• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Model Reduction for Piezo-Mechanical Systems using Balanced Truncation

Uddin, Mohammad Monir 07 November 2011 (has links) (PDF)
Today in the scientific and technological world, physical and artificial processes are often described by mathematical models which can be used for simulation, optimization or control. As the mathematical models get more detailed and different coupling effects are required to include, usually the dimension of these models become very large. Such large-scale systems lead to large memory requirements and computational complexity. To handle these large models efficiently in simulation, control or optimization model order reduction (MOR) is essential. The fundamental idea of model order reduction is to approximate a large-scale model by a reduced model of lower state space dimension that has the same (to the largest possible extent) input-output behavior as the original system. Recently, the system-theoretic method Balanced Truncation (BT) which was believed to be applicable only to moderately sized problems, has been adapted to really large-scale problems. Moreover, it also has been extended to so-called descriptor systems, i.e., systems whose dynamics obey differential-algebraic equations. In this thesis, a BT algorithm is developed for MOR of index-1 descriptor systems based on several papers from the literature. It is then applied to the setting of a piezo-mechanical system. The algorithm is verified by real-world data describing micro-mechanical piezo-actuators. The whole algorithm works for sparse descriptor form of the system. The piezo-mechanical original system is a second order index-1 descriptor system, where mass, damping, stiffness, input and output matrices are highly sparse. Several techniques are introduced to reduce the system into a first order index-1 descriptor system by preserving the sparsity pattern of the original models. Several numerical experiments are used to illustrate the efficiency of the algorithm.
2

Regelungstheoretische Analyse- und Entwurfsansätze für unteraktuierte mechanische Systeme

Knoll, Carsten 16 February 2017 (has links) (PDF)
Die Arbeit ist der regelungstheoretischen Betrachtung von mechanischen Systemen mit mehr Freiheitsgraden als Stellgrößen gewidmet. Dabei werden Aspekte aus den Teilgebieten Modellbildung, Systemanalyse, Steuerungsentwurf und Reglerentwurf behandelt. Den Ausgangspunkt bilden die aus dem Lagrange-Formalismus resultierenden Bewegungsgleichungen, für welche neben verschiedene partiell linearisierten Zustandsdarstellungen auch eine spezielle Byrnes-Isidori-Normalform eingeführt wird. Im Unterschied zu einer früher vorgeschlagenen ähnliche Normalform existiert diese "Lagrange-Byrnes-Isidori-Normalform" immer. Weiterhin wird die bedeutende Eigenschaft der differentiellen Flachheit im Zusammenhang mit mechanischen Systemen untersucht. Die bestehende Lücke zwischen den bekannten notwendigen und hinreichenden Flachheitsbedingungen bildet die Motivation zur Anpassung der Regelflächenbedingung auf mechanische Systeme in Lagrange-Byrnes-Isidori-Normalform. Parallel dazu wird die Flachheitsanalyse auf Basis des sogenannten Variationssystems betrachtet. Dabei handelt es sich um ein System von 1-Formen, die durch Anwendung der äußeren Ableitung auf die impliziten Systemgleichungen entstehen. Äquivalent dazu können auch die in einer rechteckigen Polynommatrix bezüglich des Zeitableitungsoperators zusammengefassten Koeffizienten der Basisformen untersucht werden. Die Flachheit eines Systems ist nun gerade äquivalent zur Existenz einer unimodularen Vervollständigung dieser Matrix, welche zudem noch eine bestimmte Integrabilitätsbedingung erfüllen muss. Durch Anwendung des Satzes von Frobenius können aus diesen in der bisherigen Formulierung nur schwer überprüfbaren Bedingungen deutlich einfachere hergeleitet werden. Für den Eingrößenfall ergibt sich dadurch eine erheblich Verringerung des Rechenaufwandes im Vergleich zum Referenzansatz. Im Mehrgrößenfall ist die Situation komplizierter: Durch das Fallenlassen der Unimodularitätsforderung und die Ausnutzung der speziellen Struktur mechanischer Systeme erhält man eine neue notwendige Bedingung für Flachheit, welche sich in endlich vielen Schritten auswerten lässt. Allerdings konnte mit dieser die vermutete Nichtflachheit für die untersuchten mechanischen Beispielsysteme nicht nachgewiesen werden. Einen weiteren Untersuchungsgegenstand bildet das Konzept der Konfigurationsflachheit. Für diese Eigenschaft ist gefordert, dass ein flacher Ausgang existieren muss, der nur von den Konfigurationskoordinaten abhängt. Basierend auf theoretischen Überlungen und dem Fehlen von Gegenbeispielen wird die Hypothese aufgestellt, dass für konservative mechanische Systeme Flachheit und Konfigurationsflachheit äquivalent sind. Für lineare mechanische Systeme kann diese Hypothese mit Hilfe der Kronecker-Normalform von Matrizenscharen verifiziert werden. Bezüglich des Entwurfs von Solltrajektorien werden neben der Darstellung bekannter Verfahren für lineare und für flache Systeme zwei weitere Ansätze genauer diskutiert. Der erste basiert auf der numerischen Lösung des aus dem Steuerungsentwurf resultierenden Randwertproblems. Dazu wird ein angepasstes Kollokationsverfahren konstruiert, welches die Elimination von Systemgrößen durch die explizite Berücksichtigung von Integratorketten ermöglicht, die bei partiell linearisierten Systemen stets auftreten. Unter bestimmten Bedingungen bewirkt dies eine erhebliche Reduktion der Rechenzeit. Der zweite Ansatz betrachtet die Überführung zwischen zwei Ruhelagen und beruht auf der Zeitumkehrsymmetrie, die alle konservativen mechanischen Systeme aufweisen. Er besteht aus mehreren Schritten: Zunächst wird für beide Ruhelagen eine Rückführung mit möglichst großem Attraktivitätsgebiet entworfen. Danach wird das System simulativ ausgehend von der Zielruhelage in der Startruhelage stabilisiert. Die so erhaltene Eingangstrajektorie kann dann bezüglich der Zeit invertiert werden, um das System aus der Startruhelage in die Nähe der Zielruhelage zu überführen, wo schließlich der entsprechende Regler aktiviert wird. In praktischen Realisierungen von unteraktuierten Regelungssystemen treten auf Grund von Effekten wie trockener Reibung und Getriebespiel oft Dauerschwingungen mit schwer vorhersagbaren und beeinflussbaren Parametern auf. Als Alternative zur klassischen Stabilisierung einer (theoretischen) Ruhelage wird deshalb eine Rückführung hergeleitet, welche für ein gegebenes lineares System einen stabilen Grenzzyklus mit vorgebbarer Frequenz und Amplitude asymptotisch stabilisiert.
3

Model Reduction for Piezo-Mechanical Systems using Balanced Truncation

Uddin, Mohammad Monir 29 April 2011 (has links)
Today in the scientific and technological world, physical and artificial processes are often described by mathematical models which can be used for simulation, optimization or control. As the mathematical models get more detailed and different coupling effects are required to include, usually the dimension of these models become very large. Such large-scale systems lead to large memory requirements and computational complexity. To handle these large models efficiently in simulation, control or optimization model order reduction (MOR) is essential. The fundamental idea of model order reduction is to approximate a large-scale model by a reduced model of lower state space dimension that has the same (to the largest possible extent) input-output behavior as the original system. Recently, the system-theoretic method Balanced Truncation (BT) which was believed to be applicable only to moderately sized problems, has been adapted to really large-scale problems. Moreover, it also has been extended to so-called descriptor systems, i.e., systems whose dynamics obey differential-algebraic equations. In this thesis, a BT algorithm is developed for MOR of index-1 descriptor systems based on several papers from the literature. It is then applied to the setting of a piezo-mechanical system. The algorithm is verified by real-world data describing micro-mechanical piezo-actuators. The whole algorithm works for sparse descriptor form of the system. The piezo-mechanical original system is a second order index-1 descriptor system, where mass, damping, stiffness, input and output matrices are highly sparse. Several techniques are introduced to reduce the system into a first order index-1 descriptor system by preserving the sparsity pattern of the original models. Several numerical experiments are used to illustrate the efficiency of the algorithm.
4

Regelungstheoretische Analyse- und Entwurfsansätze für unteraktuierte mechanische Systeme

Knoll, Carsten 02 September 2016 (has links)
Die Arbeit ist der regelungstheoretischen Betrachtung von mechanischen Systemen mit mehr Freiheitsgraden als Stellgrößen gewidmet. Dabei werden Aspekte aus den Teilgebieten Modellbildung, Systemanalyse, Steuerungsentwurf und Reglerentwurf behandelt. Den Ausgangspunkt bilden die aus dem Lagrange-Formalismus resultierenden Bewegungsgleichungen, für welche neben verschiedene partiell linearisierten Zustandsdarstellungen auch eine spezielle Byrnes-Isidori-Normalform eingeführt wird. Im Unterschied zu einer früher vorgeschlagenen ähnliche Normalform existiert diese "Lagrange-Byrnes-Isidori-Normalform" immer. Weiterhin wird die bedeutende Eigenschaft der differentiellen Flachheit im Zusammenhang mit mechanischen Systemen untersucht. Die bestehende Lücke zwischen den bekannten notwendigen und hinreichenden Flachheitsbedingungen bildet die Motivation zur Anpassung der Regelflächenbedingung auf mechanische Systeme in Lagrange-Byrnes-Isidori-Normalform. Parallel dazu wird die Flachheitsanalyse auf Basis des sogenannten Variationssystems betrachtet. Dabei handelt es sich um ein System von 1-Formen, die durch Anwendung der äußeren Ableitung auf die impliziten Systemgleichungen entstehen. Äquivalent dazu können auch die in einer rechteckigen Polynommatrix bezüglich des Zeitableitungsoperators zusammengefassten Koeffizienten der Basisformen untersucht werden. Die Flachheit eines Systems ist nun gerade äquivalent zur Existenz einer unimodularen Vervollständigung dieser Matrix, welche zudem noch eine bestimmte Integrabilitätsbedingung erfüllen muss. Durch Anwendung des Satzes von Frobenius können aus diesen in der bisherigen Formulierung nur schwer überprüfbaren Bedingungen deutlich einfachere hergeleitet werden. Für den Eingrößenfall ergibt sich dadurch eine erheblich Verringerung des Rechenaufwandes im Vergleich zum Referenzansatz. Im Mehrgrößenfall ist die Situation komplizierter: Durch das Fallenlassen der Unimodularitätsforderung und die Ausnutzung der speziellen Struktur mechanischer Systeme erhält man eine neue notwendige Bedingung für Flachheit, welche sich in endlich vielen Schritten auswerten lässt. Allerdings konnte mit dieser die vermutete Nichtflachheit für die untersuchten mechanischen Beispielsysteme nicht nachgewiesen werden. Einen weiteren Untersuchungsgegenstand bildet das Konzept der Konfigurationsflachheit. Für diese Eigenschaft ist gefordert, dass ein flacher Ausgang existieren muss, der nur von den Konfigurationskoordinaten abhängt. Basierend auf theoretischen Überlungen und dem Fehlen von Gegenbeispielen wird die Hypothese aufgestellt, dass für konservative mechanische Systeme Flachheit und Konfigurationsflachheit äquivalent sind. Für lineare mechanische Systeme kann diese Hypothese mit Hilfe der Kronecker-Normalform von Matrizenscharen verifiziert werden. Bezüglich des Entwurfs von Solltrajektorien werden neben der Darstellung bekannter Verfahren für lineare und für flache Systeme zwei weitere Ansätze genauer diskutiert. Der erste basiert auf der numerischen Lösung des aus dem Steuerungsentwurf resultierenden Randwertproblems. Dazu wird ein angepasstes Kollokationsverfahren konstruiert, welches die Elimination von Systemgrößen durch die explizite Berücksichtigung von Integratorketten ermöglicht, die bei partiell linearisierten Systemen stets auftreten. Unter bestimmten Bedingungen bewirkt dies eine erhebliche Reduktion der Rechenzeit. Der zweite Ansatz betrachtet die Überführung zwischen zwei Ruhelagen und beruht auf der Zeitumkehrsymmetrie, die alle konservativen mechanischen Systeme aufweisen. Er besteht aus mehreren Schritten: Zunächst wird für beide Ruhelagen eine Rückführung mit möglichst großem Attraktivitätsgebiet entworfen. Danach wird das System simulativ ausgehend von der Zielruhelage in der Startruhelage stabilisiert. Die so erhaltene Eingangstrajektorie kann dann bezüglich der Zeit invertiert werden, um das System aus der Startruhelage in die Nähe der Zielruhelage zu überführen, wo schließlich der entsprechende Regler aktiviert wird. In praktischen Realisierungen von unteraktuierten Regelungssystemen treten auf Grund von Effekten wie trockener Reibung und Getriebespiel oft Dauerschwingungen mit schwer vorhersagbaren und beeinflussbaren Parametern auf. Als Alternative zur klassischen Stabilisierung einer (theoretischen) Ruhelage wird deshalb eine Rückführung hergeleitet, welche für ein gegebenes lineares System einen stabilen Grenzzyklus mit vorgebbarer Frequenz und Amplitude asymptotisch stabilisiert.
5

Entwurf einer fehlerüberwachten Modellreduktion basierend auf Krylov-Unterraumverfahren und Anwendung auf ein strukturmechanisches Modell / Implementation of an error-controlled model reduction based on Krylov-subspace methods and application to a mechanical model

Bernstein, David 17 October 2014 (has links) (PDF)
Die FEM-MKS-Kopplung erfordert Modellordnungsreduktions-Verfahren, die mit kleiner reduzierter Systemdimension das Übertragungsverhalten mechanischer Strukturen abbilden. Rationale Krylov-Unterraum-Verfahren, basierend auf dem Arnoldi-Algorithmen, ermöglichen solche Abbildungen in frei wählbaren, breiten Frequenzbereichen. Ziel ist der Entwurf einer fehlerüberwachten Modelreduktion auf Basis von Krylov-Unterraumverfahren und Anwendung auf ein strukturmechanisches Model. Auf Grundlage der Software MORPACK wird eine Arnoldi-Funktion erster Ordnung um interpolativen Startvektor, Eliminierung der Starrkörperbewegung und Reorthogonalisierung erweitert. Diese Operationen beinhaltend, wird ein rationales, interpolatives SOAR-Verfahren entwickelt. Ein rationales Block-SOAR-Verfahren erweist sich im Vergleich als unterlegen. Es wird interpolative Gleichwichtung verwendet. Das Arnoldi-Verfahren zeichnet kleiner Berechnungsaufwand aus. Das rationale, interpolative SOAR liefert kleinere reduzierte Systemdimensionen für gleichen abgebildeten Frequenzbereich. Die Funktionen werden auf Rahmen-, Getriebegehäuse- und Treibsatzwellen-Modelle angewendet. Zur Fehlerbewertung wird eigenfrequenzbasiert ein H2-Integrationsbereich festgelegt und der übertragungsfunktionsbasierte, relative H2-Fehler berechnet. Es werden zur Lösung linearer Gleichungssysteme mit Matlab entsprechende Löser-Funktionen, auf Permutation und Faktorisierung basierend, implementiert. / FEM-MKS-coupling requires model order reduction methods to simulate the frequency response of mechanical structures using a smaller reduced representation of the original system. Most of the rational Krylov-subspace methods are based on Arnoldi-algorithms. They allow to represent the frequency response in freely selectable, wide frequency ranges. Subject of this thesis is the implementation of an error-controlled model order reduction based on Krylov-subspace methods and the application to a mechanical model. Based on the MORPACK software, a first-order-Arnoldi function is extended by an interpolative start vector, the elimination of rigid body motion and a reorthogonalization. Containing these functions, a rational, interpolative Second Order Arnoldi (SOAR) method is designed that works well compared to a rational Block-SOAR-method. Interpolative equal weighting is used. The first-order-Arnoldi method requires less computational effort compared to the rational, interpolative SOAR that is able to compute a smaller reduction size for same frequency range of interest. The methods are applied to the models of a frame, a gear case and a drive shaft. Error-control is realized by eigenfrequency-based H2-integration-limit and relative H2-error based on the frequency response function. For solving linear systems of equations in Matlab, solver functions based on permutation and factorization are implemented.
6

Entwurf einer fehlerüberwachten Modellreduktion basierend auf Krylov-Unterraumverfahren und Anwendung auf ein strukturmechanisches Modell

Bernstein, David 04 June 2014 (has links)
Die FEM-MKS-Kopplung erfordert Modellordnungsreduktions-Verfahren, die mit kleiner reduzierter Systemdimension das Übertragungsverhalten mechanischer Strukturen abbilden. Rationale Krylov-Unterraum-Verfahren, basierend auf dem Arnoldi-Algorithmen, ermöglichen solche Abbildungen in frei wählbaren, breiten Frequenzbereichen. Ziel ist der Entwurf einer fehlerüberwachten Modelreduktion auf Basis von Krylov-Unterraumverfahren und Anwendung auf ein strukturmechanisches Model. Auf Grundlage der Software MORPACK wird eine Arnoldi-Funktion erster Ordnung um interpolativen Startvektor, Eliminierung der Starrkörperbewegung und Reorthogonalisierung erweitert. Diese Operationen beinhaltend, wird ein rationales, interpolatives SOAR-Verfahren entwickelt. Ein rationales Block-SOAR-Verfahren erweist sich im Vergleich als unterlegen. Es wird interpolative Gleichwichtung verwendet. Das Arnoldi-Verfahren zeichnet kleiner Berechnungsaufwand aus. Das rationale, interpolative SOAR liefert kleinere reduzierte Systemdimensionen für gleichen abgebildeten Frequenzbereich. Die Funktionen werden auf Rahmen-, Getriebegehäuse- und Treibsatzwellen-Modelle angewendet. Zur Fehlerbewertung wird eigenfrequenzbasiert ein H2-Integrationsbereich festgelegt und der übertragungsfunktionsbasierte, relative H2-Fehler berechnet. Es werden zur Lösung linearer Gleichungssysteme mit Matlab entsprechende Löser-Funktionen, auf Permutation und Faktorisierung basierend, implementiert.:1. Einleitung 1.1. Motivation 1.2. Einordnung 1.3. Aufbau der Arbeit 2. Theorie 2.1. Simulationsmethoden 2.1.1. Finite Elemente Methode 2.1.2. Mehrkörpersimulation 2.1.3. Kopplung der Simulationsmethoden 2.2. Zustandsraumdarstellung und Reduktion 2.3. Krylov Unterraum Methoden 2.4. Arnoldi-Algorithmen erster Ordnung 2.5. Arnoldi-Algorithmen zweiter Ordnung 2.6. Korrelationskriterien 2.6.1. Eigenfrequenzbezogene Kriterien 2.6.2. Eigenvektorbezogene Kriterien 2.6.3. Übertragungsfunktionsbezogene Kriterien 2.6.4. Fehlerbewertung 2.6.5. Anwendung auf Systeme sehr großer Dimension 3. Numerik linearer Gleichungssysteme 3.1. Grundlagen 3.2. Singularität der Koeffizientenmatrix 3.2.1. Randbedingungen des Systems 3.2.2. Verwendung einer generellen Diagonalperturbation 3.3. Iterative Lösungsverfahren 3.4. Faktorisierungsverfahren 3.4.1. Cholesky-Faktorisierung 3.4.2. LU-Faktorisierung 3.4.3. Fillin-Reduktion durch Permutation 3.4.4. Fazit 3.5. Direkte Lösungsverfahren 3.6. Verwendung externer Gleichungssystem-Löser 3.7. Zusammenfassung 4. Implementierung 4.1. Aufbau von MORPACK 4.2. Anforderungen an Reduktions-Funktionen 4.3. Eigenschaften und Optionen der KSM-Funktionen 4.3.1. Arnoldi-Funktion erster Ordnung 4.3.2. Rationale SOAR-Funktionen 4.4. Korrelationskriterien 4.4.1. Eigenfrequenzbezogen 4.4.2. Eigenvektorbezogen 4.4.3. Übertragungsfunktionsbezogen 4.5. Lösungsfunktionen linearer Gleichungssysteme 4.5.1. Anforderungen und Aufbau 4.5.2. Verwendung der Gleichungssystem-Löser 4.5.3. Hinweise zur Implementierung von Gleichungssystem-Lösern 5. Anwendung 5.1. Versuchsmodelle 5.1.1. Testmodelle kleiner Dimension 5.1.2. Getriebegehäuse 5.1.3. Treibsatzwelle 5.2. Validierung der Reduktionsmethoden an kleinem Modell 5.2.1. Modifizierte Arnoldi-Funktion erster Ordnung 5.2.2. Rationale SOAR-Funktionen 5.2.3. Zusammenfassung 5.3. Anwendung der KSM auf große Modelle 5.3.1. Getriebegehäuse 5.3.2. Treibsatzwelle 5.4. Auswertung 6. Zusammenfassung und Ausblick 6.1. Zusammenfassung 6.2. Ausblick / FEM-MKS-coupling requires model order reduction methods to simulate the frequency response of mechanical structures using a smaller reduced representation of the original system. Most of the rational Krylov-subspace methods are based on Arnoldi-algorithms. They allow to represent the frequency response in freely selectable, wide frequency ranges. Subject of this thesis is the implementation of an error-controlled model order reduction based on Krylov-subspace methods and the application to a mechanical model. Based on the MORPACK software, a first-order-Arnoldi function is extended by an interpolative start vector, the elimination of rigid body motion and a reorthogonalization. Containing these functions, a rational, interpolative Second Order Arnoldi (SOAR) method is designed that works well compared to a rational Block-SOAR-method. Interpolative equal weighting is used. The first-order-Arnoldi method requires less computational effort compared to the rational, interpolative SOAR that is able to compute a smaller reduction size for same frequency range of interest. The methods are applied to the models of a frame, a gear case and a drive shaft. Error-control is realized by eigenfrequency-based H2-integration-limit and relative H2-error based on the frequency response function. For solving linear systems of equations in Matlab, solver functions based on permutation and factorization are implemented.:1. Einleitung 1.1. Motivation 1.2. Einordnung 1.3. Aufbau der Arbeit 2. Theorie 2.1. Simulationsmethoden 2.1.1. Finite Elemente Methode 2.1.2. Mehrkörpersimulation 2.1.3. Kopplung der Simulationsmethoden 2.2. Zustandsraumdarstellung und Reduktion 2.3. Krylov Unterraum Methoden 2.4. Arnoldi-Algorithmen erster Ordnung 2.5. Arnoldi-Algorithmen zweiter Ordnung 2.6. Korrelationskriterien 2.6.1. Eigenfrequenzbezogene Kriterien 2.6.2. Eigenvektorbezogene Kriterien 2.6.3. Übertragungsfunktionsbezogene Kriterien 2.6.4. Fehlerbewertung 2.6.5. Anwendung auf Systeme sehr großer Dimension 3. Numerik linearer Gleichungssysteme 3.1. Grundlagen 3.2. Singularität der Koeffizientenmatrix 3.2.1. Randbedingungen des Systems 3.2.2. Verwendung einer generellen Diagonalperturbation 3.3. Iterative Lösungsverfahren 3.4. Faktorisierungsverfahren 3.4.1. Cholesky-Faktorisierung 3.4.2. LU-Faktorisierung 3.4.3. Fillin-Reduktion durch Permutation 3.4.4. Fazit 3.5. Direkte Lösungsverfahren 3.6. Verwendung externer Gleichungssystem-Löser 3.7. Zusammenfassung 4. Implementierung 4.1. Aufbau von MORPACK 4.2. Anforderungen an Reduktions-Funktionen 4.3. Eigenschaften und Optionen der KSM-Funktionen 4.3.1. Arnoldi-Funktion erster Ordnung 4.3.2. Rationale SOAR-Funktionen 4.4. Korrelationskriterien 4.4.1. Eigenfrequenzbezogen 4.4.2. Eigenvektorbezogen 4.4.3. Übertragungsfunktionsbezogen 4.5. Lösungsfunktionen linearer Gleichungssysteme 4.5.1. Anforderungen und Aufbau 4.5.2. Verwendung der Gleichungssystem-Löser 4.5.3. Hinweise zur Implementierung von Gleichungssystem-Lösern 5. Anwendung 5.1. Versuchsmodelle 5.1.1. Testmodelle kleiner Dimension 5.1.2. Getriebegehäuse 5.1.3. Treibsatzwelle 5.2. Validierung der Reduktionsmethoden an kleinem Modell 5.2.1. Modifizierte Arnoldi-Funktion erster Ordnung 5.2.2. Rationale SOAR-Funktionen 5.2.3. Zusammenfassung 5.3. Anwendung der KSM auf große Modelle 5.3.1. Getriebegehäuse 5.3.2. Treibsatzwelle 5.4. Auswertung 6. Zusammenfassung und Ausblick 6.1. Zusammenfassung 6.2. Ausblick

Page generated in 0.0628 seconds