• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 7
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 87
  • 87
  • 87
  • 21
  • 16
  • 12
  • 12
  • 12
  • 12
  • 12
  • 10
  • 10
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Improved Nuclear Predictions of Relevance to the R-Process of Nucleosynthesis

Samyn, Mathieu 22 January 2004 (has links)
The rapid neutron-capture process, known as the r-process, is responsible for the origin of about half the stable nuclei heavier than iron observed in nature. Though the r-process is believed to take place in explosive stellar environments and to involve a large number (few thousands) of exotic nuclei, this nucleosynthesis process remains poorly understood from the astrophysics as well as nuclear physics points of view. On the nuclear physics side, the nuclei are too exotic to be studied in the laboratory, even though great efforts are constantly made to extend the experimental limits away from the eta-$stability region. Therefore, theoretical models are indispensable to estimate the nuclear properties of interest in the r-process nucleosynthesis modelling. So far, models used to predict the properties of the exotic nuclei were based on parametrized macroscopic-type approaches the reliability of which is questionable when extrapolating far away from the experimentally known region. This work is devoted to the improvement of nuclear predictions, such as the nuclear ground- and excited-state properties, needed as input data to model the r-process. In order to give the predictions a reliable character, we rely on the microscopic mean-field Hartree-Fock theory based on the Skyrme-type interaction. Pairing correlations play an important role in the description of nuclei, and become essential for nuclei located near the drip lines, since the scattering of pairs of quasi-particles into the continuum increases significantly. In this work, we brought to the Hartree-Fock model the self-consistent treatment of the pairing correlations within the Hartree-Fock-Bogoliubov (HFB) theory. Further improvements are made in the restoration of symmetries broken by correlations added in the form of additional degrees of freedom in the wave function. These include the translational invariance restored by calculating the recoil energy, the particle-number symmetry by an exact projection after variation, the rotational symmetry by an approximate cranking correction and the parity symmetry for reflection asymmetric shapes. In addition, the renormalization of the HFB equations has been studied as well and allows to eliminate the dependence of the total energy with respect to the cutoff energy. The effective nucleon-nucleon interaction is determined by adjusting its parameters on all available experimental masses, with some constraints derived from fundamental nuclear matter properties. A systematic study of the influence on mass predictions for each of the above cited improvements as well as of some uncertainties affecting the particle-hole and particle-particle interactions has been conducted. In spite of quite important differences in the input physics, we find a great stability in the mass predictions for exotic neutron-rich nuclei, though local mass differences can be significant. Each of the Skyrme force derived in the present work has been tested on the predictions of basic ground-state properties (including charge radii, quadrupole moments, single-particle levels), fission barriers and electric dipole $gamma-$ray strengths. The HFB predictions globally reproduce experimental data with a level of accuracy comparable with the widely-used droplet-like models. The microscopic character of the approach followed in the present work makes however the predictions for exotic neutron-rich nuclei involved in the r-process more reliable. The influence of such improved nuclear mass predictions on the r-process abundance distribution is studied in the specific scenario of the prompt supernova explosion mechanism.
72

Estudo das propriedades termodinâmicas do modelo de Ashkin-Teller na presença de campo magnético aleatório. / Study of thermodynamics properties of Ashkin-Teller in random magnetic field

Bernardes, Luiz Antonio Bastos 27 October 1995 (has links)
A teoria de campo médio para o modelo de Ashkin-Teller com interações ferromagnéticas de longo alcance na presença de campos magnéticos aleatórios foi desenvolvida. Isso foi conseguido através do uso do truque de réplicas para a obtenção da energia livre e do estudo analítico das equações integrais acopladas dos parâmetros de ordem, da estabilidade de suas soluções e das suas expansões para T &#8804 Tc. Inicialmente, foram determinadas as expressões gerais das funções termodinâmicas do modelo no caso em que existiam três campos magnéticos aleatórios com distribuições gaussianas. Em seguida, foi examinado o caso particular do modelo com um só campo magnético aleatório na direção de Z = &#8249 &#948 S &#8250. A estratégia adotada se mostrou poderosa pois possibilitou a caracterização detalhada do diagrama de fases com várias superfícies de coexistência e das linhas de pontos críticos. As equações integrais das funções termodinâmicas desse caso particular foram discutidas e resolvidas numericamente para valores especiais das constantes de interação e da variância. Para o caso particular do modelo na presença de campos magnéticos aleatórios nas direções &#8249 S &#8250 e &#8249 &#948 &#8250, foram determinadas e discutidas as expressões das funções termodinâmicas. Foram também obtidas as equações das superfícies de instabilidade da solução paramagnética. Foi provado que a transição entre as fases paramagnética e de Baxter é sempre de primeira ordem. Outro resultado original da tese foi a verificação da existência da simetria de dilatação e contração do modelo de Potts na presença de campos magnéticos aleatórios. Essa simetria permite que o estudo da energia livre no intervalo q&#8712 (1,2) forneça o comportamento termodinâmico do sistema para todo q>2. / The meanfield theory of the long range Ashkin-Teller model in random fields was developed. This was obtained by using the replica trick and the study of the coupled integral equations for the order parameters, the stability of their solutions, and their expansions for T &#8804 Tc. Inicially, the expressions of the thermodynamic functions for the model in three random fields with Gaussian distributiuons were determined. After this, it was examined the particular case of the model with only one random field in the Z = &#8249 &#948 S &#8250 direction. The strategy revealed itself powerful by the detailed characterization of the phase diagram with several coexistence surfaces and lines of critical points. The integral equations of the thermodynamic functions for this particular case were discussed and numerically solved for special values of the interaction constants and field distribution variance. For the particular case of the model with random fields in the &#8249 S &#8250 and &#8249 &#948 &#8250, directions, the expressions were also determined and discussed. The equations of the instability surfaces for the paramagnetic solution were obtained, and it was proved that the para-Baxter transition line is always of first order. Another original result of the thesis was the verification of the the existence of the dilatation and contration symmetry in the Potts model with random fields. This symmetry permits that the study of the free energy in the q&#8712(1,2) interval supplies the thermodynamics behavior of the system for q>2.
73

Mean-field view on geodynamo models / Erddynamo-Modelle aus Sicht der Theorie mittlerer Felder

Schrinner, Martin 13 July 2005 (has links)
No description available.
74

Estudo das propriedades termodinâmicas do modelo de Ashkin-Teller na presença de campo magnético aleatório. / Study of thermodynamics properties of Ashkin-Teller in random magnetic field

Luiz Antonio Bastos Bernardes 27 October 1995 (has links)
A teoria de campo médio para o modelo de Ashkin-Teller com interações ferromagnéticas de longo alcance na presença de campos magnéticos aleatórios foi desenvolvida. Isso foi conseguido através do uso do truque de réplicas para a obtenção da energia livre e do estudo analítico das equações integrais acopladas dos parâmetros de ordem, da estabilidade de suas soluções e das suas expansões para T &#8804 Tc. Inicialmente, foram determinadas as expressões gerais das funções termodinâmicas do modelo no caso em que existiam três campos magnéticos aleatórios com distribuições gaussianas. Em seguida, foi examinado o caso particular do modelo com um só campo magnético aleatório na direção de Z = &#8249 &#948 S &#8250. A estratégia adotada se mostrou poderosa pois possibilitou a caracterização detalhada do diagrama de fases com várias superfícies de coexistência e das linhas de pontos críticos. As equações integrais das funções termodinâmicas desse caso particular foram discutidas e resolvidas numericamente para valores especiais das constantes de interação e da variância. Para o caso particular do modelo na presença de campos magnéticos aleatórios nas direções &#8249 S &#8250 e &#8249 &#948 &#8250, foram determinadas e discutidas as expressões das funções termodinâmicas. Foram também obtidas as equações das superfícies de instabilidade da solução paramagnética. Foi provado que a transição entre as fases paramagnética e de Baxter é sempre de primeira ordem. Outro resultado original da tese foi a verificação da existência da simetria de dilatação e contração do modelo de Potts na presença de campos magnéticos aleatórios. Essa simetria permite que o estudo da energia livre no intervalo q&#8712 (1,2) forneça o comportamento termodinâmico do sistema para todo q>2. / The meanfield theory of the long range Ashkin-Teller model in random fields was developed. This was obtained by using the replica trick and the study of the coupled integral equations for the order parameters, the stability of their solutions, and their expansions for T &#8804 Tc. Inicially, the expressions of the thermodynamic functions for the model in three random fields with Gaussian distributiuons were determined. After this, it was examined the particular case of the model with only one random field in the Z = &#8249 &#948 S &#8250 direction. The strategy revealed itself powerful by the detailed characterization of the phase diagram with several coexistence surfaces and lines of critical points. The integral equations of the thermodynamic functions for this particular case were discussed and numerically solved for special values of the interaction constants and field distribution variance. For the particular case of the model with random fields in the &#8249 S &#8250 and &#8249 &#948 &#8250, directions, the expressions were also determined and discussed. The equations of the instability surfaces for the paramagnetic solution were obtained, and it was proved that the para-Baxter transition line is always of first order. Another original result of the thesis was the verification of the the existence of the dilatation and contration symmetry in the Potts model with random fields. This symmetry permits that the study of the free energy in the q&#8712(1,2) interval supplies the thermodynamics behavior of the system for q>2.
75

Stochastic approach to the problem of predictive power in the theoretical modeling of the mean-field / Approche stochastique du problème du pouvoir prédictif dans la modélisation du champ moyen

Dedes Nonell, Irene 06 October 2017 (has links)
Les résultats de notre étude des capacités de modélisation théorique axées sur les approches phénoménologiques nucléaires dans le cadre de la théorie du champ-moyen sont présentés. On s’attend à ce qu’une théorie réaliste soit capable de prédire de manière satisfaisante les résultats des expériences à venir, c’est-à-dire avoir ce qu’on appelle un bon pouvoir prédictif. Pour étudier le pouvoir prédictif d’un modèle théorique, nous avons dû tenir compte non seulement des erreurs des données expérimentales, mais aussi des incertitudes issues des approximations du formalisme théorique et de l’existence de corrélations paramétriques. L’une des techniques centrales dans l’ajustement des paramètres est la solution de ce qu’on appelle le Problème Inverse. Les corrélations paramétriques induisent généralement un problème inverse mal-posé; elles doivent être étudiées et le modèle doit être régularisé. Nous avons testé deux types de hamiltoniens phénoménologiques réalistes montrant comment éliminer théoriquement et en pratique les corrélations paramétriques.Nous calculons les intervalles de confiance de niveau, les distributions d’incertitude des prédictions des modèles et nous avons montré comment améliorer les capacités de prédiction et la stabilité de la théorie. / Results of our study of the theoretical modelling capacities focussing on the nuclear phenomenological mean-field approaches are presented. It is expected that a realistic theory should be capable of predicting satisfactorily the results of the experiments to come, i.e., having what is called a good predictive power. To study the predictive power of a theoretical model, we had to take into account not only the errors of the experimental data but also the uncertainties originating from approximations of the theoretical formalism and the existence of parametric correlations. One of the central techniques in the parameter adjustment is the solution of what is called the Inverse Problem. Parametric correlations usually induce ill-posedness of the inverse problem; they need to be studied and the model regularised. We have tested two types of realistic phenomenological Hamiltonians showing how to eliminate the parametric correlations theoretically and in practice. We calculate the level confidence intervals, the uncertainty distributions of model predictions and have shown how to improve theory’s prediction capacities and stability.
76

Network mechanisms of working memory : from persistent dynamics to chaos / Mécanismes de réseau de mémoire de travail : de dynamique persistante à chaos

Harish, Omri 10 December 2013 (has links)
Une des capacités cérébrales les plus fondamentales, qui est essentiel pour tous les fonctions cognitifs de haut niveau, est de garder des informations pertinentes de tâche pendant les périodes courtes de temps; on connaît cette capacité comme la mémoire de travail (WM). Dans des décennies récentes, accumule là l'évidence d'activité pertinente de tâche dans le cortex préfrontal (PFC) de primates pendant les périodes de "delay" de tâches de "delay-response", impliquant ainsi que PFC peut maintenir des informations sensorielles et ainsi la fonction comme un module de WM. Pour la récupération d'informationssensorielles de l'activité de réseau après que le stimulus sensoriel n'est plus présent il est impératif que l'état du réseau au moment de la récupération soit corrélé avec son état au moment de la compensation de stimulus. Un extrême, en vue dans les modèles informatiques de WM, est la coexistence d'attracteurs multiples. Dans cette approche la dynamique de réseau a une multitude d'états stables possibles, qui correspondent aux états différents de mémoire et un stimulus peut forcer le réseau à changer à un tel état stable. Autrement, même en absence d'attracteurs multiples, si la dynamique du réseau estchaotique alors les informations sur des événements passés peuvent être extraites de l'état du réseau, à condition que la durée typique de l'autocorrélation (AC) de dynamique neuronale soit assez grande. Dans la première partie de cette thèse, j'étudie un modèle à base d'attracteur de mémoire d'un emplacement spatial, pour examiner le rôle des non-linéarités de courbes de f-I neuronales dans des mécanismes de WM. Je fournis une théorie analytique et des résultats de simulations montrant que ces nonlinéarités, plutôt que les constants de temps synaptic ou neuronal, peuvent être la base de mécanismes de réseau WM. Dans la deuxième partie j'explore des facteurs contrôlant la durée d'ACs neuronales dans ungrand réseau "balanced" affichant la dynamique chaotique. Je développe une théorie de moyen champ (MF) décrivant l'ACs en termes de plusieurs paramètres d'ordre. Alors, je montre qu'en dehors de la proximité au point de transition-à-chaos, qui peut augmenter la largeur de la courbe d'AC, l'existence de motifs de connectivité peut causer des corrélations de longue durée dans l'état du réseau. / One of the most fundamental brain capabilities, that is vital for any high level cognitive function, is to store task-relevant information for short periods of time; this capability is known as working memory (WM). In recent decades there is accumulating evidence of taskrelevant activity in the prefrontal cortex (PFC) of primates during delay periods of delayedresponse tasks, thus implying that PFC is able to maintain sensory information and so function as a WM module. For retrieval of sensory information from network activity after the sensory stimulus is no longer present it is imperative that the state of the network at the time of retrieval be correlated with its state at the time of stimulus offset. One extreme, prominent in computational models of WM, is the co-existence of multiple attractors. In this approach the network dynamics has a multitude of possible steady states, which correspond to different memory states, and a stimulus can force the network to shift to one such steady state. Alternatively, even in the absence of multiple attractors, if the dynamics of the network is chaotic then information about past events can be extracted from the state of the network, provided that the typical time scale of the autocorrelation (AC) of neuronal dynamics is large enough. In the first part of this thesis I study an attractor-based model of memory of a spatial location to investigate the role of non-linearities of neuronal f-I curves in WM mechanisms. I provide an analytic theory and simulation results showing that these nonlinearities, rather than synaptic or neuronal time constants, can be the basis of WM network mechanisms. In the second part I explore factors controlling the time scale of neuronal ACs in a large balanced network displaying chaotic dynamics. I develop a mean-field (MF) theory describing the ACs in terms of several order parameters. Then, I show that apart from the proximity to the transition-to-chaos point, which can increase the width of the AC curve, the existence of connectivity motifs can cause long-time correlations in the state of the network.
77

Théorie des liquides et verres en dimension infinie / Theory of high-dimensional liquids and glasses

Maimbourg, Thibaud 05 October 2016 (has links)
La dynamique des liquides, considérés comme des systèmes de particules classiques fortement couplées, reste un domaine où les descriptions théoriques sont limitées. Pour l’instant, il n’existe pas de théorie microscopique partant des premiers principes et recourant à des approximations contrôlées. Thermodynamiquement, les propriétés statiques d’équilibre sont bien comprises dans les liquides simples, à condition d’être loin du régime vitreux. Dans cette thèse, nous résolvons, en partant des équations microscopiques du mouvement, la dynamique des liquides et verres en exploitant la limite de dimension spatiale infinie, qui fournit une approximation de champ moyen bien définie. En parallèle, nous retrouvons leur thermodynamique à travers une analogie entre la dynamique et la statique. Cela donne un point de vue à la fois unificateur et cohérent du diagramme de phase de ces systèmes. Nous montrons que cette solution de champ moyen au problème de la transition vitreuse est un exemple du scénario de transition de premier ordre aléatoire (RFOT), comme conjecturé il y a maintenant trente ans, sur la base des solutions des modèles de verres de spin en champ moyen. Ces résultats nous permettent de montrer qu’une invariance d’échelle approchée du système, pertinente pour les expériences et les simulations en dimension finie, devient exacte dans cette limite. / The dynamics of liquids, regarded as strongly-interacting classical particle systems, remains a field where theoretical descriptions are limited. So far, there is no microscopic theory starting from first principles and using controlled approximations. At the thermodynamic level, static equilibrium properties are well understood in simple liquids only far from glassy regimes. Here we derive, from first principles, the dynamics of liquids and glasses using the limit of large spatial dimension, which provides a well-defined mean-field approximation with a clear small parameter. In parallel, we recover their thermodynamics through an analogy between dynamics and statics. This gives a unifying and consistent view of the phase diagram of these systems. We show that this mean-field solution to the structural glass problem is an example of the Random First-Order Transition scenario, as conjectured thirty years ago, based on the solution of mean-field spin glasses. These results allow to show that an approximate scale invariance of the system, relevant to finite-dimensional experiments and simulations, becomes exact in this limit.
78

Applications of the Fokker-Planck Equation in Computational and Cognitive Neuroscience

Vellmer, Sebastian 20 July 2020 (has links)
In dieser Arbeit werden mithilfe der Fokker-Planck-Gleichung die Statistiken, vor allem die Leistungsspektren, von Punktprozessen berechnet, die von mehrdimensionalen Integratorneuronen [Engl. integrate-and-fire (IF) neuron], Netzwerken von IF Neuronen und Entscheidungsfindungsmodellen erzeugt werden. Im Gehirn werden Informationen durch Pulszüge von Aktionspotentialen kodiert. IF Neurone mit radikal vereinfachter Erzeugung von Aktionspotentialen haben sich in Studien die auf Pulszeiten fokussiert sind als Standardmodelle etabliert. Eindimensionale IF Modelle können jedoch beobachtetes Pulsverhalten oft nicht beschreiben und müssen dazu erweitert werden. Im erste Teil dieser Arbeit wird eine Theorie zur Berechnung der Pulszugleistungsspektren von stochastischen, multidimensionalen IF Neuronen entwickelt. Ausgehend von der zugehörigen Fokker-Planck-Gleichung werden partiellen Differentialgleichung abgeleitet, deren Lösung sowohl die stationäre Wahrscheinlichkeitsverteilung und Feuerrate, als auch das Pulszugleistungsspektrum beschreibt. Im zweiten Teil wird eine Theorie für große, spärlich verbundene und homogene Netzwerke aus IF Neuronen entwickelt, in der berücksichtigt wird, dass die zeitlichen Korrelationen von Pulszügen selbstkonsistent sind. Neuronale Eingangströme werden durch farbiges Gaußsches Rauschen modelliert, das von einem mehrdimensionalen Ornstein-Uhlenbeck Prozess (OUP) erzeugt wird. Die Koeffizienten des OUP sind vorerst unbekannt und sind als Lösung der Theorie definiert. Um heterogene Netzwerke zu untersuchen, wird eine iterative Methode erweitert. Im dritten Teil wird die Fokker-Planck-Gleichung auf Binärentscheidungen von Diffusionsentscheidungsmodellen [Engl. diffusion-decision models (DDM)] angewendet. Explizite Gleichungen für die Entscheidungszugstatistiken werden für den einfachsten und analytisch lösbaren Fall von der Fokker-Planck-Gleichung hergeleitet. Für nichtliniear Modelle wird die Schwellwertintegrationsmethode erweitert. / This thesis is concerned with the calculation of statistics, in particular the power spectra, of point processes generated by stochastic multidimensional integrate-and-fire (IF) neurons, networks of IF neurons and decision-making models from the corresponding Fokker-Planck equations. In the brain, information is encoded by sequences of action potentials. In studies that focus on spike timing, IF neurons that drastically simplify the spike generation have become the standard model. One-dimensional IF neurons do not suffice to accurately model neural dynamics, however, the extension towards multiple dimensions yields realistic behavior at the price of growing complexity. The first part of this work develops a theory of spike-train power spectra for stochastic, multidimensional IF neurons. From the Fokker-Planck equation, a set of partial differential equations is derived that describes the stationary probability density, the firing rate and the spike-train power spectrum. In the second part of this work, a mean-field theory of large and sparsely connected homogeneous networks of spiking neurons is developed that takes into account the self-consistent temporal correlations of spike trains. Neural input is approximated by colored Gaussian noise generated by a multidimensional Ornstein-Uhlenbeck process of which the coefficients are initially unknown but determined by the self-consistency condition and define the solution of the theory. To explore heterogeneous networks, an iterative scheme is extended to determine the distribution of spectra. In the third part, the Fokker-Planck equation is applied to calculate the statistics of sequences of binary decisions from diffusion-decision models (DDM). For the analytically tractable DDM, the statistics are calculated from the corresponding Fokker-Planck equation. To determine the statistics for nonlinear models, the threshold-integration method is generalized.
79

Phases, Transitions, Patterns, And Excitations In Generalized Bose-Hubbard Models

Kurdestany, Jamshid Moradi 05 1900 (has links) (PDF)
This thesis covers most of my work in the field of ultracold atoms loaded in optical lattices. This thesis can be divided into five different parts. In Chapter 1, after a brief introduction to the field of optical lattices I review the fundamental aspects pertaining to the physics of systems in periodic potentials and a short overview of the experiments on ultracold atoms in an optical lattice. In Chapter 2 we develop an inhomogeneous mean-field theory for the extended Bose-Hubbard model with a quadratic, confining potential. In the absence of this poten¬tial, our mean-field theory yields the phase diagram of the homogeneous extended Bose-Hubbard model. This phase diagram shows a superfluid (SF) phase and lobes of Mott-insulator(MI), density-wave(DW), and supersolid (SS) phases in the plane of the chemical potential and on-site repulsion ; we present phase diagrams for representative values of , the repulsive energy for bosons on nearest-neighbor sites. We demonstrate that, when the confining potential is present, superfluid and density-wave order parameters are nonuniform; in particular, we obtain, for a few representative values of parameters, spherical shells of SF, MI ,DW ,and SSphases. We explore the implications of our study for experiments on cold-atom dipolar con¬densates in optical lattices in a confining potential. In Chapter3 we present an extensive study of Mottinsulator( MI) and superfluid (SF) shells in Bose-Hubbard (BH) models for bosons in optical lattices with har¬monic traps. For this we develop an inhomogeneous mean-field theory. Our results for the BH model with one type of spinless bosons agrees quantitatively with quan¬tum Monte Carlo(QMC) simulations. Our approach is numerically less intensive than such simulations, so we are able to perform calculations on experimentally realistic, large three-dimensional(3D) systems, explore a wide range of parameter values, and make direct contact with a variety of experimental measurements. We also generalize our inhomogeneous mean-field theory to study BH models with har¬monic traps and(a) two species of bosons or(b) spin-1bosons. With two species of bosons we obtain rich phase diagrams with a variety of SF and MI phases and as¬sociated shells, when we include a quadratic confining potential. For the spin-1BH model we show, in a representative case, that the system can display alternating shells of polar SF and MI phases; and we make interesting predictions for experi¬ments in such systems. . In Chapter 4 we carry out an extensive study of the phase diagrams of the ex-tended Bose Hubbard model, with a mean filling of one boson per site, in one dimension by using the density matrix renormalization group and show that it contains Superfluid (SF), Mott-insulator (MI), density-wave (DW) and Haldane ¬insulator(HI) phases. We show that the critical exponents and central charge for the HI-DW,MI-HI and SF-MI transitions are consistent with those for models in the two-dimensional Ising, Gaussian, and Berezinskii-Kosterlitz-Thouless (BKT) uni¬versality classes, respectively; and we suggest that the SF-HI transition may be more exotic than a simple BKT transition. We show explicitly that different bound¬ary conditions lead to different phase diagrams.. In Chapter 5 we obtain the excitation spectra of the following three generalized of Bose-Hubbard(BH) models:(1) a two-species generalization of the spinless BH model, (2) a single-species, spin-1 BH model, and (3) the extended Bose-Hubbard model (EBH) for spinless interacting bosons of one species. In all the phases of these models we show how to obtain excitation spectra by using the random phase approximation (RPA). We compare the results of our work with earlier studies of related models and discuss implications for experiments.
80

Modélisation au sein de la DFT des propriétés des structures électronique et magnétique et de liaison chimique des Hydrures d’Intermétalliques / DFT modeling of the electronic and magnetic structures and chemical bonding properties of intermetallic hydrides

Al Alam, Adel F. 26 June 2009 (has links)
Cette thèse présente une étude modélisatrice de différentes familles d'intermétalliques et de leurs hydrures qui présentent un intérêt à la fois fondamental et appliqué. Deux méthodes complémentaires construites au sein de la théorie de la fonctionnelle densité (DFT) ont été choisies : d'une part celle à base de pseudo potentiels (VASP) pour l'optimisation géométrique, la recherche structurale et la cartographie de localisation électronique (ELF), d'autre part celle de type "tous-électrons" (ASW), pour une description détaillée de la structure électronique, des propriétés de liaison chimique suivant différents schémas et des quantités impliquant les électrons de c\oe ur comme le champ hyperfin. Un accent particulier est mis sur les rôles compétitifs des effets magnétovolumiques par rapport à ceux chimiques (liaison métal-H) dans les phases hydrurées, binaires de Laves (ex. ScFe2) et de Haucke (ex. LaNi5) et ternaires à base de cérium (ex. CeRhSn) et d'uranium (ex. U2Ni2Sn). / This thesis presents an ab initio study of several classes of intermetallics and their hydrides. These compounds are interesting from both a fundamental and an applied points of view. To achieve this aim two complementary methods, constructed within the DFT, were chosen : (i) pseudo potential based VASP for geometry optimization, structural investigations and electron localization mapping (ELF), and (ii) all-electrons ASW method for a detailed description of the electronic structure, chemical bonding properties following different schemes as well as quantities depending on core electrons such as the hyperfine field. A special interest is given with respect to the interplay between magnetovolume and chemical interactions (metal-H) effects within the following hydrided systems : binary Laves (e.g. ScFe2) and Haucke (e.g. LaNi5) phases on one hand, and ternary cerium based (e.g. CeRhSn) and uranium based (e.g. U2Ni2Sn) alloys on the other hand.

Page generated in 0.102 seconds