z. B. im BaBar- und Belle-Experiment, in grosser Zahl erzeugt, um ihre charakteristischen Eigenschaften (Masse, Zerfallsbreiten, CP-Symmetrie verletzende Zerfälle usw.) genau zu messen. Zum anderen müssen die von der Theorie vorhergesagten auftretenden Phänomene, wie z. B. die CP-Verletzung, auch verstanden werden. Die Methoden der Gittereichtheorie können unter anderem dabei helfen, bestehende Unsicherheiten in CKM-Matrixelementen durch nicht-perturbative Bestimmungen hadronischer Massen, Zerfallskonstanten usw. zu reduzieren. / The general aim of this thesis is to probe several methods to extract low-energy quantities (masses, decay constants, ...) more reliably in lattice gauge theory. We will investigate how to suppress contributions to correlation functions from the first excited meson state. We will show how to construct so-called improved meson interpolating fields, as they have only small contributions from the first excited meson state, from a basis of interpolating fields at the Schrödinger functional boundaries. The variational principle is applied to correlation matrices that are built up from boundary-to-boundary correlation functions. It will deliver information about the lowest-lying meson states in the considered channel. We also investigate the possibility to cancel the first excited state contribution by means of an alternative method. Moreover, an alternative way to extract the mass gap between the ground and the first excited state will be presented. Monte-Carlo simulations at several lattice spacings are performed in the ''quenched approximation''. Spectral properties of light-light and static-light pseudoscalar mesons are investigated. The first type is realised by two mass-degenerate quarks at about the strange quark mass, the second type by a light quark with the mass of the strange quark and an infinitely heavy b-quark. The light-light channel describes unphysically heavy pions and the static-light one is an approximation for the Bs-meson. The investigation of the latter case is particularly interesting since so-called B--factories, such as BaBar and Belle, are gathering physical information about masses, decay modes and CP--violating effects in the B--meson system.
|
2 |
Rare events and other deviations from universality in disordered conductorsUski, Ville 18 July 2001 (has links) (PDF)
Gegenstand dieser Arbeit ist die Untersuchung von statistischen Eigenschaften der ungeordneten Metallen im Rahmen des Anderson-Modells der Lokalisierung. Betrachtet wird ein Elektron auf einem Gitter mit "Nächste-Nachbarn-Hüpfen" und zufälligen potentiellen Gitterplatzenergien. Wegen der Zufälligkeit zeigen die Elektroneigenschaften, zum Beispiel die Eigenenergien und -zustände, irreguläre Fluktuationen, deren Statistik von der Amplitude der Potentialenergie abhängt. Mit steigender Amplitude wird das Elektron immer mehr lokalisiert, was schliesslich zum Metall-Isolator-Übergang führt. In dieser Arbeit wird die Statistik insbesondere im metallischen Bereich untersucht, und dadurch der Einfluss der Lokalisierung an den Eigenschaften des Systems betrachtet. Zuerst wird die Statistik der Matrixelemente des Dipoloperators untersucht. Die numerischen Ergebnisse für das Anderson-Modell werden mit Vorhersagen der semiklassischen Näherung verglichen. Dann wird der spektrale Strukturfaktor betrachtet, der als Fourier-Transformation der zwei-Punkt Zustandsdichtekorrelationsfunktion definiert wird. Dabei werden besonders die nichtuniversellen Abweichungen von den Vorhersagen der Zufallsmatrixtheorie untersucht. Die Abweichungen werden numerisch ermittelt, und danach mit den analytischen Vorhersagen verglichen. Die Statistik der Wellenfunktionen zeigt ebenfalls Abweichungen von der Zufallsmatrixtheorie. Die Abweichungen sind am größten für Statistik der großen Wellenfunktionsamplituden, die sogenannte seltene Ereignisse darstellen. Die analytischen Vorhersagen für diese Statistik sind teilweise widersprüchlich, und deshalb ist es interessant, sie auch numerisch zu untersuchen.
|
3 |
Improving predictions for collider observables by consistently combining fixed order calculations with resummed results in perturbation theorySchönherr, Marek 12 March 2012 (has links) (PDF)
With the constantly increasing precision of experimental data acquired at the current collider experiments Tevatron and LHC the theoretical uncertainty on the prediction of multiparticle final states has to decrease accordingly in order to have meaningful tests of the underlying theories such as the Standard Model. A pure leading order calculation, defined in the perturbative expansion of said theory in the interaction constant, represents the classical limit to such a quantum field theory and was already found to be insufficient at past collider experiments, e.g. LEP or Hera. Such a leading order calculation can be systematically improved in various limits. If the typical scales of a process are large and the respective coupling constants are small, the inclusion of fixed-order higher-order corrections then yields quickly converging predictions with much reduced uncertainties. In certain regions of the phase space, still well within the perturbative regime of the underlying theory, a clear hierarchy of the inherent scales, however, leads to large logarithms occurring at every order in perturbation theory. In many cases these logarithms are universal and can be resummed to all orders leading to precise predictions in these limits. Multiparticle final states now exhibit both small and large scales, necessitating a description using both resummed and fixed-order results. This thesis presents the consistent combination of two such resummation schemes with fixed-order results. The main objective therefor is to identify and properly treat terms that are present in both formulations in a process and observable independent manner.
In the first part the resummation scheme introduced by Yennie, Frautschi and Suura (YFS), resumming large logarithms associated with the emission of soft photons in massive Qed, is combined with fixed-order next-to-leading matrix elements. The implementation of a universal algorithm is detailed and results are studied for various precision observables in e.g. Drell-Yan production or semileptonic B meson decays. The results obtained for radiative tau and muon decays are also compared to experimental data.
In the second part the resummation scheme introduced by Dokshitzer, Gribov, Lipatov, Altarelli and Parisi (DGLAP), resumming large logarithms associated with the emission of collinear partons applicable to both Qcd and Qed, is combined with fixed-order next-to-leading matrix elements. While the focus rests on its application to Qcd corrections, this combination is discussed in detail and the implementation is presented. The resulting predictions are evaluated and compared to experimental data for a multitude of processes in four different collider environments. This formulation has been further extended to accommodate real emission corrections to beyond next-to-leading order radiation otherwise described only by the DGLAP resummation. Its results are also carefully evaluated and compared to a wide range of experimental data.
|
4 |
Rare events and other deviations from universality in disordered conductorsUski, Ville 12 July 2001 (has links)
Gegenstand dieser Arbeit ist die Untersuchung von statistischen Eigenschaften der ungeordneten Metallen im Rahmen des Anderson-Modells der Lokalisierung. Betrachtet wird ein Elektron auf einem Gitter mit "Nächste-Nachbarn-Hüpfen" und zufälligen potentiellen Gitterplatzenergien. Wegen der Zufälligkeit zeigen die Elektroneigenschaften, zum Beispiel die Eigenenergien und -zustände, irreguläre Fluktuationen, deren Statistik von der Amplitude der Potentialenergie abhängt. Mit steigender Amplitude wird das Elektron immer mehr lokalisiert, was schliesslich zum Metall-Isolator-Übergang führt. In dieser Arbeit wird die Statistik insbesondere im metallischen Bereich untersucht, und dadurch der Einfluss der Lokalisierung an den Eigenschaften des Systems betrachtet. Zuerst wird die Statistik der Matrixelemente des Dipoloperators untersucht. Die numerischen Ergebnisse für das Anderson-Modell werden mit Vorhersagen der semiklassischen Näherung verglichen. Dann wird der spektrale Strukturfaktor betrachtet, der als Fourier-Transformation der zwei-Punkt Zustandsdichtekorrelationsfunktion definiert wird. Dabei werden besonders die nichtuniversellen Abweichungen von den Vorhersagen der Zufallsmatrixtheorie untersucht. Die Abweichungen werden numerisch ermittelt, und danach mit den analytischen Vorhersagen verglichen. Die Statistik der Wellenfunktionen zeigt ebenfalls Abweichungen von der Zufallsmatrixtheorie. Die Abweichungen sind am größten für Statistik der großen Wellenfunktionsamplituden, die sogenannte seltene Ereignisse darstellen. Die analytischen Vorhersagen für diese Statistik sind teilweise widersprüchlich, und deshalb ist es interessant, sie auch numerisch zu untersuchen.
|
5 |
Improving predictions for collider observables by consistently combining fixed order calculations with resummed results in perturbation theorySchönherr, Marek 20 January 2012 (has links)
With the constantly increasing precision of experimental data acquired at the current collider experiments Tevatron and LHC the theoretical uncertainty on the prediction of multiparticle final states has to decrease accordingly in order to have meaningful tests of the underlying theories such as the Standard Model. A pure leading order calculation, defined in the perturbative expansion of said theory in the interaction constant, represents the classical limit to such a quantum field theory and was already found to be insufficient at past collider experiments, e.g. LEP or Hera. Such a leading order calculation can be systematically improved in various limits. If the typical scales of a process are large and the respective coupling constants are small, the inclusion of fixed-order higher-order corrections then yields quickly converging predictions with much reduced uncertainties. In certain regions of the phase space, still well within the perturbative regime of the underlying theory, a clear hierarchy of the inherent scales, however, leads to large logarithms occurring at every order in perturbation theory. In many cases these logarithms are universal and can be resummed to all orders leading to precise predictions in these limits. Multiparticle final states now exhibit both small and large scales, necessitating a description using both resummed and fixed-order results. This thesis presents the consistent combination of two such resummation schemes with fixed-order results. The main objective therefor is to identify and properly treat terms that are present in both formulations in a process and observable independent manner.
In the first part the resummation scheme introduced by Yennie, Frautschi and Suura (YFS), resumming large logarithms associated with the emission of soft photons in massive Qed, is combined with fixed-order next-to-leading matrix elements. The implementation of a universal algorithm is detailed and results are studied for various precision observables in e.g. Drell-Yan production or semileptonic B meson decays. The results obtained for radiative tau and muon decays are also compared to experimental data.
In the second part the resummation scheme introduced by Dokshitzer, Gribov, Lipatov, Altarelli and Parisi (DGLAP), resumming large logarithms associated with the emission of collinear partons applicable to both Qcd and Qed, is combined with fixed-order next-to-leading matrix elements. While the focus rests on its application to Qcd corrections, this combination is discussed in detail and the implementation is presented. The resulting predictions are evaluated and compared to experimental data for a multitude of processes in four different collider environments. This formulation has been further extended to accommodate real emission corrections to beyond next-to-leading order radiation otherwise described only by the DGLAP resummation. Its results are also carefully evaluated and compared to a wide range of experimental data.:1. Introduction
1.1 Event generators
1.2 The event generator Sherpa
1.3 Outline of this thesis
Part I YFS resummation & fixed order calculations
2 Yennie-Frautschi-Suura resummation
2.1 Resummation of virtual photon corrections
2.2 Resummation of real emission corrections
2.3 The Yennie-Frautschi-Suura form factor
3 A process independent implementation in Sherpa
3.1 The Algorithm
3.1.1 The master formula
3.1.2 Phase space transformation
3.1.3 Mapping of momenta
3.1.4 Event generation
3.2 Higher Order Corrections
3.2.1 Approximations for real emission matrix elements
3.2.2 Real emission corrections
3.2.3 Virtual emission corrections
4 The Z lineshape and radiative lepton decay corrections
4.1 The Z lineshape
4.1.1 Radiation pattern
4.1.2 Numerical stability
4.2 Radiative lepton decays
4.3 Summary and conclusions
5 Electroweak corrections to semileptonic B decays
5.1 Tree-level decay
5.2 Next-to-leading order corrections
5.2.1 Matching of different energy regimes
5.2.2 Short-distance next-to-leading order corrections
5.2.3 Long-distance next-to-leading order corrections
5.2.4 Structure dependent terms
5.2.5 Soft-resummation and inclusive exponentiation
5.3 Methods
5.3.1 BLOR
5.3.2 Sherpa/Photons
5.3.3 PHOTOS
5.4 Results
5.4.1 Next-to-leading order corrections to decay rates
5.4.2 Next-to-leading order corrections to differential rates
5.4.3 Influence of explicit short-distance terms
5.5 Summary and conclusions
Part II DGLAP resummation & fixed order calculations
6 DGLAP resummation & approximate higher order corrections
6.1 Dokshitzer-Gribov-Lipatov-Altarelli-Parisi resummation
6.1.1 The naive parton model
6.1.2 QCD corrections to the parton model
6.1.3 Factorisation and the collinear counterterm
6.1.4 The DGLAP equations
6.2 Parton evolution
6.2.1 Approximate real emission cross sections
6.2.2 Parton evolution
6.2.3 Scale choices for the running coupling
6.3 Soft emission corrections
7 The reinterpretation and automisation of the POWHEG method
7.1 Decomposition of the real-emission cross sections
7.2 Construction of a parton shower
7.3 Matrix element corrections to parton showers
7.4 The reformulation of the POWHEG method
7.4.1 Approximate NLO cross sections
7.4.2 The POWHEG method and its accuracy
7.5 The single-singularity projectors
7.6 Theoretical ambiguities
7.7 MC@NLO
7.8 Realisation of the POWHEG method in the Sherpa Monte Carlo
7.8.1 Matrix elements and subtraction terms
7.8.2 The parton shower
7.8.3 Implementation & techniques
7.8.4 Automatic identification of Born zeros
7.9 Results for processes with trivial colour structures
7.9.1 Process listing
7.9.2 Tests of internal consistency
7.9.3 Comparison with tree-level matrix-element parton-shower merging
7.9.4 Comparison with experimental data
7.9.5 Comparison with existing POWHEG
7.10 Results for processes with non-trivial colour structures
7.10.1 Comparison with experimental data
7.11 Summary and conclusions
8 MENLOPS
8.1 Improving parton showers with higher-order matrix elements
8.1.1 The POWHEG approach
8.1.2 The ME+PS approach
8.2 Merging POWHEG and ME+PS - The MENLOPS
8.3 Results
8.3.1 Merging Systematics
8.3.2 ee -> jets
8.3.3 Deep-inelastic lepton-nucleon scattering
8.3.4 Drell-Yan lepton-pair production
8.3.5 W+jets Production
8.3.6 Higgs boson production
8.3.7 W-pair+jets production
8.4 Summary and conclusions
Summary
Appendix
A Details on the YFS resummation implementation
A.1 The YFS-Form-Factor
A.1.1 Special cases
A.2
A.2.1 Avarage photon multiplicity
A.2.2 Photon energy
A.2.3 Photon angles
A.2.4 Photons from multipoles
A.3 Massive dipole splitting functions
A.3.1 Final State Emitter, Final State Spectator
A.3.2 Final State Emitter, Initial State Spectator
A.3.3 Initial State Emitter, Final State Spectator
B Formfactors and higher order matrix elements for semileptonic B decays
B.1 Form factor models of exclusive semileptonic B meson decays
B.1.1 Form factors for B -> D l nu
B.1.2 Form factors for B -> pi l nu
B.1.3 Form factors for B -> D0* l nu
B.2 NLO matrix elements
B.2.1 Real emission matrix elements
B.2.2 Virtual emission matrix elements
B.3 Scalar Integrals
B.3.1 General definitions
B.3.2 Tadpole integrals
B.3.3 Bubble integrals
B.3.4 Triangle integrals
C Explicit form of the leading order Altarelli-Parisi splitting functions
C.1 Collinear limit of real emission matrix elements
C.1.1 q -> gq splittings
C.1.2 q -> qg splittings
C.1.3 g -> qq splittings
C.1.4 g -> gg splittings
Bibliography
|
Page generated in 0.0597 seconds